
Introduction to OpenMP
Alessandro Grottesi - a.grottesi@cineca.it

Mariella Ippolito - m.ippolito@cineca.it

Cristiano Padrin - c.padrin@cineca.it

SuperComputing Applications and Innovation Department

1 / 71

Outline

1 Introduction
Shared Memory
The OpenMP Model

2 Main Elements

3 Syncronization And Other Functionalities

4 Conclusions

2 / 71

Disadvantages of MPI

• Each MPI process can only access its local memory
• The data to be shared must be exchanged with explicit

inter-process communications (messages)
• It is the responsibility of the programmer to design and

implement the exchange of data between processes
• You can not adopt a strategy of incremental parallelization

• The communication structure of the entire program has to be
implemented

• The communications have a cost
• It is difficult to have a single version of the code for the serial

and MPI program
• Additional variables are needed
• You need to manage the correspondence between local

variables and global data structure

3 / 71

What is OpenMP?

• De-facto standard Application Program Interface (API) to write
shared memory parallel applications in C, C++ and Fortran

• Consists of compilers directives, run-time routines and
environment variables

• “Open specifications for Multi Processing” maintained by the
OpenMP Architecture Review Board
(http://www.openmp.org)

• The "workers" who do the work in parallel (thread) "cooperate"
through shared memory

• Memory accesses instead of explicit messages
• "local" model parallelization of the serial code

• It allows an incremental parallelization

4 / 71

http://www.openmp.org

A bit of history

• Born to satisfy the need of unification of proprietary solutions
• The past

• October 1997 - Fortran version 1.0
• October 1998 - C/C++ version 1.0
• November 1999 - Fortran version 1.1 (interpretations)
• November 2000 - Fortran version 2.0
• March 2002 - C/C++ version 2.0
• May 2005 - combined C/C++ and Fortran version 2.5
• May 2008 - version 3.0 (task !)

• The present
• July 2011 - version 3.1
• July 2013 - version 4.0 (Accelerator, SIMD extensions, Affinity,

Error handling, User-defined reductions, ...)
• The future

• version 4.1/5.0

5 / 71

Outline

1 Introduction
Shared Memory
The OpenMP Model

2 Main Elements

3 Syncronization And Other Functionalities

4 Conclusions

6 / 71

Shared memory architectures

• All processors may access the whole main memory

• Non-Uniform Memory Access
• Memory access time is

non-uniform

• Uniform Memory Access
• Memory access time is

uniform

7 / 71

Process and thread

• A process is an instance of a
computer program

• Some information included in a
process are:

• Text
• Machine code

• Data
• Global variables

• Stack
• Local variables

• Program counter (PC)
• A pointer to the istruction

to be executed

8 / 71

Multi-threading

• The process contains several
concurrent execution flows
(threads)

• Each thread has its own
program counter (PC)

• Each thread has its own
private stack (variables local
to the thread)

• The instructions executed by
a thread can access:

• the process global
memory (data)

• the thread local stack

9 / 71

Outline

1 Introduction
Shared Memory
The OpenMP Model

2 Main Elements

3 Syncronization And Other Functionalities

4 Conclusions

10 / 71

The OpenMP execution model

• The Fork & Join Model
• Each OpenMP program begins to execute with a single thread

(Master thread) that runs the program in serial
• At the beginning of a parallel region the master thread creates a

team of threads composed by itself and by a set of other threads
• The thread team runs in parallel the code contained in the

parallel region (Single Program Multiple Data model)
• At the end of the parallel region the thread team ends the

execution and only the master thread continues the execution of
the (serial) program

11 / 71

The OpenMP memory model

• All threads have access to the
same globally shared memory

• Data in private memory is only
accessible by the thread
owning this memory

• No other thread sees the
change(s)

• Data transfer is through shared
memory and is completely
transparent to the application

12 / 71

Outline

1 Introduction

2 Main Elements
Foremost Constructs And Data-Sharing Clauses
Worksharing Construct
Data-Sharing Clauses

3 Syncronization And Other Functionalities

4 Conclusions

13 / 71

Directives

• Sintax:
• in C/C++:
#pragma omp direttiva

• in Fortran:
!$omp direttiva

• in Fortran (fixed format):
c$omp direttiva

• Mark a block of code
• Specify to the compiler how to run in parallel the code block
• The serial code "coexists" with the parallel code

• A serial compilation ignores the directives
• A compilation with OpenMP support takes them into account

14 / 71

Clauses

• Sintax: directive [clause[clause]...]

• Specify additional information to the directives
• Variables handling

• What are shared among all threads (the default)
• Which are private to each thread
• How to initialize the private ones
• What is the default

• Execution control
• How many threads in the team
• How to distribute the work

• ATTENTION: they may alter code semantic
• The code can be corrected in serial but not in parallell or vice

versa

15 / 71

Enviroment variables
• OMP_NUM_THREADS: sets number of threads
• OMP_STACKSIZE "size [B|K|M|G]": size of the stack for

threads
• OMP_DYNAMIC {TRUE|FALSE}: dynamic thread adjustment
• OMP_SCHEDULE "schedule[,chunk]": iteration scheduling

scheme
• OMP_PROC_BIND {TRUE|FALSE}: bound threads to

processors
• OMP_NESTED {TRUE|FALSE}: nested parallelism
• ...
• To set them

• In csh/tcsh: setenv OMP_NUM_THREADS 4
• In sh/bash: export OMP_NUM_THREADS=4

16 / 71

Runtime functions
• Query/specify some specific feature or setting

• omp_get_thread_num(): get thread ID (0 for master thread)
• omp_get_num_threads(): get number of threads in the team
• omp_set_num_threads(int n): set number of threads
• ...

• Allow you to manage fine-grained access (lock)
• omp_init_lock(lock_var): initializes the OpenMP lock

variable lock_var of type omp_lock_t
• ...

• Timing functions
• omp_get_wtime(): returns elapsed wallclock time
• omp_get_wtick(): returns timer precision

• Functions interface:
• C/C++: #include <omp.h>
• Fortran: use omp_lib (or include ’omp_lib.h’)

17 / 71

Conditional compilation

• To avoid dependency on OpenMP libraries you can use
pre-processing directives

• and the preprocessor macro _OPENMP predefined by the
standard

• C preprocessing directives can be used in Fortran too as well
!$ in free form and old style fixed form *$ and c$

C/C++
#ifdef _OPENMP
printf("Compiled with OpenMP support:%d",_OPENMP);
#else
printf("Compiled for serial execution.");
#endif

Fortran
!$ print *,"Compiled with OpenMP support",_OPENMP

18 / 71

Compiling and linking

• The compilers that support OpenMP interpret the directives
only if they are invoked with a compiler option (switch)

• GNU: -fopenmp for Linux, Solaris, AIX, MacOSX, Windows.
• IBM: -qsmp=omp for Windows, AIX and Linux.
• Sun: -xopenmp for Solaris and Linux.
• Intel: -openmp on Linux or Mac, or -Qopenmp on Windows
• PGI: -mp

• Most compilers emit useful information enabling extra warning
or report options

19 / 71

Outline

1 Introduction

2 Main Elements
Foremost Constructs And Data-Sharing Clauses
Worksharing Construct
Data-Sharing Clauses

3 Syncronization And Other Functionalities

4 Conclusions

20 / 71

parallel construct
• It creates a parallel region

• A construct is the lexical extent to which an executable directive
applies

• A region is the dynamic extent to which an executable directive
applies

• A parallel region is a block of code executed by all threads in the
team

C/C++
#pragma omp parallel
{
// some code to execute in parallel
} // end of the parallel region (implied barrier)

Fortran
!$omp parallel
! some code to execute in parallel
!$omp end parallel

21 / 71

Hello world!
C
#include <stdio.h>
int main()
{
#pragma omp parallel

{
printf("Hello world!\n");

}
return 0;

}

Fortran
Program Hello
!$omp parallel

print *, "Hello world!"
!$omp end parallel
end program Hello

22 / 71

shared and private variables

• Inside a parallel region, the variables of the serial program can
be essentially shared or private

• shared: there is only one istance of the data
• Data is accessible by all threads in the team
• Threads can read and write the data simultaneously
• All threads access the same address space

• private: each thread has a copy of the data
• No other thread can access this data
• Changes are only visible to the thread owning the data
• Values are undefined on entry and exit

• Variables are shared by default but with the clause
default(none)

• No implicit default, you have to scope all variables explicitily

23 / 71

Data races & critical construct

• A data race is when two or more threads access the
same(=shared) memory location

• Asyncronously and
• Without holding any common exclusive locks and
• At least one of the accesses is a write/store

• In this case the resulting values are undefined

• The block of code inside a critical construct is executed by
only one thread at time

• It is a syncronization to avoid simultaneous access to shared
data

24 / 71

It could be enough ...
C
sum = 0;
#pragma omp parallel private(i, MyThreadID)
{

ThreadID = omp_get_thread_num(); NumThreads = omp_get_num_threads();
int psum = 0;
for (i=MyThreadID*N/NumThreads;i<(MyThreadID+1)*N/NumThreads;i++)
psum +=x[i];

#pragma omp critical
sum +=psum;
}

Fortran
sum = 0
!$omp parallel private(i, MyThreadID, psum)
MyThreadID = omp_get_thread_num(); NumThreads = omp_get_num_threads()
psum =0
do i=MyThreadID*N/NumThreads+1, min((MyThreadID+1)*N/NumThreads,N)

psum = psum + x(i)
end do
!$omp critical

sum = sum + psum;
!$omp end critical
!$omp end parallel

25 / 71

but life is easier

• Essentially for a parallelization it could be enough:
• the parallel construct
• the critical construct
• the omp_get_thread_num() function
• and the omp_get_num_threads() function

• But we need to distribute the serial work among threads
• And doing it by hand is tiring

• The worksharing constructs automate the process

26 / 71

Outline

1 Introduction

2 Main Elements
Foremost Constructs And Data-Sharing Clauses
Worksharing Construct

for/do Loop Construct
Other Worksharing Constructs

Data-Sharing Clauses

3 Syncronization And Other Functionalities

4 Conclusions

27 / 71

Worksharing construct

• A worksharing construct distributes the execution of the
associated parallel region over the threads that must encounter
it

• A worksharing region has no barrier on entry; however, an
implied barrier exists at the end of the worksharing region

• If a nowait clause is present, an implementation may omit the
barrier at the end of the worksharing region

• The OpenMP API defines the following worksharing constructs:

• for/do loop construct
• sections construct
• single construct
• workshare contruct (only Fortran)

28 / 71

Outline

1 Introduction

2 Main Elements
Foremost Constructs And Data-Sharing Clauses
Worksharing Construct

for/do Loop Construct
Other Worksharing Constructs

Data-Sharing Clauses

3 Syncronization And Other Functionalities

4 Conclusions

29 / 71

Loop construct

• The iterations of the loop are distributed over the threads that
already exist in the team

• The iteration variable of the loop is made private by default
• The inner loops are executed sequentially by each thread
• Beware the data-sharing attribute of the inner loop iteration

variables
• In Fortran they are private by defaut
• In C/C++ they aren’t

• Requirements for (loop) parallelization:
• no dependencies (between loop indicies)

30 / 71

Loop construct syntax

C/C++
#pragma omp for [clauses]

for(i=0; i<n; i++)
{ ... }

Fortran
!$omp do [clauses]

do i = 1, n
...

end do
[!$omp end do [nowait]]

• Random access iterators are supported too
C++
#pragma omp for [clauses]

for(i=v.begin(); i < v.end(); i++)
{ ... }

31 / 71

Loop construct example
C
int main ()
{

int i, n=10;
int a[n], b[n], c[n];
...

#pragma omp parallel
{
#pragma omp for

for (i=0; i<n; i++)
{

a[i] = b[i] = i;
c[i] = 0;

}
#pragma omp for

for (i=0; i<n; i++)
c[i] = a[i] + b[i];

}
...

32 / 71

Loop construct example
Fortran
Program doexample
integer, parameter:: n=10
integer:: i, a(n),b(n),c(n)
!$omp parallel
!$omp do
do i=1, n

a(i) = i
b(i) = i
c(i) = 0

end do
!$omp end do
!$omp do
do i=1, n

c(i) = a(i) + b(i);
end do
!$omp end do
!$omp end parallel
...

33 / 71

Loop collapse

• Allows parallelization of perfectly nested loops
• The collapse clause on for/do loop indicates how many

loops should be collapsed
• Compiler forms a single loop and then parallelizes it

C/C++
#pragma omp for collapse(2) private(j)
for (i=0; i<nx; i++)

for (j=0; j<ny; j++)
...

Fortran
!$omp do collapse(2)
do j=1, ny

do i=1,nx
...

34 / 71

The schedule clause

• schedule(static|dynamic|guided|auto[,chunk])
specifies how iterations of the associated loops are divided into
contiguous non-empty subsets, called chunks, and how these
chunks are distributed among threads of the team.

C/C++
#pragma omp for \
schedule(kind [,chunk])

Fortran
!$omp do &
!$omp schedule(kind [,chunk])

• Note continuation line

35 / 71

static scheduling

• Iterations are divided into chunks
of size chunk, and the chunks are
assigned to the threads in the
team in a round-robin fashion in
the order of the thread number

• It is the default schedule and the
default chunk is approximately
Niter/Nthreads

• For example:
!$omp parallel do &
!$omp schedule(static,3)

36 / 71

dynamic scheduling

• Iterations are distributed to
threads in the team in chunks as
the threads request them. Each
thread executes a chunk of
iterations, then requests another
chunk, until no chunks remain to
be distributed.

• The default chunk is 1

• For example:
!$omp parallel do &
!$omp schedule(dynamic,1)

37 / 71

guided scheduling

• Iterations are assigned to threads
in the team in chunks as the
executing threads request them.
Each thread executes a chunk of
iterations, then requests another
chunk, until no chunks remain to
be assigned. The chunk
decreases to chunk

• The default value of chunk is 1

• For example:
!$omp parallel do &
!$omp schedule(guided,1)

38 / 71

runtime and auto scheduling

• runtime: iteration scheduling scheme is set at runtime
through the enviroment variable OMP_SCHEDULE

• For example:
!$omp parallel do &
!$omp schedule(runtime)

• the scheduling scheme can be modified without recompiling the
program changing the environment variable OMP_SCHEDULE,
for example: setenv OMP_SCHEDULE “dynamic,50”

• Only useful for experimental purposes during the parallelization

• auto: the decision regarding scheduling is delegated to the
compiler and/or runtime system

39 / 71

Scheduling experiment

0
1
2
3
0
1
2
3
0
1
2
3

0 200 400 600 800 1000

Figure: Different scheduling for a 1000 iterations loop with 4 threads:
guided (top), dynamic (middle), static (bottom)

40 / 71

Outline

1 Introduction

2 Main Elements
Foremost Constructs And Data-Sharing Clauses
Worksharing Construct

for/do Loop Construct
Other Worksharing Constructs

Data-Sharing Clauses

3 Syncronization And Other Functionalities

4 Conclusions

41 / 71

sections construct

C/C++
#pragma omp sections [clauses]
{
#pragma omp section
{ structured block }
#pragma omp section
{ structured block }
...

}

Fortran
!$omp sections [clauses]
!$omp section
! structured block
!$omp end section
!$omp section
! structured block
!$omp end section
!...
!$omp end sections

• It is a worksharing construct to distribute structured blocks of
code among threads in the team

• Each thread receives a section
• When a thread has finished to execute its section, it receives

another section
• If there are no other sections to execute, threads wait for

others to end up

42 / 71

single construct

C/C++
#pragma omp single [private][firstprivate][copyprivate][nowait]
{ structured block }

Fortran
!$omp single [private][firstprivate]
! structured block
!$omp end single [copyprivate][nowait]

• It is a worksharing construct
• The first thread that reaches it executes the associated block
• The other threads in the team wait at the implicit barrier at the

end of the construct unless a nowait clause is specified

43 / 71

The Fortran workshare construct

Fortran
!$omp workshare
! structured block
!$omp end workshare [nowait]

• The structured block enclosed in the workshare construct is
divided into units of work that are then assigned to the thread
such that each unit is executed by one thread only once

• It is only supported in Fortran in order to parallelize the array
syntax

44 / 71

Outline

1 Introduction

2 Main Elements
Foremost Constructs And Data-Sharing Clauses
Worksharing Construct
Data-Sharing Clauses

3 Syncronization And Other Functionalities

4 Conclusions

45 / 71

Data-sharing attributes

• In a parallel construct the data-sharing attributes are
implicitily determined by the default clause, if present

• if no default clause is present they are shared
• Certain variables have a predetermined data-sharing attributes

• Variables with automatic storage duration that are declared in a
scope inside a construct are private

• Objects with dynamic storage duration are shared
• The loop iteration variable(s) in the associated for-loop(s) of a
for construct is (are) private

• A loop iteration variable for a sequential loop in a parallel
construct is private in the innermost such construct that
encloses the loop (only Fortran)

• Variables with static storage duration that are declared in a
scope inside the construct are shared

• ...

46 / 71

Data-sharing attributes clauses
• Explicitly determined data-sharing attributes are those that are

referenced in a given construct and are listed in a data-sharing
attribute clause

• shared(list): there is only one istance of the objects in the
list accessible by all threads in the team

• private(list): each thread has a copy of the variables in
the list

• firstprivate(list): same as private but all variables in
the list are initialized with the value that the original object had
before entering the parallel construct

• lastprivate(list): same as private but the thread that
executes the sequentially last iteration or section updates the
value of the objects in the list

• The default clause sets the implicit default
• default(none|shared) in C/C++
• default(none|shared|private|firstprivate) in

Fortran

47 / 71

The reduction clause
• With the Data-Sharing attributes clause reduction(op:list)
• For each list item, a private copy is created in each implicit task
• The local copy is initialized appropriately according to the

operator (for example, if op is + they are initialized to 0)
• After the end of the region, the original list item is updated with

the values of the private copies using the specified operator
• Supported operators for a reduction clause are:

• C: +, *, -, &, |, ^, &&, || max e min dalla 3.1)
• Fortran: +, *, -, .and., .or., .eqv., .neqv.,
max, min, iand, ior, ieor

• Reduction variables must be shared variables
• The reduction clause is valid on parallel, for/do loop

and sections constructs

48 / 71

reduction example

C/C++
#pragma omp parallel for reduction(+:sum)
for (i=0; i<n; i++)

sum += x[i];

Fortran
!$omp parallel do reduction(+:sum)
do i=1, n

sum = sum + x(i)
end do
!$omp end parallel do

• Yes, worksharing constructs can be combined with parallel

• Beware that the value of a reduction is undefined from the
moment the first thread reaches the clause till the operation is
completed

49 / 71

Outline

1 Introduction

2 Main Elements

3 Syncronization And Other Functionalities
barrier Construct And nowait Clause
atomic Construct
Task Parallelism Overview

4 Conclusions

50 / 71

Outline

1 Introduction

2 Main Elements

3 Syncronization And Other Functionalities
barrier Construct And nowait Clause
atomic Construct
Task Parallelism Overview

4 Conclusions

51 / 71

barrier construct and nowait

• In a parallel region threads proceed asynchronously
• Until they encounter a barrier

• At the barrier all threads wait and continue only when all threads
have reached the barrier

• The barrier guarantees that ALL the code above has been
executed

• Explicit barrier
• #pragma omp barrier in C/C++
• !$omp barrier in Fortran

• Implicit barrier
• At the end of the worksharing construct
• Sometimes it is not necessary, and would cause slowdowns
• It can be removed with the clause nowait
• In C/C++, it is one of the clauses on the pragma
• In Fortran, it is appended at the closing part of the construct

52 / 71

Outline

1 Introduction

2 Main Elements

3 Syncronization And Other Functionalities
barrier Construct And nowait Clause
atomic Construct
Task Parallelism Overview

4 Conclusions

53 / 71

atomic construct

• The atomic construct applies only to statements that update
the value of a variable

• Ensures that no other thread updates the variable between
reading and writing

• The allowed instructions differ between Fortran and C/C++
• Refer to the OpenMP specifications

• It is a special lightweight form of a critical
• Only read/write are serialized, and only if two or more threads

access the same memory address

C/C++
#pragma omp atomic [clause]
<statement>

Fortran
!$omp atomic [clause]
<statement>

54 / 71

atomic Examples

C/C++
#pragma omp atomic update
x += n*mass; // default update

#pragma omp atomic read
v = x; // read atomically

#pragma omp atomic write
x = n*mass; write atomically

#pragma omp atomic capture
v = x++; // capture x in v and

// update x atomically

Fortran
!$omp atomic update
x = x + n*mass // default
update

!$omp atomic read
v = x // read atomically

!$omp atomic write
x = n*mass write atomically

!$omp atomic capture
v = x // capture x in v and
x = x+1 // update x atomical
!$omp end atomic

55 / 71

master construct

C/C++
#pragma omp master

{<code-block>}

Fortran
!$omp master

<code-block>
!$omp end master

• Only the master thread executes the associated code block
• There is no implied barrier on entry or exit!

56 / 71

The threadprivate directive

C/C++
#pragma omp threadprivate(list)

Fortran
!$omp threadprivate(list)

• Is a declarative directive
• Is used to create private copies of

• file-scope, namespace-scope or static variables in C/C++
• common block or module variables in Fortran

• Follows the variable declaration in the same program unit
• Initial data are undefined, unless the copyin clause is used

57 / 71

Orphaning

• The OpenMP specification does not restrict worksharing
construct and syncronization directives to be within the lexical
extent of a parallel region. These directives can be orphaned

• That is, they can appear outside the lexical extent of a parallel
region

• They will be ignored if called from a serial region
• but data-sharing attributes will be applied

58 / 71

Outline

1 Introduction

2 Main Elements

3 Syncronization And Other Functionalities
barrier Construct And nowait Clause
atomic Construct
Task Parallelism Overview

4 Conclusions

59 / 71

Task parallelism

• Main addition to OpenMP 3.0 enhanced in 3.1 and 4.0
• Allows to parallelize irregular problems

• Unbounded loop
• Recursive algorithms
• Producer/consumer schemes
• Multiblock grids, Adaptive Mesh Refinement
• ...

60 / 71

Pointer chasing in OpenMP 2.5

C/C++

p = head;
while (p) {

process(p);
p = p->next;
}

Fortran

p = head
do while (associated(p))

call process(p)
p => p%next
end do

• Trasformation to a “canonical” loop can be very
labour-intensive/expensive

• The main drawback of the single nowait solution is that it is
not composable

• Remind that all worksharing construct can not be nested

61 / 71

Pointer chasing in OpenMP 2.5

C/C++
#pragma omp parallel private(p)

p = head;
while (p) {
#pragma omp single nowait

process(p);
p = p->next;
}

Fortran
!$omp parallel private(p)

p = head
do while (associated(p))
!$omp single nowait

call process(p)
p => p%next
end do

• Trasformation to a “canonical” loop can be very
labour-intensive/expensive

• The main drawback of the single nowait solution is that it is
not composable

• Remind that all worksharing construct can not be nested

61 / 71

Tree traversal in OpenMP 2.5
C/C++
void preorder (node *p) {
process(p->data);

if (p->left)
preorder(p->left);

if (p->right)
preorder(p->right);

}

Fortran
recursive subroutine preorder(p)
type(node), pointer :: p
call process(p%data)

if (associated(p%left))
call preorder(p%left)
end if

if (associated(p%right))
call preorder(p%right)
end if

end subroutine preorder

• You need to set OMP_NESTED to true, but stressing nested
parallelism so much is not a good idea ...

62 / 71

Tree traversal in OpenMP 2.5
C/C++
void preorder (node *p) {
process(p->data);
#pragma omp parallel sections \
num_threads(2)
{
#pragma omp section
if (p->left)
preorder(p->left);

#pragma omp section
if (p->right)
preorder(p->right);

}
}

Fortran
recursive subroutine preorder(p)
type(node), pointer :: p
call process(p%data)
!$omp parallel sections
!$omp num_threads(2)
!$omp section
if (associated(p%left))
call preorder(p%left)
end if
!$omp section
if (associated(p%right))
call preorder(p%right)
end if
!$omp end sections
end subroutine preorder

• You need to set OMP_NESTED to true, but stressing nested
parallelism so much is not a good idea ...

62 / 71

First & foremost tasking construct

C/C++
#pragma omp parallel [clauses]
{

<structured block>
}

Fortran
!$omp parallel [clauses]

<structured block>
!$omp end parallel

• Creates both threads and tasks
• These tasks are “implicit”
• Each one is immediately executed by one thread
• Each of them is tied to the assigned thread

63 / 71

New tasking construct

C/C++
#pragma omp task [clauses]
{

<structured block>
}

Fortran
!$omp task [clauses]

<structured block>
!$omp end task

• Immediately creates a new task but not a new thread
• This task is “explicit”
• It will be executed by a thread in the current team
• It can be deferred until a thread is available to execute
• The data environment is built at creation time

• Variables inherit their data-sharing attributes but
• private variables become firstprivate

64 / 71

Pointer chasing using task

C/C++
#pragma omp parallel private(p)

#pragma omp single
{

p = head;
while (p) {
#pragma omp task

process(p);
p = p->next;

}
}

Fortran
!$omp parallel private(p)

!$omp single
p = head
do while (associated(p))

!$omp task
call process(p)

!$omp end task
p => p%next

end do
!$omp end single

!$omp end parallel

• One thread creates task
• It packages code and data environment
• Then it reaches the implicit barrier and starts to execute the task

• The other threads reach straight the implicit barrier and start
to execute task

65 / 71

Load balancing on lists with task
C/C++
#pragma omp parallel
{

#pragma omp for private(p)
for (i=0; i<num_lists; i++) {

p = head[i];
while (p) {
#pragma omp task

process(p);
p = p->next;
}

}
}

Fortran
!$omp parallel

!$omp do private(p)
do i=1,num_lists

p => head[i]
do while (associated(p))

!$omp task
call process(p)

!$omp end task
p => p%next

end do
end do
!$omp end do

!$omp end parallel

• Assign one list per thread could be unbalanced
• Multiple threads create task
• The whole team cooperates to execute them

66 / 71

Tree traversal with task
C/C++
void preorder (node *p) {
process(p->data);
if (p->left)
#pragma omp task

preorder(p->left);
if (p->right)
#pragma omp task

preorder(p->right);
}

Fortran
recursive subroutine preorder(p)
type(node), pointer :: p
call process(p%data)
if (associated(p%left))
!$omp task
call preorder(p%left)
!$omp end task
end if
if (associated(p%right))
!$omp task
call preorder(p%right)
!$omp end task
end if

end subroutine preorder

• Tasks are composable
• It isn’t a worksharing construct

67 / 71

Postorder tree traversal with task
C/C++
void postorder (node *p) {

if (p->left)
#pragma omp task

postorder(p->left);
if (p->right)
#pragma omp task

postorder(p->right);
#pragma omp taskwait
process(p->data);
}

Fortran
recursive subroutine postorder(p)
type(node), pointer :: p
if (associated(p%left))
!$omp omp task
call postorder(p%left)
!$omp end task
end if
if (associated(p%right))
!$omp omp task
call postorder(p%right)
!$omp end task
end if
!$omp taskwait
call process(p%data)

end subroutine postorder

• taskwait suspends parent task until children tasks are
completed

68 / 71

Outline

1 Introduction

2 Main Elements

3 Syncronization And Other Functionalities

4 Conclusions

69 / 71

Conclusions
• What we left out

• flush directive and lock routines
• ordered construct
• Data copying clause copyin and copyprivate
• New directives simd, cancel, target ...
• ... and many other

• Where to find more
• In the OpenMP specification that can be downloaded from
www.openmp.org

• You can find the Sintax Quick Reference Card, for Fortran and
C/C++, at:

• www.openmp.org/mp-documents/OpenMP-4.0-Fortran.pdf
• www.openmp.org/mp-documents/OpenMP-4.0-C.pdf

• The same web site make available further resources: forum,
tutorial, news, etc.

70 / 71

www.openmp.org
www.openmp.org/mp-documents/OpenMP-4.0-Fortran.pdf
www.openmp.org/mp-documents/OpenMP-4.0-C.pdf

Conclusions

• Credits
• Several people of the SCAI staff: Marco Comparato, Federico

Massaioli, Marco Rorro, Vittorio Ruggiero, Francesco
Salvadore, Claudia Truini, ...

• Many people involved on OpenMP: Ruud van der Pas, Alejandro
Duran, Bronis de Supinski, Tim Mattson and Larry Meadows, ...

71 / 71

	Introduction
	Shared Memory
	The OpenMP Model

	Main Elements
	Foremost Constructs And Data-Sharing Clauses
	Worksharing Construct
	Data-Sharing Clauses

	Syncronization And Other Functionalities
	barrier Construct And nowait Clause
	atomic Construct
	Task Parallelism Overview

	Conclusions

