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Introduction to the Parallel Computing

• The Parallel Computing is:
• the way to solve big data problems exceeding the limits of

memory and reducing the compute time;
• usually, the synchronised usage of more processes to solve

computational problems.

• To run with more processes, a problem must be divided in
more discrete portions that can be solved concurrently.

• The instructions of each portion are executed simultaneously
by different processes.
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Message Passing

• N processes cooperate
exchanging messages.

• Each process:
• works alone the indipendent

portion of the target;
• has is own memory area;
• accesses only data available

in its own memory area.
• The exchange between

processes is needed if:
• a process must access to

data resident on a memory
area of another one;

• more processes have to be
synchronized to execute the
instructions flow.
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Message Passing on a computer
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Execution model SPMD

• SPMD is the acronym for Single Program Multiple Data.
• SPMD is the execution model of a Parallel Computing where:

• each process execute the same program working with different
data on its own memory area;

• different processes can execute different portions of the code.
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What is MPI?

• MPI is the acronym for Message Passing Interface.
• MPI is an Application Programming Interface.
• MPI is a standard for developers and users.
• The MPI libraries allow:

• management functions for the communication:
• definition and identification of groups of processes;
• definition and management of the identity of the single process;

• functions for the exchange of messages:
• send and/or receive data from a process;
• send and/or receive data from a group of processes;

• new data types and constants (macro) to help the programmer.
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Parallel Computing with MPI

• MPI allows:
• create and manage a group

of processes;
• exchange data between

processes or groups of
processes, by a
communicator.
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How introduce MPI in a code

• All programs must include a header file:
• C/C++: #include <mpi.h>;
• Fortran77: include mpif.h;
• Fortran90: use mpi;

• Fortran90 with MPI3.0: use mpi_f08.

• In the header file there is all you need for the compilation of a
MPI program:

• definitions;
• macros;
• prototypes of functions.

• MPI maintains internal data structures related to
communication, referenceable via MPI Handles.

• MPI references the standard data types of C/Fortran through
MPI Datatype.
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How to add the MPI calls

• C/C++:
• ierr = MPI_Xxxxx (parameter, ...);
• MPI_Xxxxx (parameter, ...);
• MPI_ is the prefix of all functions MPI.
• After the prefix, the first letter is uppercase and all other

lowercase.
• Practically all functions MPI return an error code (integer).
• Macros are written with uppercase.

• Fortran:
• call MPI_XXXXX (parameter, ..., IERR)

• Fortran90 with MPI3.0: call MPI_XXXXX (parameter, ...)
• MPI_ is the prefix of all functions MPI
• The last parameter (IERR) is the error code returned (integer);

• if use mpi, NEVER FORGET the IERR parameter;
• if use mpi_f08, IERR parameter is optional.
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Some problems

Problem 1 - Fibonacci series

f1 = 1
f2 = 1
fi = fi−1 + fi+2 ∀i > 2

Problem 2 - Geometric series

gN =
∑N

i=1 x i
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Fibonacci series

• If we try to use MPI to solve the
problem 1, we can observe:

• fi depends by fi−1 and fi−2,
and can’t be calculated
without;

• a process cannot compute fi
simultaneously to the
computation of fi−1 or fi+1;

• the execution time is the
same of the serial case.
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Geometric series

Series

gN =
∑P

i=1

(∑N/P
j=1 x

N
P (i−1)+j

)
=∑P

i=1 Si

• If we try to use MPI to solve the
problem 2, we can observe:

• each process calculates one
of the P partial sums Sj ;

• only one of the processes
collects the P partial sums;

• the execution time is 1
P of the

time of the serial case.
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How one process works

• A process is an instance on
execution of a program;

• a process keeps in memory
data and instructions of the
program, and other
informations needed to control
the execution flow.

15 / 143



Outline

1 Base knowledge

2 MPI Base
Communication environment
First MPI program
Point-to-point communications
MPI_Send & MPI_Recv
Some examples with MPI_Send & MPI_Recv
Communication pattern
About the inner working of communications
MPI_Sendrecv
Collective communications
MPI Functions
Others MPI Functions

3 MPI Advanced

4 Conclusion

16 / 143



Outline

1 Base knowledge

2 MPI Base
Communication environment
First MPI program
Point-to-point communications
MPI_Send & MPI_Recv
Some examples with MPI_Send & MPI_Recv
Communication pattern
About the inner working of communications
MPI_Sendrecv
Collective communications
MPI Functions
Others MPI Functions

3 MPI Advanced

4 Conclusion

17 / 143



Create a parallel region

• MPI_Init
• initializes the communication environment;
• all MPI programs need a call to it;
• can be introduced once only in the whole code;
• must be call before other calls to MPI functions.

• MPI_Finalize
• ends the communication phase;
• all MPI programs need at least a call to it;
• provides a cleaned release of the communication environment;
• must be call after all other calls to MPI functions.
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Sintax

C/C++

int MPI_Init(int ∗argc, char ∗∗argv)
int MPI_Finalize(void)

MPI_Init(&argc, &argv);
MPI_Finalize();

With MPI2.0 and higher, also:
MPI_Init(null, null);

• NOTE:
• the MPI_Init function does the parsing of the arguments supplied to the

program from the command line.
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Sintax

Fortran

MPI_INIT(IERR)
MPI_FINALIZE(IERR)

With mpif.h & mpi:
INTEGER :: IERR

CALL MPI_INIT(IERR)
CALL MPI_FINALIZE(IERR)

With mpi_f08:
INTEGER, OPTIONAL :: IERR

CALL MPI_INIT()
CALL MPI_FINALIZE()

20 / 143



Communicators

• A communicator is an "object"
that contains a group of
processes and a set of linked
features.

• In a communicator, each
process has a unique
identification number.

• Two or more processes can communicate only if they are contained in the
same communicator.

• The MPI_Init function initializes the default communicator:
MPI_COMM_WORLD.

• The MPI_COMM_WORLD contains all processes that contribute to the
parallel code.

• In an MPI program it’s possible to define more than one communicator.
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Size & Rank

• Communicator Size:
• the number of processes contained in a communicator is its
size.

• a process can estimate the size of its own communicator with
the function MPI_Comm_size;

• the size of a communicator is an integer .
• Process Rank :

• a process can estimate its own identification number with the
function MPI_Comm_rank;

• the ranks are integer and consecutive numbers from 0 to
size-1.
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Sintax

C/C++

int MPI_Comm_size(MPI_Comm comm, int ∗size)
int MPI_Comm_rank(MPI_Comm comm, int ∗rank)

Fortran

MPI_COMM_SIZE(comm, size, ierr)
MPI_COMM_RANK(comm, rank, ierr)

• Input :
• comm has type MPI_Comm (INTEGER), and it is the

communicator;
• Output :

• size has type int (INTEGER);
• rank has type int (INTEGER).
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Sintax
C/C++

MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

Fortran

With mpif.h & mpi:
INTEGER :: size, rank, ierr
INTEGER :: MPI_COMM_WORLD (optional)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

With mpi_f08:
INTEGER :: size, rank
INTEGER, OPTIONAL :: ierr
TYPE(MPI_Comm) :: MPI_COMM_WORLD (optional)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, size)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank)
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Hello!

• This first program prints the unique identification number of
each process and the size of the communicator. These are the
needed operations:

• initialize the MPI environment;
• ask to the default communicator the rank of each process;
• ask to the default communicator its own size;
• print one string with these two informations;
• close the MPI environment.
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Hello!

C
#include <stdio.h>
#include <mpi.h>

void main(int argc, char ∗argv[]) {

int rank, size;

/* 1. Initialize MPI */
MPI_Init(&argc, &argv);

/* 2. Get process rank */
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* 3. Get the total number of processes */
MPI_Comm_size(MPI_COMM_WORLD, &size);

/* 4. Print rank and size */
printf("Hello! I am %d of %d \n", rank, size);

/* 5. Terminate MPI */
MPI_Finalize();

}

27 / 143



Hello!

Fortran with mpif.h

PROGRAM Hello

INCLUDE ‘mpi.f’
INTEGER rank, size, ierr

! 1. Initialize MPI
CALL MPI_Init(ierr)

! 2. Get process rank
CALL MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)

! 3. Get the total number of processes
CALL MPI_Comm_size(MPI_COMM_WORLD, size, ierr);

! 4. Print rank and size
PRINT∗ "Hello! I am ", rank, " of ", size

! 5. Terminate MPI
CALL MPI_Finalize(ierr)

END
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Hello!

Fortran with mpi

PROGRAM Hello

USE mpi
INTEGER rank, size, ierr

! 1. Initialize MPI
CALL MPI_Init(ierr)

! 2. Get process rank
CALL MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)

! 3. Get the total number of processes
CALL MPI_Comm_size(MPI_COMM_WORLD, size, ierr);

! 4. Print rank and size
WRITE(*,*) "Hello! I am ", rank, " of ", size

! 5. Terminate MPI
CALL MPI_Finalize(ierr)

END PROGRAM Hello

29 / 143



Hello!

Fortran with mpi_f08

PROGRAM Hello

USE mpi_f08
INTEGER rank, size

! 1. Initialize MPI
CALL MPI_Init()

! 2. Get process rank
CALL MPI_Comm_rank(MPI_COMM_WORLD, rank)

! 3. Get the total number of processes
CALL MPI_Comm_size(MPI_COMM_WORLD, size);

! 4. Print rank and size
WRITE(*,*) "Hello! I am ", rank, " of ", size

! 5. Terminate MPI
CALL MPI_Finalize()

END PROGRAM Hello
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Message Passing

• In parallel programming, the processes cooperate through
explicit operations of communication interprocess.

• The basic operation of communication is the
point-to-point:

• a sender process sends a message;
• a receiver process receive the message sent.

• A message contains a number of elements of some particular
datatypes.

• MPI datatypes:
• basic datatype;
• derived datatype.

• Derived datatypes can be built from basic or other derived
datatypes.

• C datatypes are different from Fortran datatypes.
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What is a message

• A message is a block of data that has to be transferred
between processes.

• A message is composed by an Envelope and a Body ;
• Envelope, can contain:

• source - rank of the sender process;
• destination - rank of receiver process;
• communicator - communicator where the message and the

processes are;
• tag - identification number to classify the message.

• Body, contains:
• buffer - message data;
• datatype - type of data that the message contains;
• count - how many data of datatype the message contains.
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MPI Datatype for C
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MPI Datatype for C
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MPI Datatype for Fortran
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Steps of Point-to-Point

• Send a message:
• the sender process

(SOURCE) calls an MPI
function;

• in this function, the rank of
the destination process must
be declared.

• Receive a message:
• the receiver process

(DESTINATION) calls an
MPI function;

• in this function, the rank of
sender process must be
declared.
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Send a message

• The source process calls an MPI function where specifies
univocally the envelope and the body of the message that has
to send:

• the identity of the source is implicit;
• the elements which complete the message (identification

number of the message, destination identity, communicator for
the sending) are defined explicitly by arguments that the
process passes to the function for the send ing.
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Receive a message

• The destination process calls an MPI function where is
specified univocally the envelope (by the tag) of the message
that has to be received;

• MPI compares the envelope of the message in receiving with
the others message that have to be yet received (pending
messages) and if the message is on hand, this is received;
otherwise, the receiving operation can’t be completed until a
message with the envelope requested will be in the pending
messages.
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MPI_Send
C/C++

int MPI_Send(void ∗buf, int count, MPI_Datatype dtype,
int dest, int tag, MPI_Comm comm)

Fortran

MPI_SEND(buf, count, dtype, dest, tag, comm, ierr)

• Input arguments:
• buf is the initial address of the send buffer;
• count is the number of elements of the send buffer (integer);
• dtype is the type of every element of the send buffer (MPI_Datatype);
• dest is the rank of the receiver in the communicator comm (integer);
• tag is the identity number of the message (integer);
• comm is the communicator where is the send (MPI_Comm);

• Output arguments:
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.
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MPI_Recv
C/C++
int MPI_Recv(void ∗buf, int count, MPI_Datatype dtype, int src,

int tag, MPI_Comm comm, MPI_Status ∗status)

Fortran
MPI_RECV(buf, count, dtype, src, tag, comm, status, ierr)

• Input arguments:
• count is the number of elements of the receive buffer (integer);
• dtype is the type of every element of the receive buffer (MPI_Datatype);
• src is the rank of the sender in the communicator comm (integer);
• tag is the identity number of the message (integer);
• comm is the communicator where is the send (MPI_Comm);

• Output arguments:
• buf is the initial address of the receive buffer;
• status contains informations about the received message (MPI_Status);
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.
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Sintax
C/C++
int count, dest, src, tag;
MPI_Status status;
MPI_Send(&buf, count, dtype, dest, tag, MPI_COMM_WORLD);
MPI_Recv(&buf, count, dtype, src, tag, MPI_COMM_WORLD, &status);

Fortran
With mpif.h & mpi:
INTEGER :: count, dest, src, ierr (,dtype, MPI_COMM_WORLD)
INTEGER :: status(MPI_STATUS_SIZE)

CALL MPI_SEND(buf, count, dtype, dest, tag, MPI_COMM_WORLD,
ierr)

CALL MPI_RECV(buf, count, dtype, src, tag, MPI_COMM_WORLD,
status, ierr)

With mpi_f08:
INTEGER :: count, dest, src, tag TYPE(MPI_Datatype) :: dtype
TYPE(MPI_Comm) :: MPI_COMM_WORLD TYPE(MPI_Status) :: status

CALL MPI_SEND(buf, count, dtype, dest, tag, MPI_COMM_WORLD)
CALL MPI_RECV(buf, count, dtype, src, tag, MPI_COMM_WORLD,

status)
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What is status

• When the length of received message (recv_count) is different
if compaired with the lenght of the sent message
(send_count):

• if send_count > recv_count , an overflow error will returned;
• if send_count < recv_count , only the first "send_count"

allocations of "recv_buf" will be updated.
• Therefore, the length of the send_count can be ≤ to the length

of the recv_count ;
• ... but if < the program is wrong!!!

• To the end of a receive, it is possible to know the real length of
the received message by analyzing the status argument.
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How use status

• The status argument is:
• a struct in C/C++;
• an array of integer (of length MPI_STATUS_SIZE) in Fortran

• The status argument contains 3 fields:
• MPI_TAG
• MPI_SOURCE
• MPI_ERROR

• To know the real length of the received message we have to
use the function MPI_Get_count.

45 / 143



MPI_Get_count

C/C++
int MPI_Get_count(MPI_Status ∗status, MPI_Datatype dtype,

int ∗count)

Fortran
MPI_Get_count(status, dtype, count, ierr)

• Input:
• status contains the informations about the received message (MPI_Status);
• dtype is the type of every element of the received buffer (MPI_Datatype);

• Output:
• count is the number of elements of the receive buffer (integer);
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.
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Sintax

C/C++
int count;
MPI_Status status;
MPI_Get_count(&status, dtype, count);

Fortran
With mpif.h & mpi:
INTEGER :: count, ierr
INTEGER :: status(MPI_STATUS_SIZE)

CALL MPI_GET_COUNT(status, dtype, count, ierr)

With mpi_f08:
INTEGER :: count
TYPE(MPI_Status) :: status

CALL MPI_GET_COUNT(status, dtype, count)
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Some notes

• The status is:
• an output argument of those functions that take part to the

communication (e.g. MPI_Recv );
• an input argument of those functions that supervise the

communication (e.g. MPI_Get_count).
• If you use MPI_Get_count for checking several status arguments, you have

to identify uniquely the status for each communication operation.
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Send and receive an integer
C
#include <stdio.h>
#include <mpi.h>
int main(int argc, char ∗argv[]) {

MPI_Status status;
int rank, size;
int data_int; /* INTEGER SENT AND RECEIVED */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (rank == 0) {

data_int = 10;
MPI_Send(&data_int, 1, MPI_INT, 1, 123, MPI_COMM_WORLD);

} else if (rank == 1) {
MPI_Recv( &data_int, 1, MPI_INT, 0, 123, MPI_COMM_WORLD,

&status);
printf("Process 1 receives %d from process 0.\n",

data_int);
}
MPI_Finalize();
return 0;

}
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Send and receive a part of array (1/2)

C
#include <stdio.h>
#include <mpi.h>
#define VSIZE 50
#define BORDER 12

int main(int argc, char ∗argv[]) {
MPI_Status status;
int rank, size, i;
int start_sbuf = BORDER;
int start_rbuf = VSIZE - BORDER;
int len = 10;
int vec[VSIZE];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

(...continue)
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Send and receive a part of array (2/2)

C
for (i=0; i< VSIZE; i++) vec[i] = rank;
if (rank == 0) {

MPI_Send( &vec[start_sbuf], len, MPI_INT, 1, 123,
MPI_COMM_WORLD);

}
if (rank == 1) {

MPI_Recv( &vec[start_rbuf], len, MPI_INT, 0, 123,
MPI_COMM_WORLD, &status);

printf("Process 1 receives the following vector from
process 0.\n");

for (i=0; i<VSIZE; i++) {
printf("%6.2f ",vec[i]);

}
}
MPI_Finalize();
return 0;

}
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Send and receive a matrix of double (1/2)

Fortran with mpi_f08

PROGRAM Main

USE mpi_f08
IMPLICIT NONE
INTEGER :: rank, size
INTEGER :: i, j
TYPE(MPI_Datatype) :: status
INTEGER, PARAMETER :: MSIZE = 10
REAL∗8 :: matrix(MSIZE,MSIZE)

CALL MPI_Init()
CALL MPI_Comm_rank(MPI_COMM_WORLD, rank)
CALL MPI_Comm_size(MPI_COMM_WORLD, size);

IF (rank .eq. 0) THEN
DO i=1,MSIZE
DO j=1,MSIZE
matrix(i,j)=dble(i+j)

ENDDO
ENDDO

(...continue)
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Send and receive an array of double (2/2)

Fortran with mpi_f08

CALL MPI_SEND(matrix, MSIZE*MSIZE, &
MPI_DOUBLE_PRECISION, &
1, 123, MPI_COMM_WORLD)

ELSE IF (rank .eq. 1) THEN
CALL MPI_RECV(matrix, MSIZE*MSIZE, &

MPI_DOUBLE_PRECISION, &
0, 123, MPI_COMM_WORLD, &
status

WRITE(*,*)‘Proc 1 receives the following ’ &
‘matrix from proc 0 ’

WRITE(*,‘(10(f6.2,2x)) ’) matrix
ENDIF

CALL MPI_Finalize()
END PROGRAM Main
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Types of pattern

• In real parallel programs, several patterns of sending/receiving
of a message are largely widespread.

• The communication patterns can be:
• point-to-point, are the types that involve only two processes;
• collectives, are the types that involve more processes.

• By the use of MPI functions, is possible to implement some
communication patterns in a correct, easy and sturdy way:

• the correctness doesn’t have to be dependent by the number of
processes.
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Shift

• Several parallel algorithms have the
need of the communications between
each process and one (or more) of its
neighbours with rank greater or lower.

• This point-to-point pattern is known as
shift .

• Each process sends/receives a dataset along a direction (positive/negative)
with a specific distance between ranks; for example:

• the process i communicates with the process i + 3 if ∆rank = 3;
• the process i communicates with the process i − 1 if ∆rank = 1 along a negative

direction;

• If the shift is periodic:
• the process with rank = size - ∆rank sends the dataset to the process 0;
• the process with rank = size - ∆rank + 1 sends the dataset to the process 1.
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Circular periodic shift

• Each process produces an array A
where all elements are the integers
equal to the double of its own rank.

• Each process sends its own array A
to the process with rank immediately
consecutive.

• Periodic Boundary: the last
process sends the array to the
first one.

• Each process receives an array A
from the process with rank
immediately preceding and stores it in
an array B.

• Periodic Boundary: the first
process receives the array from
the last one.

59 / 143



Circular periodic shift - Naive version

C/C++ (Portion of code)

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

tag = 201;
to = (rank + 1) %size;
from = (rank + size - 1) %size;

for(i = 1; i < MSIZE; i++) A[i] = rank

MPI_Send(A, MSIZE, MPI_INT, to, tag, MPI_COMM_WORLD);
printf("Proc %d sends %d integers to proc %d\n", rank, MSIZE,
to);

MPI_Recv(B, MSIZE, MPI_INT, from, tag, MPI_COMM_WORLD, &status);
printf("Proc %d receives %d integers from proc %d\n", rank,
MSIZE, from);

printf("Proc %d has A[0] = %d, B[0] = %d\n\n", rank, A[0],
B[0]);

MPI_Finalize();
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Circular periodic shift - Test

• Try to run the example with:
• MSIZE = 100;
• MSIZE = 500;
• MSIZE = 1000;
• MSIZE = 2000.

• What’s happen?
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Deadlock

• The naive implementation for the circular periodic shift is
wrong: for MSIZE > 1000 is produced a deadlock .

• The deadlock is a condition where each process is waiting for
another one to end the communication and go on with the
execution of the program.

• To understand the reason why the deadlock happens for
MSIZE > 1000, we need to analyze better the inner working of
the exchange of messages between processes.

• Please note that the value 1000 for MSIZE is limited to the
laptop in use! The deadlock happens when the MSIZE value is
greater than the maximum size of the memory buffer.
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Buffered & Synchronous

• The send standard functions of MPI don’t return until the
message sending operation is completed in according with one
of the two ways:

• Buffered: the sending of the message is executed through a
copy of the sender buffer in a system buffer;

• Synchronous: the sending of the message is executed through
the direct copy of the sender buffer in the receiver buffer.

• The MPI_Send works with one of these two ways depending
the size of the data that must be sent:

• Buffered: for little sizes of data;
• Synchronous: for big sizes of data.
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How MPI_Send works

• In the naive implementation of the circular periodic shift,
MPI_Send works in buffered mode up to the size 1000
integers, and in synchronous mode for greater sizes:

• for MSIZE = 1000 the process can complete the "send"
operation after that A is copied in the local buffer of the system
where the process is running;

• for MSIZE = 2000 the process can complete the "send"
operation only when exist a "receive" operation ready to take A.
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Why the deadlock

In the naive implementation the algorithm is of type:

if (myrank = 0)
SEND A to process 1
RECEIVE B from process 1

else if (myrank = 1)
SEND A to process 0
RECEIVE B from process 0

endif

• For MSIZE = 2000 there are two "send" operations that to be
completed are waiting for two "receive" operations...

• ...but each "receive" operation can be executed only after the
corresponding "send" is completed...

• DEADLOCK!
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Solve the issue of circular shift

• To solve the just seen deadlock, we need a function that
manages simultaneously the communications send and
receive.

• The MPI function to do this is MPI_Sendrecv:
• is useful when a process have to send and receive data at the

same time;
• can be invoked to implement communication pattern of shift

type.
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MPI_Sendrecv

C/C++
int MPI_Sendrecv(void ∗sbuf, int scount, MPI_Datatype sdtype,

int dest, int stag, void ∗rbuf, int rcount,
MPI_Datatype rdtype, int src, int rtag,
MPI_Comm comm, MPI_Status ∗status)

Fortran
MPI_SENDRECV(sbuf, scount, sdtype, dest, stag,

rbuf, rcount, rdtype, src, rtag,
comm, status, ierr)

• First arguments are the same of the MPI_Send;
• others are the same of the MPI_Recv.
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.
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Sintax
C/C++
int scount, rcount, dest, src, stag, rtag;
MPI_Status status;
MPI_Sendrecv(&sbuf, scount, sdtype, dest, stag,

&rbuf, rcount, rdtype, src, rtag,
MPI_COMM_WORLD, &status);

Fortran
With mpif.h & mpi:
INTEGER :: scount, rcount, dest, src, stag, rtag, ierr
INTEGER :: status(MPI_STATUS_SIZE)

CALL MPI_SENDRECV(sbuf, scount, sdtype, dest, stag,
rbuf, rcount, rdtype, src, rtag,
MPI_COMM_WORLD, status, ierr)

With mpi_f08:
INTEGER :: scount, rcount, dest, src, stag, rtag
TYPE(MPI_Status) :: status

CALL MPI_SENDRECV(sbuf, scount, sdtype, dest, stag,
rbuf, rcount, rdtype, src, rtag,
MPI_COMM_WORLD, status)
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Circular periodic shift

C
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

to = (rank + 1) %size;
from = (rank + size - 1) %size;

for(i = 1; i < MSIZE; i++) A[i] = rank

MPI_Sendrecv(A, MSIZE, MPI_INT, to, 201,
B, MSIZE, MPI_INT, from, 201,
MPI_COMM_WORLD, &status);

printf("Proc %d sends %d integers to proc %d\n", rank, MSIZE,
to);
printf("Proc %d receives %d integers from proc %d\n", rank,
MSIZE, from);

MPI_Finalize();
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Overview

• Some communications patterns provide for the participation of
all processes (of the communicator).

• MPI provide some functions for these patterns:
• in this way the programmer doesn’t need to implement these

patterns from the point-to-point communications;
• for these functions, the most efficient algorithms are

implemented.
• We can classify these functions on the number of senders and

receivers:
• all-to-one: all processes send data to one process only;
• one-to-all: one process sends data to all processes;
• all-to-all: all processes send data to all processes.
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Reduction

• The REDUCE operation lets:
• to collect from each process

the data in the send buffer;
• to reduce the data to an only

value through an operator (in
the figure: the sum operator);

• to save the result in the
receive buffer of the
destination process,
conventionally named root
(in the figure: p0).

• The corresponding MPI
function is MPI_Reduce:

• it’s in the all-to-one class.
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MPI_Op
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Broadcasting

• The BROADCAST operation
lets to copy data from the send
buffer of root process (in the
figure: p0) in the receive buffer
of all processes living in the
communicator (even process
root).

• The corresponding MPI
function is MPI_Bcast:

• it’s in the one-to-all class.
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Scattering

• The SCATTER operation lets
to the root process (in the
figure: p0):

• to split in size equal
portions a set of contiguous
data in memory;

• to send one portion to every
process according to the
order of rank (even process
root).

• The corresponding MPI
function is MPI_Scatter:

• it’s in the one-to-all class.
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Gathering

• The GATHER operation is the
reverse of the SCATTER
operation:

• each process (even process
root) sends data contained in
the send buffer to root
process;

• the root process receives
data and reorders them
according the order of rank.

• The corresponding MPI
function is MPI_Gather:

• it’s in the all-to-one class.
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Gathering & Broadcasting

• The GATHER + BROADCAST
operation is equal to a
GATHER operation followed by
a BROADCAST operation
executed by root process.

• The corresponding MPI
function is MPI_Allgather:

• it’s much more advantageous
and efficient of the sequence
GATHER + BROADCAST ;

• it’s in the all-to-all class.
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MPI_Reduce
C/C++
int MPI_Reduce(void ∗sbuf, void ∗rbuf, int count,

MPI_Datatype dtype, MPI_Op op, int root,
MPI_Comm comm)

Fortran
MPI_REDUCE(sbuf, rbuf, count, dtype, op, root, comm, ierr)

• Input arguments:
• sbuf is the initial address of the send buffer;
• count is the number of elements of the send/receive buffer (integer);
• dtype is the type of every element of the send/receive buffer (MPI_Datatype);
• op is the reference to the operator for the reduction (MPI_Op);
• root is the rank of the process root for the reduction (integer);
• comm is the communicator of the processes that contribute to the reduction

(MPI_Comm);
• Output arguments:

• rbuf is the initial address of the receive buffer;
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional;
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Sintax

C/C++
int count, root;
MPI_Reduce(&sbuf, &rbuf, count, dtype, op, root,

MPI_COMM_WORLD);

Fortran
With mpif.h & mpi:
INTEGER :: count, root, ierr

CALL MPI_REDUCE(sbuf, rbuf, count, dtype, op, root,
MPI_COMM_WORLD, ierr)

With mpi_f08:
INTEGER :: count, root

CALL MPI_REDUCE(sbuf, rbuf, count, dtype, op, root,
MPI_COMM_WORLD)
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MPI_Bcast
C/C++
int MPI_Bcast(void ∗buf, int count, MPI_Datatype dtype,

int root, MPI_Comm comm)

Fortran
MPI_BCAST(buf, count, dtype, root, comm, ierr)

• Input arguments:
• count is the number of elements of the send/receive buffer (integer);
• dtype is the type of every element of the send/receive buffer (MPI_Datatype);
• root is the rank of the process root for the broadcasting (integer);
• comm is the communicator for the broadcasting (MPI_Comm);

• Input/Output arguments:
• buf is the initial address of the send and receive buffer;

• Output arguments:
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.
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Sintax

C/C++
int count, root;
MPI_Bcast(&buf, count, dtype, root, MPI_COMM_WORLD);

Fortran
With mpif.h & mpi:
INTEGER :: count, root, ierr

CALL MPI_BCAST(buf, count, dtype, root, MPI_COMM_WORLD, ierr)

With mpi_f08:
INTEGER :: count, root

CALL MPI_BCAST(buf, count, dtype, root, MPI_COMM_WORLD)
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MPI_Scatter
C/C++
int MPI_Scatter(void ∗sbuf, int scount, MPI_Datatype sdtype,

void ∗rbuf, int rcount, MPI_Datatype rdtype,
int root, MPI_Comm comm)

Fortran
MPI_SCATTER(sbuf, scount, sdtype, rbuf, rcount, rdtype,

root, comm, ierr)

• Input arguments:
• sbuf is the initial address of the send buffer.
• scount is the number of elements of the send buffer (integer);
• rcount is the number of elements of the receive buffer (integer);
• sdtype is the type of every element of the send buffer (MPI_Datatype);
• rdtype is the type of every element of the receive buffer (MPI_Datatype);
• root is the rank of the process root for the scattering (integer);
• comm is the communicator for the scattering (MPI_Comm);

• Output arguments:
• rbuf is the initial address of the receive buffer;
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional. 87 / 143



Sintax

C/C++
int scount, rcount, root;
MPI_Scatter(&sbuf, scount, sdtype, &rbuf, rcount, rdtype,

root, MPI_COMM_WORLD);

Fortran
With mpif.h & mpi:
INTEGER :: scount, rcount, root, ierr

CALL MPI_SCATTER(sbuf, scount, sdtype, rbuf, rcount, rdtype,
root, MPI_COMM_WORLD, ierr)

With mpi_f08:
INTEGER :: scount, rcount, root

CALL MPI_SCATTER(sbuf, scount, sdtype, rbuf, rcount, rdtype,
root, MPI_COMM_WORLD)
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MPI_Gather
C/C++
int MPI_Gather(void ∗sbuf, int scount, MPI_Datatype sdtype,

void ∗rbuf, int rcount, MPI_Datatype rdtype,
int root, MPI_Comm comm)

Fortran
MPI_GATHER(sbuf, scount, sdtype, rbuf, rcount, rdtype,

root, comm, ierr)

• Input arguments:
• sbuf is the initial address of the send buffer.
• scount is the number of elements of the send buffer (integer);
• rcount is the number of elements of the receive buffer (integer);
• sdtype is the type of every element of the send buffer (MPI_Datatype);
• rdtype is the type of every element of the receive buffer (MPI_Datatype);
• root is the rank of the process root for the gathering (integer);
• comm is the communicator for the gathering (MPI_Comm);

• Output arguments:
• rbuf is the initial address of the receive buffer;
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional. 89 / 143



Sintax

C/C++
int scount, rcount, root;
MPI_Gather(&sbuf, scount, sdtype, &rbuf, rcount, rdtype,

root, MPI_COMM_WORLD);

Fortran
With mpif.h & mpi:
INTEGER :: scount, rcount, root, ierr

CALL MPI_GATHER(sbuf, scount, sdtype, rbuf, rcount, rdtype,
root, MPI_COMM_WORLD, ierr)

With mpi_f08:
INTEGER :: scount, rcount, root

CALL MPI_GATHER(sbuf, scount, sdtype, rbuf, rcount, rdtype,
root, MPI_COMM_WORLD)
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MPI_Allgather
C/C++
int MPI_Allgather(void ∗sbuf, int scount, MPI_Datatype sdtype,

void ∗rbuf, int rcount, MPI_Datatype rdtype,
MPI_Comm comm)

Fortran
MPI_ALLGATHER(sbuf, scount, sdtype, rbuf, rcount, rdtype,

comm, ierr)

• Input arguments:
• sbuf is the initial address of the send buffer.
• scount is the number of elements of the send buffer (integer);
• rcount is the number of elements of the receive buffer (integer);
• sdtype is the type of every element of the send buffer (MPI_Datatype);
• rdtype is the type of every element of the receive buffer (MPI_Datatype);
• comm is the communicator for the communication (MPI_Comm);

• Output arguments:
• rbuf is the initial address of the receive buffer;
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.
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Sintax

C/C++
int scount, rcount;
MPI_Allgather(&sbuf, scount, sdtype, &rbuf, rcount, rdtype,

MPI_COMM_WORLD);

Fortran
With mpif.h & mpi:
INTEGER :: scount, rcount, ierr

CALL MPI_ALLGATHER(sbuf, scount, sdtype, rbuf, rcount, rdtype,
MPI_COMM_WORLD, ierr)

With mpi_f08:
INTEGER :: scount, rcount

CALL MPI_ALLGATHER(sbuf, scount, sdtype, rbuf, rcount, rdtype,
MPI_COMM_WORLD)
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Hints

• MPI_Scatterv: as MPI_Scatter, but each message has
different count and displacement.

• MPI_Gatherv: as MPI_Gather, but each message has
different count and displacement.

• MPI_Barrier: synchronizes all processes.
• MPI_Alltoall: each process sends a message to all

processes.
• MPI_Allreduce: as MPI_Reduce, but all processes receive

the result.
• ...and others
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Overview (1/2)

A communication point-to-point can be:
• BLOCKING:

• the control returns to the process which has invoked the primitive for
the communication only when that has been completed;

• every process must wait the completion of the operations of all others
processes before to continue with the computation.

• NON BLOCKING:
• the control returns to the process which has invoked the primitive for

the communication only when that has been executed;
• the control of the effective completion of the communication must be

done later;
• in the meanwhile, the process can execute other operations, without

waiting the completion of the operations of others processes.

All collective communications are BLOCKING.
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Overview (2/2)
• In the MPI library there are several primitives for the point-to-point

communications that combine communication modes with completion
criterions.

• The criterion of completion of the communication is relevant.

Functionality Completion criterions

Synchronous send It’s completed when the
receiving of message is ended

Buffered send It’s completed when the writing
of data on the buffer is ended

(indipendent by receiver!)

Standard send It can be implemented
synchronous or buffered send

Receive It’s completed when
the message arrives
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Synchronous Send

The MPI function is MPI_Ssend:
• the function arguments are the same of MPI_Send ;
• to have the completion of the operation, the sender must be informed by the

receiver that the message has been received;

• advantage:
• is the point-to-point communication mode much more easy and

dependable;

• disadvantage:
• can cause a significant loss time for the processes that are waiting for

the end of the communication.
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Buffered Send

The MPI function is MPI_Bsend:
• the function arguments are the same of MPI_Send ;
• the completion is immediate, as soon as the process has done the copy of

the message in an appropriate transmitting buffer;

• the programmer can’t suppose the existence of an allocated system buffer to
execute the operation, and has to execute an operation of:

• BUFFER_ATTACH to define a memory area, with the needed
dimension, as buffer for the trasmission of the messages;

• BUFFER_DETACH to free the memory areas of the buffers used.
• advantage:

• immediate return by the primitive of communication;

• disadvantage:
• explicit management of the buffer is needed;
• entails an operation copy in memory of data that have to be transmitted.
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MPI_Buffer_attach

C/C++
int MPI_Buffer_attach(void ∗buf, int bsize)

Fortran
MPI_BUFFER_ATTACH(buf, bsize, ierr)

• Allows the sender process to allocate the send buffer for a
succesive call to MPI_Bsend.

• Input arguments:
• buf is the initial address of the buffer that has to be allocated;
• bsize is the dimension in byte of buf (integer);

• Output arguments:
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.
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MPI_Buffer_detach

C/C++
int MPI_Buffer_detach(void ∗buf, int bsize)

Fortran
MPI_BUFFER_DETACH(buf, bsize, ierr)

• Allows to free the buffer allocated by MPI_Buffer_attach.
• All arguments are output :

• buf is the initial address of the buffer that has to be deallocated;
• bsize is the dimension in byte of buf (integer);
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.
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MPI_BSEND_OVERHEAD

• The value of bsize is given by the sum of count∗dtype_size) and
MPI_BSEND_OVERHEAD.

• MPI_BSEND_OVERHEAD is a macro and gives the maximum amount of space that
may be used in the buffer by MPI_Bsend .

• The value of MPI_BSEND_OVERHEAD is declared in MPI headers.
• dtype_size is returned by the MPI function MPI_Type_size.

C/C++
int MPI_Type_size(MPI_Datatype dtype, int ∗dtype_size)

bsize = count*dtype_size + MPI_BSEND_OVERHEAD;

Fortran
MPI_TYPE_SIZE(dtype, dtype_size, ierr)

bsize = count*dtype_size + MPI_BSEND_OVERHEAD
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MPI_Ssend

C
#include <stdio.h>
#include <mpi.h>
#define MSIZE 10

int main(int argc, char ∗argv[]) {
MPI_Status status;
int rank, size, i;
double matrix[MSIZE];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

if (rank == 0) {
for (i=0; i< MSIZE; i++) matrix[i] = (double) i;
MPI_Ssend(matrix, MSIZE, MPI_DOUBLE 1, 123,

MPI_COMM_WORLD);
} else if (rank == 1) {

MPI_Recv(matrix, MSIZE, MPI_DOUBLE, 0, 123,
MPI_COMM_WORLD, &status);

printf("Process 1 receives an array of size %d
from process 0.\n", MSIZE);

}
MPI_Finalize();
return 0;

}
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MPI_Bsend
Fortran with mpi_f08
PROGRAM Main

USE mpi_f08
IMPLICIT NONE
INTEGER :: rank, size, bsize, dtype_size, i
TYPE(MPI_Datatype) :: status
INTEGER, PARAMETER :: MSIZE = 10
REAL∗8 :: matrix(MSIZE)
REAL∗8, DIMENSION(:), ALLOCATABLE :: buf

CALL MPI_Init()
CALL MPI_Comm_rank(MPI_COMM_WORLD, rank)
CALL MPI_Comm_size(MPI_COMM_WORLD, size);

IF (rank .eq. 0) THEN
DO i=1,MSIZE
matrix(i)=dble(i)

ENDDO
CALL MPI_Type_size(MPI_DOUBLE_PRECISION, dtype_size)
bsize = dtype_size*msize + MPI_BSEND_OVERHEAD
ALLOCATE(buf(bsize))
CALL MPI_Buffer_attach(buf, bsize)
CALL MPI_Bsend(matrix, MSIZE, MPI_DOUBLE_PRECISION, 1, 123, MPI_COMM_WORLD)
CALL MPI_Buffer_detach(buf, bsize)

ELSE IF (rank .eq. 1) THEN
CALL MPI_Recv(matrix, MSIZE, MPI_DOUBLE_PRECISION, 0, 123, MPI_COMM_WORLD, &

status)
ENDIF
CALL MPI_Finalize()

END PROGRAM Main
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Overview

• A non-blocking communication usually consists in three successive phases:
• the beginning of the operation send or receive;
• a set of activities that doesn’t need to access to the data interested by the

communication;
• the control or the waiting for the ending of the communication.

• advantage:
• communication phases and computation can coexist;
• the latency effects of communications are reduced;
• deadlocks are prevented;

• disadvantage:
• the programming with functions for the non blocking communication is a little bit

more difficult.
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Non-blocking send

• The control returns to the sender
process after the beginning of the
sending.

• The sender process must check if the
operation has been completed (by the
use of some MPI functions) before to
reuse the memory areas used by the
communication.

• For the non-blocking send are
available the same several completion
modes shown before.
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Non-blocking receive

• The control returns to the receiver
process after the beginning of the
receiving phase.

• The receiver process must check if
the operation has been completed (by
the use of some MPI functions) before
to use in a secure way the received
data.

• A non-blocking receive can be used to
receive messages sent by a send
blocking or non-blocking.
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MPI_Isend
C/C++

int MPI_Isend(void ∗buf, int count, MPI_Datatype dtype,
int dest, int tag, MPI_Comm comm,
MPI_request ∗req)

Fortran

MPI_ISEND(buf, count, dtype, dest, tag, comm, req, ierr)

• Input arguments:
• buf is the initial address of the send buffer;
• count is the number of elements of the send buffer (integer);
• dtype is the type of every element of the send buffer (MPI_Datatype);
• dest is the rank of the receiver in the communicator comm (integer);
• tag is the identity number of the message (integer);
• comm is the communicator where is the send (MPI_Comm);

• Output arguments:
• req is the non-blocking handler (MPI_Request);
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.
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MPI_Irecv
C/C++
int MPI_Irecv(void ∗buf, int count, MPI_Datatype dtype, int src,

int tag, MPI_Comm comm, MPI_Request ∗req)

Fortran
MPI_IRECV(buf, count, dtype, src, tag, comm, req, ierr)

• Input arguments:
• count is the number of elements of the receive buffer (integer);
• dtype is the type of every element of the receive buffer (MPI_Datatype);
• src is the rank of the sender in the communicator comm (integer);
• tag is the identity number of the message (integer);
• comm is the communicator where is the send (MPI_Comm);

• Output arguments:
• buf is the initial address of the receive buffer;
• req is the non-blocking handler (MPI_Request);
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.
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Sintax

C/C++
int count, dest, src, tag;
MPI_Request req;
MPI_Isend(&buf, count, dtype, dest, tag, MPI_COMM_WORLD, &req);
MPI_Irecv(&buf, count, dtype, src, tag, MPI_COMM_WORLD, &req);

Fortran
With mpif.h & mpi:
INTEGER :: count, dest, src, req, ierr (,dtype, MPI_COMM_WORLD)

CALL MPI_ISEND(buf, count, dtype, dest, tag, MPI_COMM_WORLD,
req, ierr)

CALL MPI_IRECV(buf, count, dtype, src, tag, MPI_COMM_WORLD,
req, ierr)

With mpi_f08:
INTEGER :: count, dest, src, tag TYPE(MPI_Datatype) :: dtype
TYPE(MPI_Comm) :: MPI_COMM_WORLD TYPE(MPI_Status) :: status
TYPE(MPI_Request) :: req

CALL MPI_ISEND(buf, count, dtype, dest, tag, MPI_COMM_WORLD,
req)

CALL MPI_IRECV(buf, count, dtype, src, tag, MPI_COMM_WORLD,
req)
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Check the completion

• The request handle req is needed to check the completion of
the non-blocking communication.

• MPI makes available two functions to do this check:
• MPI_Wait : it allows to stop the process execution until the

communication is complete;
• MPI_Test : a logical TRUE or FALSE is returned to the process to let

check the completion with a conditional statement.

• The handle status is returned by these two functions.
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MPI_Wait & MPI_Test

C/C++
int MPI_Wait(MPI_Request ∗req, MPI_Status ∗status)
int MPI_Test(MPI_Request ∗req, int ∗flag, MPI_Status ∗status)

Fortran
MPI_WAIT(req, status, ierr)
MPI_TEST(req, flag, status, ierr)

• Input/Output arguments:
• req is the non-blocking handler (MPI_Request);

• Output arguments:
• flag is the logical TRUE/FALSE (logical);
• status contains the informations about the message (MPI_Status);
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.
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An example

C/C++ (Only a portion of the code...)

... ... ...

MPI_Status status;
MPI_Request req;

int flag = 0;
double buffer[BIG_SIZE];

MPI_Isend(buffer, BIG_SIZE, MPI_DOUBLE, dest, tag,
MPI_COMM_WORLD, &req);

while (!flag && have more work to do) {
... do some work ...
MPI_Test(&req, &flag, &status);

}

if (!flag) MPI_Wait(&req, &status);

... ... ...
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Beyond MPI_COMM_WORLD

• A communicator defines the universe of
communication of a set of processes.

• In an MPI program is possible to define
others communicators beyond
MPI_COMM_WORLD to meet particular
needs, as:

• use collective functions only for a
subset of processes;

• use an identificative scheme of
processes that is useful for a
particular pattern communication.
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Components of communicator

• Group of processes (an ordered set of processes):
• is used to identify all processes;
• to every process is assigned an index (rank ), useful to identify the

process;

• Context :
• used by the communicator to manage the send/receive of messages;
• contains several information regarding the message status;

• Features (others informations possibly linked to the communicator):
• the rank of the process eligible to execute I/O operations;
• the topology of communication.
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Virtual topologies

• Define a new identificative scheme for the processes is useful because:
• simplifies the code writing;
• allows MPI to optimize the communications.

• Create a virtual topology of processes in MPI means:
• to define a new communicator with its own features.

• Topologies:
• Cartesian:

• every process is identified by a set of cartesian coordinates and
connected to its neighbors by a virtual grid;

• it’s possible to set periodicity or not at the boundaries of the grid.

• Graph (not talked about in this course).
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Topology cartesian 1D

• An example:
• every process sends data to

right and receives data from left
(Circular shift);

• the last process sends data to
the first one (periodicity ).
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Topology cartesian 2D

• An example:
• to every process is assigned a

pair of index as its cartesian
coordinates in a cartesian 2D
(virtual) space;

• the communications can happen
between first neighbours:

• with periodicity along X
direction;

• without periodicity along Y
direction.
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MPI_Cart_create
C/C++
int MPI_Cart_create(MPI_Comm comm_old, int ndims, int ∗dims,

int ∗periods, int reorder, MPI_Comm ∗comm_cart)

Fortran
MPI_CART_CREATE(comm_old, ndims, dims, periods, reorder,

comm_cart, ierr)

• Input arguments:
• comm_old is the old communicator (MPI_Comm);
• ndims is the dimension of cartesian space (integer);
• dims is the vector whose elements are the number of processes along the

space directions (integer);
• periods is the vector whose elements are the logical true/false to define the

periodicity along the space directions (logical);
• reorder is the logical true/false to reorder the rank of the processes(logical);

• Output arguments:
• comm_cart is the new communicator(MPI_Comm);
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.

125 / 143



A C example

C/C++
int main(int argc, char ∗∗argv)
{

... ... ...
int dim[2], period[2], reorder;

... ... ...
dim[0] = 4;
dim[1] = 3;

period[0] = 1;
period[1] = 0;
reorder = 1;

MPI_Cart_create(MPI_COMM_WORLD, 2, dim,
period, reorder, &cart);

... ... ...
return 0;

}
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A Fortran example

Fortran
PROGRAM Main
... ... ...
integer :: dim[2], ierr
logical :: period[2], reorder
... ... ...
dim[0] = 3
dim[1] = 4

period[0] = .false.
period[1] = .true.
reorder = .true.

call MPI_Cart_create(MPI_COMM_WORLD, 2, &
dim, period, reorder, cart, &
ierr);

... ... ...
return
END PROGRAM Main
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Some useful features

• MPI_Dims_create:
• calculates the dimensions of the balanced optimal grid in relation of the

number of processes and the cartesian dimension of the grid;
• is useful to set the vector dims for the function MPI_Cart_create.

• MPI_Cart_coords:
• returns the coordinates corresponding to the process defined by an

established rank , in respect to the defined topology in the
communicator.

• MPI_Cart_rank:
• returns the rank corresponding to the process linked to an established

set of cartesian coordinates, in respect to the defined topology in the
communicator.

128 / 143



MPI_Dims_create

C/C++
int MPI_Dims_create(int size, int ndims, int ∗dims)

Fortran
MPI_DIMS_CREATE(size, ndims, dims, ierr)

• Input arguments:
• size is the total number of processes (integer);
• ndims is the dimension of cartesian space (integer);

• Input /Output arguments:
• dims is the vector whose elements are the number of processes along the

space directions (integer);
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.

129 / 143



Notes to MPI_Dims_create

• The entries in the array dims are set to describe a cartesian grid with ndims
dimensions and a total of size nodes.

• The dimensions are set to be as close to each other as possible, using an appropriate
divisibility algorithm.

• The caller may further constrain the operation of this routine by specifying elements of
array dims.

• If dims[i] is set to a positive number, the routine will not modify the number of nodes in
dimension i ; only those entries where dims[i] = 0 are modified by the call.

• Negative input values of dims[i] are erroneous.
• An error will occur if nnodes is not a multiple of:∏

dims[i].
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MPI_Cart_coords

C/C++
int MPI_Cart_coords(MPI_Comm comm, int rank, int ndims,

int ∗coords)

Fortran
MPI_CART_COORDS(coom, rank, ndims, coords, ierr)

• Input arguments:
• comm is the communicator with cartesian topology (MPI_Comm);
• rank is the identificative number of the process about which we want to know the

cartesian coordinates (integer);
• ndims is the dimension of cartesian space (integer);

• Output arguments:
• coords is the vector of coordinates assigned to the process rank (integer);
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.
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MPI_Cart_rank

C/C++
int MPI_Cart_rank(MPI_Comm comm, int ∗coords, int ∗rank)

Fortran
MPI_CART_RANK(coom, coords, rank, ierr)

• Input arguments:
• comm is the communicator with cartesian topology (MPI_Comm);
• coords is the vector of coordinates assigned to the process (integer);

• Output arguments:
• rank is the identificative number of the process with cartsian coordinates coords

(integer);
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.
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Other useful functions

• MPI_Cart_shift:
• locates the rank of the process to

which send/from which receive data,
for the function MPI_Sendrecv on a
cartesian topology.

• MPI_Comm_split:
• creates a sub-communicator for a

subset of processes.
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MPI_Cart_shift
C/C++
int MPI_Cart_shift(MPI_Comm comm, int direction, int disp,

int ∗source, int ∗dest)

Fortran
MPI_CART_SHIFT(coom, direction, disp, source, dest, ierr)

• Input arguments:
• comm is the communicator with cartesian topology (MPI_Comm);
• direction is the index of the coordinate along which do the shift (integer);

• the numbering of indices starts from 0;

• disp is the displacement of the shift (integer);
• > 0: upwards shift, < 0: downwards shift;

• Output arguments:
• source is the rank of the process from which receive data (integer).
• dest is the rank of the process to which send data (integer);
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.
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MPI_Comm_split

C/C++
int MPI_Comm_split(MPI_Comm comm, int color, int key,

MPI_Comm ∗subcomm)

Fortran
MPI_CART_SHIFT(coom, color, key, subcomm, ierr)

• Input arguments:
• comm is the communicator to be split (MPI_Comm);
• color is the control value of subset assignment (integer);

• can’t be negative;

• key is the control value of rank assignment (integer);

• Output arguments:
• subcomm is the sub-communicator (MPI_Comm);
• ierr [only Fortran] is the error handler (integer):

• with use mpi or include ‘mpif.h’ is needed;
• with use mpi_f08 is optional.
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Circular shift on a cartesian topology 1D

C/C++
MPI_Cart_create(MPI_COMM_WORLD, 1, &size, periods, 0, &comm_cart);

MPI_Cart_shift(comm_cart, 0, 1, &source, &dest);

MPI_Sendrevc(A, MSIZE, MPI_INT, dest, tag, B, MSIZE, MPI_INT, source, tag,
comm_cart, &status);
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Sub-communicator for even numbers

C/C++
color = rank%2;
key = rank;

MPI_Comm_split(MPI_COMM_WORLD, color, key, &comm_even);

MPI_Comm_rank(comm_even, &rank_even);
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Other MPI functions exist!

• MPI_Win_create, MPI_Win_free;
• MPI_Win_allocate (MPI-3.0);
• MPI_Win_attach, MPI_Win_detach (MPI-3.0);
• MPI_Get, MPI_Put;
• MPI_Accumulate;
• MPI_Win_fence;
• ...
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