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Von Neumann architecture



Von Neumann architecture

•  Data are moved between memory and CPU(fetch, read, write, store)

•  (physical) Separation between CPU and memory represents the so-
called «von Neumann bottleneck».

•  Time spent to move data across the bus is typically much more greater 
than the time necessary to compute operations on operands



Caching - Virtual Memory - 
Instruction Level Parallelism
Workarounds to avoid the Von Neumann bottleneck:

• Caching

Reduced memory, but very fast

• Virtual memory

• Instruction level parallelism



Caching

• Data locality (spatial and temporal)



Caching
• Data are stored in cache lines

• When data are moved from cache to registers one or more lines are 
copied from the cache to the registers 

• This technique is very efficient if 

• Data are in the cache (cache hit)

• There is no need to move data from the main memory and the 
cache (cache miss)

REAL,DIMENSION(1000) :: A
REAL :: sum=0.0
DO I = 1, 1000 
             sum = sum + A(I)
END DO 

fortranfortran float a[1000]; 
int sum =0.0;
for(i=0; i<1000; i++){

sum+=a[i];
}

c/c++c/c++



Caching

• Cache fully associative

– ogni linea di dati o istruzioni presa dalla RAM può essere memorizzata 
in una qualsiasi linea della cache

• Cache n-way set associative
– ogni linea di dati o istruzioni presa dalla RAM può essere memorizzata 

in una qualsiasi delle n differenti locazioni

• Cache direct mapped
– ogni linea di dati o istruzioni presa dalla RAM può essere memorizzata 

in un’unica linea di cache 
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Virtual memory

• If the RAM is not able to contain all the data, then disk space can be used 
as virtual memory.

• Virtual memory is organized in blocks called pages
• Since virtual memory is much more slower than the RAM, blocks (pages) 

are quite large (4-16 kbytes)
• Swapping to virtual memory is highly discouraged in HPC, because the 

access time can be really high



Instruction level parallelism
• Instruction-level parallelism (ILP) is used when there are more than one 

functional unit available

• Two possible approaches: 
– Pipelining,  if supported by hardware
– multiple issue, 

• Pipeline:



Instruction level parallelism
• Pipelining improves perfomances, connecting more than one functional 

units

• In multiple issue processors, functional units and pipelines are replicated 
to run in parallel different instructions on the same program 

• If functional units are scheduled at compile-time, we say that multiple 
issue is static

• If functional units are scheduled at run-time, we say that multiple issue is 
dynamic

• If a processor supports dynamic multiple issue, this is called superscalar



Flynn taxonomy
• In principle there are 4 categories according to the Flynn taxonomy:

– SISD      :  single instruction, single data.

 
– SIMD    :  single instruction, multiple data. 

– MISD    :  multiple instruction, single data

– MIMD  :  multiple instruction, multiple data

• Modern solutions implement a combination of these models.



Flynn taxonomy - SISD

• Typical system with a single computing unit working in serial on a single 
stream of data. 

• Performance can be improved only with a faster bus to rapidly access 
memory or a faster clock.

• In some cases pipelining or multiple issue can be implemented 



Flynn taxonomy - SIMD
• Same instructions multiple data: vectorial registers

• On the same clock tick, the same operation is performed on a set of data

• Vectorial registers
– Many ALU
– AVX, SSE instructions
– Unità Load/Store vettoriali

• Graphical Processing Unit
• Intel MIC



Flynn taxonomy - MIMD

• Multiple streams of instructions are executed on multiple streams of data 
on a asynchronous computational model

• Cluster (manycores, multicores...)
• SOA



IBM - Blue Gene/Q

Model: IBM-BlueGene /Q
Architecture: 10 BGQ Frame with 2 MidPlanes each
Front-end Nodes OS: Red-Hat EL 6.2
Compute Node Kernel: lightweight Linux-like kernel
Processor Type: IBM PowerA2, 16 cores, 1.6 GHz
Computing Nodes:  10.240
Computing Cores:  163.840
RAM: 16GB / node
Internal Network: Network interface
                               with 11 links ->5D Torus
Disk Space:  more than 2PB of scratch space
Peak Performance: 2.1 PFlop/s



Cluster CPU-GPU
• Hetereogeneous solution: combining together different architectures

• Typycally a CPU plus an accelerator

• CPU + GPUs (PLX)

• CPU + MICs (EURORA)

– Many programming paradygms: OpenMP, MPI, CUDA , 
MPI+OpenMP, MPI+CUDA, OpenMP+CUDA, OpenMP+MPI+CUDA 
+ ????

CINECA - PLX



CPU vs GPU
• CPU are processors “general purpose” that can operate on every kind of 

algorithm (serial or parallel)
• They can use threads (typically 1 or 2 per core) but they can also work 

serially
• High clock frequency, large memory per core

• GPU are suitable only for «intense data-parallel computations»
– Large number of threads working together
– Small amount of memory per ALU



Multicore vs Manicore



Intel Xeon Phi

• Specifiche principali:
 Intel Many Integrated Core (MIC) 
 60 cores/1,053 GHz/240 thread
 X86 based architecture
 DRAM 8 GB, bw 320 GB/s
 TPP : 1 TFLOPS
 PCIe2
 Running Linux
 SIMD registers 512 bit
 MPI + OpenMP + OpenCL



Shared memory vs 
distributed memory



Shared memory

• Two different access to the memory:

– Uniform Memory Access

– Non Uniform Memory Access

Uniform Memory Access Non Uniform Memory Access



Networks

• When using large facilities (HPC) the communication network is very 
important to allow performances

• Several kind of networks: 

– Gigabit Ethernet (low performances, low cost)

– Infiniband (high performances, high cost, widely used)

– Myrinet (high performances, but it’s getting old...)

• Custom solutions:

– Cray

– IBM



Networks

• All-to-all networks would be the ideal solution
• Actually this is never implemented because too expensive
• Other solutions are:

• Ring

• Hypercube
• Fat tree



Ring - torus
• Ring connection is the simplest but not always is the best solution 

(efficient only for point to point communication with nearest neighbours).

• Torus can be 3, 4 or 5 dimensional (i.e. the number of connections)



Hypercube (mesh)

• Highly efficient
– Sometimes it is coupled together with other kind of networks



Fat tree

• Typical connession Infiniband
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 The compilation is the process by which a high-level code is converted to 
machine languages.

 Born to avoid writing directly in machine code or Assembly.

 The most famous are the Intel Compiler, GCC (GNU Compiler Collection) 
and PGI for Linux.

Compilers
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• Preprocessing phase
     
• Compilation

• Linking

Compilers
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Lexical analysis: performed by a lexer or 
scanner, is responsible for analyzing a stream 
or characters and generate a stream of tokens.

123 + 141 / 725

Type Value

number 123

operator +

number 141

operator /

number 125
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Syntactic analysis: analysis of a stream of characters according to 
the rules of formal grammar (language). Performed by a parser. 

int a = 0   << wrong
int a=0; OK

Compilers
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There may be a preprocessor. Example in C.

 #include directive

 Define: directive

#include <stdio.h>

 #ifdef directive

#ifdef DEBUG
printf( “versione debug \n”);
#else
printf( “versione release \n”);
#endif

#define PI  3.14159

Compilers
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Macro:

Pragma: provides additional information to the compiler

Forcing unroll a loop

#define RADTODEG(x) ((x) * 57.29578)

#pragma unroll

#pragma intel optimization_level n

Compile a function with the optimizazion level n

Compilers
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Compilation: source code is translated into machine language 
according to the compilation flags. At this stage, are create objects.

-c option to manually create the object file. At this stage they are not 
looking for any external functions not present in the object.

Linking: integration of various modules, object files and libraries via 
a linker. This phase produces the executable.

Compilers
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Objdump: to explore the assembly of an object file

objdump -D object.o
00000000 <.comment>:
   0: 00 47 43             add    %al,0x43(%edi)
   3: 43                            inc    %ebx
   4: 3a 20                 cmp    (%eax),%ah
   6: 28 55 62             sub    %dl,0x62(%ebp)
   9: 75 6e                jne    79 <s+0x69>
   b: 74 75                je     82 <s+0x72>
   d: 20 34 2e             and    %dh,(%esi,%ebp,1)
  10: 34 2e                xor    $0x2e,%al
  12: 33 2d 34 75 62 75    xor    0x75627534,%ebp
  18: 6e                   outsb  %ds:(%esi),(%dx)
  19: 74 75                je     90 <s+0x80>
  1b: 35 29 20 34 2e       xor    $0x2e342029,%eax
  20: 34 2e                xor    $0x2e,%al

  22: 33 00                xor    (%eax),%eax   

Useful commands
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Ldd: displays the dynamic libraries used by an executable
  ldd <executable>:

libmpi_f90.so.0 => /cineca/prod/opt/compilers/openmpi/1.3.3/intel--11.1--binary/lib/libmpi_f90.so.0 
(0x00002ae9526f4000)

libmpi_f77.so.0 => /cineca/prod/opt/compilers/openmpi/1.3.3/intel--11.1--binary/lib/libmpi_f77.so.0 
(0x00002ae952a2d000)

libmpi.so.0 => /cineca/prod/opt/compilers/openmpi/1.3.3/intel--11.1--binary/lib/libmpi.so.0 
(0x00002ae952c64000)

libopen-rte.so.0 => /cineca/prod/opt/compilers/openmpi/1.3.3/intel--11.1--binary/lib/libopen-
rte.so.0 (0x00002ae9530f4000)

libopen-pal.so.0 => /cineca/prod/opt/compilers/openmpi/1.3.3/intel--11.1--binary/lib/libopen-
pal.so.0 (0x00002ae9533a0000)

librdmacm.so.1 => /usr/lib64/librdmacm.so.1 (0x0000003cd0800000)
libibverbs.so.1 => /usr/lib64/libibverbs.so.1 (0x0000003ccf800000)
libbat.so => /cineca/sysprod/lsf/7.0/linux2.6-glibc2.3-x86_64/lib/libbat.so (0x00002ae95364e000)
liblsf.so => /cineca/sysprod/lsf/7.0/linux2.6-glibc2.3-x86_64/lib/liblsf.so (0x00002ae95390d000)
libnsl.so.1 => /lib64/libnsl.so.1 (0x0000003cd6800000)
libutil.so.1 => /lib64/libutil.so.1 (0x0000003cdde00000)
libm.so.6 => /lib64/libm.so.6 (0x00002ae953c06000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x0000003cd0000000)
libc.so.6 => /lib64/libc.so.6 (0x0000003ccf400000)

Useful commands
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The exadecimal value is the entry point (or load address) of the library into the 
executable, or the point which will be called

If you change the executable (eg: with the flags), the entry point can change.

Very useful if you have no a priori information about an executable.
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•Architecture
•Aliasing
•Interprocedural analysis
•Inlining
•Loop
•Intrinsic functions

Categories optimization
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It is possible to enable specific optimizations for a given processor.

-march=pentium4

-mtune=pentium2 | pentium3 | pentium4 | core2 | atom | athlon

Why use them? The compiler should already know which processor is 
using.

All optimization quite often aren't enabled for a given processor 

Both as a matter of compile time, both for the quality of results. The -O3 
flag can intrinsically call up these flags. Refer to your compiler manual.

Architecture
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You can lose portability

If you are using a generic -march=i386 executable can potentially run on 
all i386.

If you are using -march=pentium4,the executable can not work on Pentium 
earlier.

The precompiled binaries are the most generic possible. Portability, but 
loss of performance.

Architettura
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Aliasing

It refers to a situation where the same memory location can be 
accessed through multiple symbolic names.

void func(int*vector){

vector[0] = 10;

}

int main(){

int a[10];
func(a);

}

int vector[10];

int* punt = &vector[0];

int* punt2 = &vector[0];

vector[0] = 10;

punt[0] = 10;

punt2[0] = 10;
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The optimizer can make conservative assumptions in the presence of 
pointers

Si supponga di avere 

Aliasing

x = 5
.. codice...
int *y = &x
*y = 10

Can not propagate as well as the value 5, because y, (x alias) has 
changed it.

If y is not x aliases, the compiler may decide to reverse these 
instructions:

*y = 10
x = 5
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X

P0
P1

P2

Cheching a single memory 
location is simple.

Checking 4 aliases to same 
memory location is more 
difficult.

P3

Aliasing
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If the compilers has informations about pointers, it can perform 
optimizations.

Strict aliasing: C99 standard according to which pointers to object of 
different types do not ever refer to the same memory location

Flag:  -fstrict-aliasing

Aliasing

int16_t* foo;
int32_t* bar;

The compiler assumes that foo and bar never refer to the same 
memory location

funzione(int* restrict vector)

Flag: -restrict. Inform the compiler that vector is accessed 
exclusively within the function
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Interprocedural analysis

By default, the compiler optimizes files for a time, without having a global 
vision, focusing on portions of code, loops, and/or functions

If a loop contains call to external function, the IPO can analyse whether or 
not it is convenient to inline it.

Flags: -ip -ipo ( o -ipa )
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COMMON X,Y
...

   DO I = 1, N
 
S0: CALL P
S1: X(I) = X(I) + Y(I)

   ENDDO

Can be vectorized if in P:

 

Interprocedural analisys

Anybody use or change  X
Anybody change  Y
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In IPO is important to analyse whether a function has side-effect

A function has side-effects if a change was outside of their local scope.

Interprocedural analysis

Changing global variables
Changing static variables
Changing one or more arguments
Screen writing
Writing/reading a file
Throwing an exception.
Calling other side-effects functions
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SUBROUTINE S(A,X,N)
COMMON Y        /* Y is global variable */

DO I = 1, N
S0: X = X + Y*A(I)

ENDDO
END

It might be more efficient to mantain different register X and Y and write 
X out of the loop
What happens if we call S(A,Y,N)?
  Y has X aliases
Any modification of X is reflected in Y
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Inlining

The function call is an operation performed on the stack rather 
expensive

1) Create a stack frame on top of the stack
2) Writiting the return address
3) Writing any local variables
4) Writing any parameters passed (by value, reference)
3) Deleting of the stack frame and return to the caller
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PUSH: put a value on the stack
POP: read and remove a value on the stack
JSR: jump to subroutine,  (saving the return address on the stack 
with PUSH)
RET: return from a subroutine to the caller (indentified by running a 
POP of return value from the stack)

Inlining



51

Inlining is a technique whereby a function call is replaced with its body 

Benefits:

Delete the cost of the function call and instruction return
Delete statement executed branches and maintains the code locality

Disadvantages:

Increase the executable size
Could need  additional variables (using multiple registers)

Inlining
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Example::

int main(){
int x=10;
cout << “ square value “ << pow(x) << endl;

}

coid pow(int value){
return value*value;
}

int main(){
int x=10;

cout << “ square value “ << x*x << endl;

}

Inlining
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It is possible to make inlining by hand, but can be tedious and can lead to 
errors.

Modern compilers allow you to make automatic inlining:

Inline keyword in C/C++. In this case, a suggestion, it is said that the 
function is converted into inline

The compiler chooses whether to make an inline function or not according to 
the size of his body. You can not do inline parts of a function.

-finline-limit=n where n is the size of the function

Agrees to inlining functions “small” and frequently called.

Inlining
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Loop optimization

Loop interchange
Loop fusion
Loop unrolling
Loop unswitching
Loop fission
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Loop interchange

for( int i = 0; i< N; i++)
    for( int j=0; j<N; j++)

       matrix[i][j] = i*j;

 for( int j=0; j<N; j++)
   for( int i = 0; i< N; i++)

       matrix[i][j] = i*j;

Allow you to reduce cache misses when access to non-contiguos memory 
locations.
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You can not always do. It may not agree:

do i = 1, 10000
   do j = 1, 1000
       a(i) = a(i) + b(j,i) * c(i)
   end do
end do

If you reverse the cycles, they are made useless store of “a” variable
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Loop fusion

int i, a[100], b[100];
 ........
  for (i = 0; i < 100; i++){
      a[i] = a[i] + 1; 
      x+=a[i];
  }                    
  for (i = 0; i < 100; i++)
      a[i] = a[i] + 2;

 int i, a[100], b[100];
  .......
  for (i = 0; i < 100; i++)
  {
    a[i] = a[i]+1;
    x+=a[i]; 
    a[i] = a[i]+2;
  }

It eliminates a loop, but it extends the body loop. Need to find the right 
balance.
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Loop unrolling

At the end of loop body, end-of-loop test is provided. This condition can be 
expensive, especially with many cycles iterations.

int x;
 for (x = 0; x < 100; x++)
 {
     a[i] = a[i]+1;
 }

 

int x; 
 for (x = 0; x < 100; x += 5)
 {
     a[i] = a[i]+1;
     a[i+1] = a[i+1]+1;
     a[i+2] = a[i+2]+1;
     a[i+3] = a[i+3]+1;
     a[i+4] = a[i+4]+1;
 }
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The new loop executes 1/5 of the control loop at the end than the 
original loop.

More instruction per iteration → better use of the pipeline. Potentially 
is 5 times faster.

If the unroll step is not a divisor of the number of iteration, you must 
handle the rest:

int x;
 for (x = 0; x < 11; x++)
 {
     a[i] = a[i]+1;
 }

int x; 
a[0] = a[0] + 1
 for (x = 1; x < 11; x += 2)
 {
     a[i] = a[i]+1;
     a[i+1] = a[i+1]+1;
 }
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There is no method to find optimal unroll step.

Usually, a maximum of 2 or unroll 4 is enough.

If the loop is complex and has instruction dependencies, the compiler 
may fail to make the unroll.

If found the optimal unroll step, allows significant speedup.
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Loop unswitching

Move internal loop condition outside, replicating the loop body in the 
if/else clauses:

 int i, w, x[1000], y[1000];
  for (i = 0; i < 1000; i++) {
    x[i] = x[i] + y[i];
    if (w)
      y[i] = 0;
  }

 int i, w, x[1000], y[1000];
  if (w) {
    for (i = 0; i < 1000; i++) {
      x[i] = x[i] + y[i];
      y[i] = 0;
    }
  } else {
    for (i = 0; i < 1000; i++) {
      x[i] = x[i] + y[i];
    }
  }

Used to optimize separately 
the cases



62

Loop fission

Unlike loop fusion

int i, a[100], b[100];
 for (i = 0; i < 100; i++) {
   a[i] = 1; 
   b[i] = 2;
 }

 int i, a[100], b[100];
 for (i = 0; i < 100; i++) {
   a[i] = 1;                     
 }
 for (i = 0; i < 100; i++) {
   b[i] = 2;
 }

Allow to exploit better data and instruction locality
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Performance of loop techniques are strongly affected by the number 
of the iterations of the loop under consideration.

It is often convenient  try more than one technique, or even mix them

Usually, a loop is one of the portion more time expensive  in a source 
code 
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Intrinsic functions

Modern compilers have built-in intrinsic functions highly optimized and 
tested.

Some are implemented directly in hardware (SSE, AVX)

Use them whenever possible instead of doing  “by hand”

Refer to your manual compiler to the lists of functions available.
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SSE instructions

Vector instructions that perform the same operations on multiple 
data.

Activated by the compiler, or by hand tuning (intrinsic)

 128-bit register integer/single precision floating point operations at a 
time, or 2 whit double precision.

__m128 _mm_add_ps(__m128 a, __m128 b) 
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SSE instructions (Streaming SIMD Istruction)

SSE Single precision



67

SSE double precision
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