
Software engineering
for scientists
Paolo Ciancarini – paolo.ciancarini@unibo.it
Department of Informatics – University of Bologna

12th Advanced School
on Parallel Computing

Bologna Feb 15, 2016

Agenda

n  What is Software Engineering?
n  and why it is useful for scientists

n  The software development lifecycle
n  Sw development activities and tools
n  Best practices for sw development

2

Do you agree?

n  Scientists want to repeatedly tweak queries and analyses on
their data sets and get immediate feedback. As long as you can
clearly explain what you did to get the results published in a
scientific paper, you don't need to pursue the code any further

n  As science becomes increasingly computational in nature, it will
become more important that scientific code does not end its
development cycle on publication of the paper. Data
exploration drives primary scientific discovery, but in order for
future scientists to fully leverage the work of their predecessors,
robust, reproducible, and sustainable software is needed to
automate the parts we already know how to do

3 D.Huang, Scientific coding and software engineering: what's the difference?, SSI, 2015

Software qualities

n  Robust software: able to cope with
errors during execution

n  Reproducible software: version control
n  Sustainable software: long lasting

software able to cope with changes

4

Reproducibility?

n  Tracking and recreating every step of your
work

n  Git: an enabling tool – use version control for
everything
n  Paper writing
n  Grant writing
n  Everyday research

n  Advantages:
n  A time machine view tracking every result
n  Distributed backup
n  Collaborate with collegues

5

Software development: typical problems

n  Unacceptable software performance
n  Software hard to maintain or extend
n  Inaccurate understanding of user needs
n  Inability to deal with changing

requirements
n  Late discovery of serious flaws

 à poor software quality

6

What is software quality?

n  Software functional quality reflects how well it
complies with or conforms to a given design,
based on some functional requirements

n  Software structural quality refers to how it
meets non-functional requirements that support
the delivery of the functional requirements

IMPORTANT: Software quality can be measured!

7

Traditional approach
Sw development is a sequence including the following phases:
n  Requirements Analysis
n  Design
n  Coding
n  Testing: first check the units, then the system

The entire development process goes through these phases linearly:
first all the requirements are defined, then the design is completed, and
finally the code is written and tested.
The key assumptions are that when design begins, requirements no longer
change. When coding starts, the design ceases to change. etc.

NB: This “traditional” approach is sometimes called "waterfall development”

8

The requirements pyramid
Some user has some need

Needs are answered by “features” that
some system must have

Each feature corresponds to a need and
is a collection of requirements

Features and requirements can be
aggregated in “scenarios”: after the code
is built, testing it in the scenario will prove
that its features satisfy the user’s needs

www.ibm.com/developerworks/rational/library/04/r-3217
9

Poor practices for sw development

n  Under-evaluation of development risks
n  Overwhelming complexity
n  Ambiguous communication
n  Insufficient testing
n  Insufficient requirements management
n  Inconsistencies among requirements,

designs, implementations, and tests
n  Fragile software architecture

10

Risks when developing HPC sw

n  Risks in sw development cycle
n  Risks in the development environment
n  Risks in the programming environment

See: Kendall, A Proposed Taxonomy for Software Development Risks for High-
Performance Computing (HPC) Scientific/Engineering Applications, SEI 2007

11

Examples

n  Typical risk in the development cycle:
misunderstanding requirements

n  Typical risk in the development
environment: too many manual activities

n  Typical risk in the programming
environment: underestimating
dependencies

12

Best practices for scientific computing

n  Write programs for people, not computers
n  Use a tool to automate workflows
n  Make incremental changes, use a version control system
n  Reuse code instead of rewriting it
n  Plan for finding mistakes
n  Optimize software only after it works correctly
n  Document design and purpose (not mechanics)
n  Collaborate (eg. by pair programming or by using an issue

tracking tool)

13 Wilson et al., Best Practices for Scientific Computing, PLOS Biology 2014

Best practices of software development

n  Develop iteratively
n  Control changes

n  Manage requirements
n  Verify quality
n  Use components
n  Model software architecture visually

14

30 15

Develop Iteratively

Control
Changes

Use
Component

Architectures

Manage
Requirements

Model
Visually

Verify
Quality

Best practices of software development

Know these!

Enters Software Engineering
“Software engineering is the discipline concerned
with all aspects of software production from the
early stages of system specification to maintaining
the system after it has gone into use”

[Sommerville 2007]

16

Software Engineering

“The establishment and use of sound
engineering principles in order to obtain
economically software that is reliable and works
efficiently on real machines.” [Naur & Randell,
1968]

17

Software Engineering

n  A definition and some issues
n  “developing quality software on time and within

budget”
n  Trade-off between a system perfectly

engineered and the available resources
n  SwEng has to deal with real-world issues

n  State of the art
n  Community decides on “best practices” + life-long

education

18

What is Software Engineering?

A naive view:
 Problem Specification Final Program

But ...
n  Where did the problem specification come from?
n  How do you know the problem specification corresponds to and

satisfies the user’s needs?
n  How did you decide how to structure your program?
n  How do you know the program actually meets the specification?
n  How do you know your program will always work correctly?
n  What do you do if the users’ needs change?
n  How do you divide tasks up if you have more than a one person in

the developing team?
n  How do you reuse exisiting software for solving similar problems?

coding

19

What is Software Engineering?

“multi-person construction of multi-version software”
— Parnas

n  Software is complex and difficult to build
n  Team-work

n  Scale issue (“program well” is not enough) +
communication issues: Conway’s law

n  Successful software systems must evolve or
perish
n  Changes to the software is the norm, not the exception

20

Conway’s Law

n  The law: Organizations that design software
systems are constrained to produce designs
that are copies of the communication
structures of these organizations

n  Example: "If you have four groups working on
a compiler, you'll get a 4-pass compiler”

n  Several studies found significant differences
in modularity when software is outsourced,
consistent with a view that distributed teams
tend to develop more modular products

21

What is Software Engineering?

“software engineering is different from other
engineering disciplines”

— Sommerville
n  It is not constrained by physical laws

n  limit = human knowledge
n  It is constrained by social forces

n  Balancing stakeholders needs
n  Consensus on functional and especially

non-functional requirements

22

Development
process

Requirements

Tools

Sw quality

Project
management

Software
design

Testing

Coding

Configuration
management

Evolution

Software
Engineering

IPR &
licensing

Topics of the discipline

n  Product and process standards for software
n  Project management for software systems
n  Software development models: planned vs agile
n  Requirement analysis
n  Software design by visual modeling
n  Measuring, verifying, and ensuring software quality
n  Software evolution and maintenance
n  Typical tools used by software engineers:

n  Version control, configuration management

Software Engineering for HPC

n  Software engineering aims to designing,
implementing, and modifying software so that it is
faster to build, of higher quality, more maintainable

n  In HPC we have all the common problems of
software development, plus the specific problem that
software developers have scarce knowledge of
software engineering best practices

n  In the following slides we will deal with some of these
problems and suggest some solutions

25

Roadmap

n  What is Software Engineering?
n  The Software Development Lifecycle
n  Software development activities
n  Methods and tools

26

Software: the product of a process

n  Many kinds of software products
 à many kinds of development processes

n  “Study the process to improve the product”

n  A software development process can be
described according to some specific “model”

n  Examples of process models: waterfall, iterative,
agile, explorative,…

n  These models differ mainly in the roles and
activities that the stakeholders cover

27

Beware of software aging!
Software can age
n  Ill-conceived design or

modifications
n  Functional operation degrades

over time
n  It becomes unsustainable,

unusable
n  Lack of proper maintenance
n  Infrastructure (os, libraries,

language platform) evolves
n  Some software types more

susceptible

Stakeholders

Typical stakeholders in a sw process
n  Users
n  Decisors
n  Designers
n  Management
n  Technicians
n  Funding people
n  …

Each stakeholder has a specific viewpoint on
the product and its development process

29

Just a joke?

HPC stakeholders attributes

31

V.Basili et al., Understanding the High-Performance-
Computing Community: A Software Engineer’s

Perspective, IEEE Software, 2008

The software development process
n  Software process: set of roles,

activities, and artifacts necessary to
create a software product

n  Example roles: stakeholder, designer,
developer, tester, maintainer, ecc.

n  Example artifacts: source code,
libraries, comments, test suites, etc.

32

Activities

n  Each organization differs in the products it
builds and the way it develops them; however,
most development processes include:
n  Specification
n  Design
n  Verification and validation
n  Evolution

n  The development activities must be modeled
to be managed and supported by automatic
tools

33

Software development activities
Requirements
Collection Establish customer’s needs

Analysis Model and specify the requirements (“what”)

Design Model and specify a solution (“how”)

Implementation Construct a solution in software

Testing Validate the software against its requirements

Deployment Making a software available for use

Maintenance Repair defects and adapt the sw to new requirements

NB: these are ongoing activities, not sequential phases!

34

First development step: requirements

n  The first step in any development
process consists in understanding the
needs of someone asking for a software

n  The needs should be stated explicitly in
“requirements”, which are statements
requiring some function or property to
the final software system

35

36

Requirements and tests

User
requirements

Test reqs

Scenarios and
test cases

Test script

37

Types of testing

Acceptance testing (by the user)

Performance testing

System testing

Integration testing

Unit testing

Models for the software process

A model for the sofware development
process is a method to describe the roles,
the tasks, and the documents to be
developed
n  Waterfall (planned, linear)
n  Spiral (planned, iterative)
n  Agile (unplanned, test driven)

38

Waterfall characteristics
n  One way communicatons
n  Delays confirmation of

critical risk resolution
n  Measures progress by

assessing work-products
that are poor predictors of
time-to-completion

n  Delays and aggregates
integration and testing

n  Precludes early
deployment

n  Frequently results in major
unplanned iterations

Code and unit test

Design

Subsystem integration

System test

Waterfall Process
 Requirements

 analysis

39

The classical software lifecycle

The classical
software lifecycle

models the software
development as a

step-by-step
“waterfall” between

the various
development phases

The waterfall model is flawed for many reasons:
•  Requirements must be frozen too early in the life-cycle

•  User requirements are validated too late
•  Risks in costructing wrongly the software are high

Design
Implementation

Testing
Maintenance

Analysis
Requirements

Collection

40

Problems with the waterfall lifecycle

1.  “Real projects rarely follow the sequential flow that the
waterfall model proposes. Iteration always occurs and creates
problems in the application of the paradigm”

2.  “It is often difficult for the customer to state all requirements
explicitly. The classic life cycle requires this and has difficulty
accommodating the natural uncertainty that exists at the
beginning of many projects.”

3.  “The customer must have patience. A working version of the
program(s) will not be available until late in the project
timespan. A major blunder, if undetected until the working
program is reviewed, can be disastrous.”

— Pressman, SE, p. 26

41

Iterative development

In practice, development is always iterative,
and most activities can progress in parallel

Requirements
Collection

Testing

Design

Analysis
Validation through prototyping

Testing based on requirements

Testing throughout implementation

Maintenance through iteration

Design through refactoring

If the waterfall
model is pure

fiction, why is it
still the dominant

software process?

Implementation

42

Iterative development

n  Plan to iterate your analysis, design and
implementation
n  You will not get it right the first time, so

integrate, validate and test as frequently as
possible

n  During software development, more than one
iteration of the software development cycle
may be in progress at the same time

n  This process may be described as an
'evolutionary acquisition' or 'incremental build'
approach

43

Iterative development

Plan to incrementally develop (i.e.,
prototype) the system
n  If possible, always have a running version

of the system, even if most functionality is
yet to be implemented

n  Integrate new functionality as soon as
possible

n  Validate incremental versions against user
requirements.

44

The spiral lifecycle

evolving system

initial requirements

first prototype
alpha demo

go, no-go decision completion Impossibile visualizzare l'immagine. La memoria
del computer potrebbe essere insufficiente per
aprire l'immagine oppure l'immagine potrebbe
essere danneggiata. Riavviare il computer e aprire
di nuovo il file. Se viene visualizzata di nuovo la x
rossa, potrebbe essere necessario eliminare
l'immagine e inserirla di nuovo.

Planning = determination
of objectives, alternatives
and constraints

Risk Analysis = Analysis of
alternatives and identification/
resolution of risks

Customer Evaluation =
Assessment of the

results of engineering

Engineering =
Development of the
next level product

Risk = something that
will delay project or
increase its cost

45

A process for HPC [Lugato 2010]

46

Risk Reduction

Time

R
is

k

Waterfall Risk

Iterative Risk

Risk: waterfall vs iterative

47

Requirements,
models

and code

 Tests

Iteration 1

Test Suite 1

Iteration 2

Test Suite 2

Iteration 4

Test Suite 4

Iteration 3

Test Suite 3

Test each iteration

48

Testing before designing

n  What is software testing? an investigation
conducted to provide information about the
quality of some software product

n  In planned process models testing happens
after the coding, and checks if the code
satisfies the requirements

n  What happens if we define the tests before
the code they have to investigate?

49

Agile development processes

n  There are many agile development methods;
most minimize risk by developing software in
short amounts of time

n  The requirements are initially grouped in
stories and scenarios

n  Then the tests for each scenario are agreed
with the user, before any code is written

n  Each code is tested against its scenario tests,
and integrated after it passes its unit tests

50

Agile ethics

n  www.agilemanifesto.org

n  Management can tend to prefer the things on the
right over the things on the left

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on

the right, we prefer the items on the left.

51

Working Software
Delivered

Requirements
Prioritised Requirements &
Features “Backlog” Requirements

Requirements
Requirements

Requirements

Prioritised
Iteration
Scope

Daily Scrum Meeting:
15 minutes
Each teams member answers 3 questions:
1) What did I do since last meeting?
2) What obstacles are in my way?
3) What will I do before next meeting?

Team-Level
Planning Every 24hrs

Every Iteration
4-6 weeks

Applying Agile:
Continuous integration; continuously monitored progress

SCRUM

52

Roadmap

n  What is Software Engineering?
n  The Software Development Lifecycle
n  Software Development Activities
n  Methods and tools

53

Requirements collection

User requirements are often expressed informally:
n  They are grouped in features
n  They are put in context in usage scenarios

Even if requirements are documented in written form,
they may be incomplete, ambiguous, or incorrect

54

Changing requirements

Requirements will change!
n  inadequately captured or expressed in the first place
n  user and business needs may change during the

project
Validation is needed throughout the software
lifecycle, not only when the “final system” is
delivered!

n  build constant feedback into your project plan
n  plan for change
n  early prototyping [e.g., UI] can help clarify

requirements
55

Requirements analysis

Analysis is the process of specifying what a
system will do

n  The goal is to provide an understanding of what the
system is about and what its underlying concepts are

The result of analysis is a specification document

Does the requirements
specification correspond to the

users’ actual needs?

56

Design

Design is the process of specifying how the
specified system behaviour will be realized from
software components. The results are
architecture and detailed design documents.
Object-oriented design delivers models that describe:
n  how system operations are implemented by

interacting objects
n  how classes refer to one another and how they are

related by inheritance
n  attributes and operations associated to classes

Design is an iterative process,
proceeding in parallel with

implementation!
57

Implementation and testing

Implementation is the activity of
constructing a software solution to the
customer’s requirements.

Testing is the process of verifying that the
solution meets the requirements.

n  The result of implementation and testing is
a fully documented and verified solution.

58

Testing!

1

•  Provide automated build process
•  Far easier & quicker to validate changes
•  e.g. Make, Ant, Maven

2

•  Provide automated regression test suite - TDD
•  Do changes break anything?
•  JUnit, CPPUnit, xUnit, fUnit, …

3
•  Join together: automated build & test

•  A ‘fail-fast’ environment

4
•  Infrastructure support

•  Nightly builds – run build & test overnight, send reports
•  Continuous integration - run build & test when codebase changes

Towards anytime releasable code!

Iterativity of design, Implementation and testing

Design, implementation and testing are iterative activities
n  The implementation does not “implement the

design”, but rather the design document documents
the implementation!

n  System tests reflect the requirements specification
n  Testing and implementation go hand-in-hand

n  Ideally, test case specification precedes design and
implementation

60

Maintenance

Maintenance is the process of changing a system after
it has been deployed.

n  Corrective maintenance: identifying and repairing
defects

n  Adaptive maintenance: adapting the existing solution
to new platforms

n  Perfective maintenance: implementing new
requirements

n  Preventive maintenance: repairing a software
product before it breaks

In a spiral lifecycle, everything after the
delivery and deployment of the first prototype
can be considered “maintenance”!

61

Maintenance activities

“Maintenance” entails:
n  configuration and version management
n  reengineering (redesigning and

refactoring)
n  updating all analysis, design and user

documentation
 Repeatable, automated

tests enable evolution
and refactoring

62

Efficiency
Improvements

4%
Documentation

6%

Hardware
Changes

6%

Routine
Debugging

9%

Emergency
Fixes
12%

Changes in
Data Formats

17%

Other
3%

Changes in
User

Requirements
43%

Maintenance costs

“Maintenance”
typically accounts for

70% of software costs!

Means: most
project costs

concern continued
development after

deployment
– Lientz 1979

63

Deployment

n  Virtual Machines
n  Software pre-installed, ready to run
n  Often easiest
n  Not enough in itself – documentation!

n  Release software
n  Prioritise & select requirements -> Develop -> Test ->

Commit changes to repository -> Test -> Release
n  Documentation (minimum: quick start guide)

n  Licencing
n  Specify rights for using, modifying and redistributing

Configuration management

n  Run your own CM system, if you have the resources
n  Generally easy to set up
n  Full control, but be sure to back it up!

n  Some public solutions can offer most of these for free
n  SourceForge, GoogleCode, GitHub, Codeplex, Launchpad,

Assembla, Savannah, …
n  BitBucket for private code base (under 5 users)
n  See (for hosting code and related tools)

http://software.ac.uk/resources/guides/choosing-repository-
your-software-project

n  See (for hosted continuous integration)
http://www.software.ac.uk/blog/2012-08-09-hosted-
continuous-integration-delivering-infrastructure

“If you’re not using version control, whatever else you might be doing with a
computer, it’s not science” – Greg Wilson, Software Carpentry

Version control
n  Version management allows you to control and

monitor changes to files
n  What changes were made?
n  Revert to previous versions
n  When were changes made ?
n  What code was present in release 2.7?

n  Earliest tools were around 1972 (SCCS)
n  Older tools – RCS, CVS, Microsoft Source Safe,

PVCS Version Manager, etc…
n  Current tools – Subversion, Mercurial, Git,

Bazaar

67

68

69

Version control concepts
n  checkout – get a local copy of the files

n  I have no files yet, how do I get them?

n  add – add a new file into the repository
n  I created a new file and want to check it in

n  commit – send locally modified files to the
repository
n  I made changes, how do I send them to the group?

n  update – update all files with latest changes
n  Other people made changes, how do I get them?

n  tag / branch – label a “release”
n  I want to “turn in” a set of files

Conclusions

Software engineering deals with
n  the way in which software is made (process),
n  the languages to model and implement software,
n  the tools that are used, and
n  the quality of the result (testing and measures)

71

Self test questions

n  How does Software Engineering differ from
programming?

n  Why is the “waterfall” model unrealistic?
n  What is the difference between analysis and design?
n  Why plan to iterate? Why develop incrementally?
n  Why is programming only a small part of the cost of a

“real” software project?

72

Reference: papers

n  V.Basili et al., Understanding the High-Performance- Computing
Community: A Software Engineer’s Perspective, IEEE Software, 2008

n  G. Wilson et al., Best Practices for Scientific Computing. PLoS Biol
12(1), 2014

n  Kendall et al., A Proposed Taxonomy for Software Development Risks
for High-Performance Computing (HPC) Scientific/Engineering
Applications, TN-039 CMU, 2007

n  D.Lugato et al., Model-driven engineering for HPC applications, Proc.
Modeling Simulation and Optimization Focus on Applications, Acta
Press (2010): 303-308.

73

References: books

n  Pressman, Software engineering a practictioner
approach, 8th ed., McGrawHill, 2014

n  The Computer Society, Guide to the Software
Engineering Body of Knowledge, 2013
www.computer.org/portal/web/swebok

74

Useful references

n  software.ac.uk Software Sustainability Institute
n  software.ac.uk/resources/case-studies
n  software-carpentry.org Software carpentry
n  Proc. 2015 Int. Workshop on Sw Engineering for HPC in Science

75

Questions?

http://xkcd.com/844/

