Introduction to HPC Architectures

Andrew Emerson, Giovanni Erbacci - \{a.emerson,g.erbacci\}@cineca.it

SuperComputing Applications and Innovation Department

Contents

- Computational Science
- Features of Traditional Supercomputers
- Processors and Moore's Law
- Memory bandwidth and Cache
- Aspects of parallelism
- Functional Units
- Pipelining and vectorisation
- Flynn Taxonomy, memory distribution and networks
- HPC Trends
- Bluegene and Accelerators
- HPC Systems Evolution, Top500 and Cineca experience
- PRACE and other European projects
- Summary

Computational Sciences

Identify the scientific disciplines that use mathematical models and computing systems to analyze and solve scientific problems.
Computational methods allow us to study complex phenomena, giving a powerful impetus to scientific research.

The use of computers to study physical systems allows to manage phenomena

- very large
(meteo-climatology, cosmology, data mining, oil reservoir)
- very small
(drug design, silicon chip design, structural biology)
- very complex
(fundamental physics, fluid dynamics, turbolence)
- too dangerous or expensive
(fault simulation, nuclear tests, crash analysis)

Computational Sciences / 1

Computational science (with theory and experimentation), is the "third pillar" of scientific inquiry, enabling researchers to build and test models of complex phenomena

Owen Willans Richardson, Years '20
Nobel Prize in Physics 1928
for his work on the thermionic phenomenon and especially for the discovery of the law named after him"

John Von Neumann, Years '40

Kenneth. Wilson, Years '80
Nobel Prize in Physics 1982
"for his theory for critical phenomena in connection with phase transitions"

Size of computational applications

Computational Dimension:

number of operations needed to solve the problem, in general is a function of the size of the involved data structures ($n, n^{2}, n^{3}, n \log n$, etc.)

flop - Floating point operations

indicates an arithmetic floating point operation.
flop/s - Floating points operations per second
is a unit to measure the speed of a computer.
computational problems today: $10^{15}-10^{22}$ flop
One year has about 3×10^{7} seconds!
Most powerful computers today have reach a sustained performance is of the order of Tflop/s - Pflop/s ($10^{12}-10^{15}$ flop/s).

Example: Weather Prediction

Forecasts on a global scale (.....too accurate and inefficient!!)

- 3D Grid to represent the Earth
- Earth's circumference: $\cong 40000 \mathrm{~km}$
- radius: $\cong 6370 \mathrm{~km}$
- Earth's surface: $\cong 4 \pi r^{2} \cong 5 \cdot 10^{8} \mathrm{~km}^{2}$
- 6 variables:
- temperature
- pressure
- humidity
- wind speed in the 3 Cartesian directions
- cells of 1 km on each side
-100 slices to see how the variables evolve on the different levels of the atmosphere
- a 30 seconds time step is required for the simulation with such resolution
- Each cell requires about 1000 operations per time step (Navier-Stokes turbulence and various phenomena)

Example: Weather Prediction / 1

Grid: $5 \bullet 10^{8} \bullet 100=5 \bullet 10^{10}$ cells

- each cell is represented with 8 Byte
- Memory space:

$(6 \mathrm{var}) \bullet(8$ Byte $) \bullet\left(5 \bullet 10^{10} \mathrm{cells}\right) \cong 2 \bullet 10^{12}$ Byte $=2$ TB
A 24 hours forecast needs:
- $24 \bullet 60 \bullet 2 \cong 3 \bullet 10^{3}$ time-step
$-\left(5 \bullet 10^{10}\right.$ cells $) \bullet\left(10^{3}\right.$ oper. $) \bullet\left(3 \bullet 10^{3}\right.$ time-steps $)=1.5 \bullet 10^{17}$ operations !
A computer with a power of 1 T flop/s will take $1.5 \bullet 10^{5} \mathrm{sec}$.
- $\mathbf{2 4}$ hours forecast will need 2days to run
..... but we shall obtain a very accurate forecast

Supercomputers

supercomputers are defined as the more powerful computers available in a given period of time.
Powerful is meant in terms of execution speed, memory capacity and accuracy of the machine.

Supercomputer:"new statistical machines with the mental power of 100 skilled mathematicians in solving even highly complex algebraic problems"..

New York World, march 1920
to describe the machines invented by Mendenhall and Warren, used at Columbia University's Statistical Bureau.

von Neumann Model

Conventional Computer

Von Neumann Model of Computer Architecture

Data
Control

Instructions are processed sequentially
1 A single instruction is loaded from memory (fetch) and decoded
2 Compute the addresses of operands
3 Fetch the operands from memory;
4 Execute the instruction;
5 Write the result in memory (store).

Frequency

The clock cycle τ is defined as the time between two adjacent pulses of oscillator that sets the time of the processor.
The number of these pulses per second is known as clock speed or clock frequency, generally measured in GHz (gigahertz, or billions of pulses per second).

The clock cycle controls the synchronization of operations in a computer: All the operations inside the processor last a multiple of τ.

Processor	$\tau(\mathrm{ns})$	freq (MHz)
CDC 6600	100	10
Cyber 76	27.5	36,3
IBM ES 9000	9	111
Cray Y-MP C90	4.1	244
Intel i860	20	50
PC Pentium	<0.5	$>2 \mathrm{GHz}$
Power PC	1.17	850
IBM Power 5	0.52	1.9 GHz
IBM Power 6	0.21	4.7 GHz

Increasing the clock frequency:
The speed of light sets an upper limit to the speed with which electronic components can operate .
Propagation velocity of a signal in a vacuum: $300.000 \mathrm{Km} / \mathrm{s}=30 \mathrm{~cm} / \mathrm{ns}$
Heat dissipation problems inside the processor. Also Quantum tunelling expected to become important ${ }^{\prime}$

Moore's Law

Empirical law which states that the complexity of devices (number of transistors per square inch in microprocessors) doubles every 18 months..
Gordon Moore, INTEL co-founder, 1965

It is estimated that Moore's Law still applies in the near future but applied to the number of cores per processor

Other factors that affect

 School on

In addition to processor power, other factors affect the performance of computers:

- Size of memory
- Bandwidth between processor and memory
- Bandwidth toward the I/O system
- Size and bandwidth of the cache
- Latency between processor, memory, and I/O system

Memory hierarchies

Time to run code = clock cycles running code + clock cycles waiting for memory
Memory access time: the time required by the processor to access data or to write data from / to memory

The hierarchy exists because :

- fast memory is expensive and small
- slow memory is cheap and big

Latency

- how long do I have to wait for the data?
- (cannot do anything while waiting)

Throughput

- how many bytes/second. but not important if waiting.

Memory access

- Important problem for the performance of any computer is access to main memory. Fast processors are useless if memory access is slow!
- Over the years the difference in speed between processors and main memory has been growing.

Time

Cache Memory

- High speed, small size memory used as a buffer between the main memory and the processor. When used correctly, reduces the time spent waiting for data from main memory.
- Present as various "levels" (e.g. L1, L2, L3, etc) according to proximity to the functional units of the processor.
- Cache efficiency depends on the locality of the data references:
- Temporal locality refers to the re-use of data within relatively small time frame.
- Spatial locality refers to the use of data within close storage locations (e.g. one dimensional array).

- Cache can contain Data, Instructions or both.

Cache Memory / 1

The code performance improves when the instructions that compose a heavy computational kernel (eg. a loop) fit into the cache

The same applies to the data, but in this case the work of optimization involves also the programmer and not just the system software.

DEC Alpha 21164 (500 MHz):

Memory access time

Registers	2 ns
L1 On-chip	4 ns
L2 On-Chip	5 ns
L3 Off-Chip	30 ns
Memory	220 ns

IBM SP Power 6 (4.7 GHz):
Memory access time (in clock cycles)

Registers	
L1: $2 \times 64 \mathrm{~KB}$	<5
L2: $2 \times 4 \mathrm{MB}$	22 cc
L3: 32 MB	160 cc
Memory 128 GB	400 cc

Cache organisation

The cache is divided into slots of the same size (lines)
Each line contains k consecutive memory locations (ie 4 words).
When a data is required from memory, (if not already in the cache) the system loads from memory, the entire cache line that contains the data, overwriting the previous contents of the line.

Aspects of parallelism

- It has been recognised for a long time that constant performance improvements cannot be obtained just by increasing factors such as processor clock speed - parallelism is needed.
- In HPC parallelism can be present at many levels:
- Functional parallelism within the CPU.
- Pipelining and vectorisation
- Multi-processor and multi-core
- Accelerators
- Parallel I/O

Multiple Functional Units

Arithmetic logic unit (ALU) executes the operations.
ALU is designed as a set of independent functional units, each in charge of executing a different arithmetic or logical operation,

- Add
- Multiply
- Divide
- Integer Add
- Integer Multiply
- Branch

The functional units can operate in parallel. This aspect represents the first level of parallelism. It is a parallelism internal to the single CPU.

The compiler analyses the different instructions and determine which operations can be done in parallel, without changing the semantics of the program.

Pipelining

Is a technique where more instructions, belonging to a stream of sequential execution, overlap their execution

This technique improves the performance of the processor

The concept of pipelining is similar to that of assembly line in a factory where in a flow line (pipe) of assembly stations the elements are assembled in a continuous flow.

All the assembly stations must operate at the same processing speed, otherwise the station slower becomes the bottleneck of the entire pipe.

Instruction Pipelining

Vector Computers

Vector computer architectures adopt a set of vector instructions, In conjunction with the scalar instruction set. The vector instructions operates on a set of vector registers each of which is able to contain more than one data element.

- Cray vector systems of the 80s and 90s
- Cray C90: 8 vector registers each with 128 elements at 64-bits
- Also the current microprocessors have a set of vector egisters and a set of vector instructions

The vector instructions implement a particular operation to be performed on a given set of operands called vector.
Functional units when executing vector instructions exploit pipelining to perform the same operation on all data operands stored on vector registers.

Data transfer to and from the memory is done through load and store operations operating on vector registers.

CPU Vector units

- Vectorisation performed by dedicated hardware on chip.
- Compiler generates vector instructions, when it can, from programmer's code.
- Important optimisation which can lead to $4 x, 8 x$ speedups according "size" of vector unit (e.g. 256 bit).
$a 1+b 1=a 1$
$a 22+b 2=a 2$
$a 3+b 3=c 3$

Vector Processing

$$
a n+b n=c n
$$

$$
\begin{array}{ll}
\text { for } & i=1 \text { to } n \\
c[i]=a[i]+b[i] & c[1: n]=a[1: n]+b[1: n]
\end{array}
$$

end

Flynn Taxonomy

M. J. Flynn

Very high speed computing systems, proceedings of the IEEE (1966).
Some computer organizations and their effectiveness, IEEE Transaction on
Computers.(1972).
"The multiplicity is taken as the maximum possible number of simultaneous operations (instructions) or operands (data) being in the same phase of execution at the most constrained component of the organization"

A computer architecture is categorized by the multiplicity of hardware used to manipulate streams of instructions (sequence of instructions executed by the computer) and streams of data (sequence of data used to execute a stream of instructions).

SI	Single Instruction stream	SD	Single Data stream
MI	Multilpe Instruction stream	MD	Multilpe Data stream

4 possible combinations : SISD, SIMD, MISD, MIMD

SIMD Systems

Synchronous parallelism
SIMD systems presents a single control unit

A single instruction operates simultaneously on multiple data.

Array processor and vector systems fall in this class

MIMD Systems

Asynchronous parallelism

Multiple processors execute different instructions operating on different data.

Represents the multiprocessor version of the SIMD class.

Wide class ranging from multi-core systems to large MPP systems.

Multi-core processors

- Because of power, heat dissipation, etc increasing tendency to actually lower clock frequency but pack more computing cores onto a chip.
- These cores will share some resources, e.g. memory, network, disk, etc but are still capable of independent calculations

Multi-core Processor

Multi-processor systems

- One way to increase performance is to link (multi-core) processors together in clusters, perhaps grouped together first in nodes.

Node 1

Classification based on the Memory

Shared Memory System

Distributed Memory System

Shared memory systems

All the processors (cores) share the main memory.
The memory can be addressed globally by all the processors of the system
Uniform Memory Access (UMA) model <=> SMP: Symmetric Multi Processors

The memory access is uniform: the processors present the same access time to reference any of the memory locations.

Processor-Memory interconnection via common bus, crossbar switch, or multistage networks.

Each processor can provide local caches,
Shared memory systems can not support a high number of processors

Currently in Europe, there are very few entire systems which are classified as shared memory, but sub-components (e.g nodes) may be.

Distributed memory systems

The memory is physically distributed among the processors (local memory).
Each processor can access directly only to its own local memory

- NO-Remote Memory Access (NORMA) model

Communication among different processors occurs via a specific communication protocol (message passing).
The messages are routed on the interconnection network
In general distributed memory systems can scale-up from a small number of processors $\mathrm{O}\left(10^{2}\right)$ to huge numbers of processors $\mathrm{O}\left(\mathbf{1 0}^{6}\right)$ but the power of the single cores is not too high, to reduce global costs and power consumption but power is not too high, called processing nodes.
The performance of the system are influenced by:

- Power of the node
- Topology of the interconnection network

NUMA systems

Non Uniform Memory Access (NUMA) model

Memory is physically distributed among all the processors (each processor has its own local memory) but the collection of the different local memories forms a global address space accessible by all the processors
Hw support to ensure that each processor can access directly the memory of all the processors
The time each processor needs to access the memory is not uniform:

- access time is faster if the processor accesses its own local memory;
- when accessing the memory of the remote processors delay occurs, due to the interconnection network crossing.

Interconnection network

It is the set of links (cables) that define how the different processors of a parallel computer are connected between themselves and with the memory unit. The time required to transfer the data depends on the type of interconnection.
The transfer time is called the communication time.
Features of an interconnection network:

- Bandwidth: identifies the amount of data that can be sent per unit time on the network. Bandwidth must be maximized.
Latency: identifies the time required to route a message between two processors. Latency is defined also as the time needed to transfer a message of length zero. Latency must be minimized.
Other points to consider:
- Cost
- Scalability
- Reliability
- Diameter
- Degree

Example networks

EXAMPLE
a)

2D mesh of width 4 with
no wraparound connections
on edge or comer nodes
comer nodes have degree 2
edge nodes have degree 3

Some variations of the mesh model have wrap-around type connections between the nodes to the edges of the mesh (torus topology).
The Cray T3E adopts a 3D torus topology
IBM BG/Q adopts a 5D torus topology

Commodity Interconnects

Gig Ethernet Myrinet Infiniband QsNet SCI

2-D Toms

Recent HPC Trends - IBM

BlueGene

- Multi-core, multi-processor clusters limited by factors such as physical space and particularly energy consumption and cooling.
- One approach is to lower even further single processor power but increase massively the number of cores.
- In the IBM Bluegene range hundreds of thousands of lower power PowerPC cores are connected by a fast network.

Recent HPC trends - IBM

Bluegene

- In the IBM BG/Q (Cineca), for example, there are 168 K cores in total, where 1 node $=16$ cores +16 Gb .
- Suitable for very highly parallel applications (>2048cores) but many codes don't well.
- The Bluegene range is not being continued by IBM

Recent HPC Trends accelerators/GPUs

- Co-processors or accelerators have been around for a while but it was only when Nvidia released CUDA did GPUs become interesting for HPC (2006).
- GPGPUs or simply GPUs work in a different way to conventional CPUs. Emphasis on stream processing.
- Acceleration can be significant but depends on application.

Accelerators/Intel Xeon PHII

(MIC)

- Also an accelerator but more similar to a conventional mulitcore CPU.
- Current version, Knight's Corner (KNC) has 57-61 1.0-1.2 GHz cores, $8-16 \mathrm{~GB}$ RAM. 512 bit vector unit.
- Cores connected in a ring topology and MPI possible.
- No need to write CUDA or OpenCL as Intel compilers will compile Fortran or C code for the MIC.
- 1-2 Tflops, according to model.

Recent HPC Trends - Accelerators

- GPUs and MICs are attracting interest in HPC because of high performance and efficiency (i.e. Flops/watt).
- Currently, they need to be attached to host CPUs via the PCle bus (a standard PC-like connection).
- Both device families have limitations:
- low device memory
- slow transfer rate via PCle link
- difficulty in programming (particularly CUDA).
- speedup is highly application and data dependent.
- But future models are likely to be standalone models (e.g Knight's Landing) and with faster connections (Nvlink).

HPC Trends - TOP500

TOP 10 Sites for November 2014
For more information about the sites and systems in the list, click on the links or view the complete list.

RANK	SITE	SYSTEM	CORES	RMAX (TFLOP/S]	RPEAK (TFLOP/S)	POWER (KW)
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200 GHz , TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	$33,862.7$	54,902.4	17,808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7, Opteron 6274 16C 2.200 GHz , Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
3	DOE/NNSA/LLNL United States	```Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM```	1,572,864	17,173.2	20,132.7	7,890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60 GHz , Custom IBM	786,432	8,586.6	10,066.3	3,945
6	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600 GHz , Aries interconnect , NVIDIA K20x Cray Inc.	115,984	6,271.0	7.788.9	2,325
7	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P Dell	462,462	5,168.1	8,520.1	4,510
8	Forschungszentrum Juelich (FZJ) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600 GHz , Custom Interconnect IBM	458,752	5.008 .9	5,872.0	2,301

- List of the most powerful supercomputers in the world, published twice a year.
- Performance measured by the Linpack benchmkark.

Top 500: some facts

Cray 1 installed at Los Alamos: peak performance 160 MegaFlop/s (10^{6} flop/s)
1993 (1° Edition Top 500) N. 1 59.7 GFlop/s (10^{12} flop/s)
1997 Teraflop/s barrier (10^{12} flop/s)
2008 Petaflop/s (10 ${ }^{15}$ flop/s): Roadrunner (LANL) Rmax 1026 Gflop/s, Rpeak 1375 Gflop/s hybrid system: 6562 processors dual-core AMD Opteron accelerated with 12240 IBM
(98 TByte di RAM)
2011 11.2 Petaflop/s : K computer (SPARC64 VIIIfx 2.0GHz, Tofu interconnect) RIKEN Japan
201534 Petaflop/s: TIANHE-2 (MILKYWAY-2), Intel Xeon /Xeon PHI, Guangzhou China.

- 62% of the systems on the top500 use processors with six or more cores
- 39 systems use GPUs as accelerators (35 NVIDIA , 2 Cell, 2 ATI Radeon)

Real HPC Crisis is with Software

- A supercomputer application is usually much more longlived than hardware
- Hardware typically 4-5 years
- FORTRAN and C still main programming models (hasn't changed much since the 1970s)
- Porting applications to Petaflop systems is a major challenge.
- New parallelization strategies are needed.
- Not just program code - some datasets cannot scale to thousands of cores.
- Also using supercomputer systems hasnt changed. Users are still expected to know UNIX and batch systems

The European perspective PRACE

- Partnership for Advanced Computing in Europe
- PRACE is part of the ESFRI roadmap and has the aim of creating a European Research Infrastructure providing world class systems and services and coordinating their use throughout Europe.

- It covers both hardware at the multi petaflop/s level and also very demanding software (parallel applications) to exploit these systems.

Fifth production system available by August 2012: 2 Petaflop/s IIBM BG/Q (FERMI) at CINECA.

[^0]Upgrade: 5.87 Petaflop/s IBM Blue

Second production system available: Bull Bullx CURIE at GENCI partner CEA. Full capacity of 1.8 Petaflop/s reached by late 2011.

FERMI@CINECA

- Architecture: 10 BGQ Frames
- Model: IBM-BG/Q
- Processor type: IBM PowerA2 @1.6 GHz
- Computing Cores: 163840
- Computing Nodes: 10240
- RAM: 1GByte / core (163 PByte total)
- Internal Network: 5D Torus
- Disk Space: 2PByte of scratch space
- Peak Performance: 2PFlop/s
- N. 12 in Top 500 rank (June 2013)
- National and PRACE Tier-0 calls

Galileo@CINECA - installed Jan 2015

IBM Cluster linux
Processor type: 2 eight-cores Intel Xeon Haswell
X 2630 @ 2.4 GHz , 12MB Cache
N. of nodes / cores: 524 / 8384

RAM: 128 GB/Compute node
Internal Network: Infiniband with 4x QDR switches
Acccelerators: 768 Intel Xeon PHI 7120p
Peak performance: 1 PFlop
National and PRACE Tier-1 calls

PICO@Cineca

- Cluster dedicated to visualization and BigData applications.
- The storage area is composed by high throughput disks (based on GSS technology) for a total amount of about 4 PB , connected with a large capacity tape library for a total actual amount of 12 PByte (expandible to 16 PByte).

Model: IBM NeXtScale

	Total Nodes	CPU	Cores per Nodes	Memory (RAM)	Notes
Computelogin node	66	Intel Xeon E5 2670 v2 @ 2.5 Ghz	20	128 GB	
Visualization node	2	Intel Xeon E5 2670 v2 @ $2.5 \mathrm{Ghz}$	20	128 GB	$\begin{aligned} & 2 \text { GPU Nvidia } \\ & \text { K40 } \end{aligned}$
Big Mem node	2	Intel Xeon E5 2650 v2 @ 2.6 Ghz	16	512 GB	1 GPU Nvidia K2O
Biglnsight node	4	Intel Xeon E5 2650 v2 @ 2.6 Ghz	16	64 GB	32 TB oflocal disk

Eurora: EURopean many integrated cORe Architecture

- Hybrid cluster based on the evolution of the AURORA architecture by Eurotech
- 64 nodes Intel Sandy Bridge dual socket, (1024 cores in total)
- 32 nodes at 2.1 GHz and
- 32 nodes at 3.1 GHz).
- 16 GByte DDR3 RAM, 160 GByte SSD, 1 FPGA Altera Stratix V. per Node
- Interconnection networks: Infiniband QDR and 3D Torus
- Hot water cooling
- The system is equipped with:
- 64 MIC processors (2 per node on 32 nodes)
- 64 NVIDIA K20 accelerators (2 per node on 32 nodes)
- Peak performance (K20 accelerated) 175,7 Tflop/s
- N. 467 in Top 500 rank (June 2013),
- N. 1 in Green500 rank (June 2013)

The Road to Exascale- DEEP and DEEP(Dynamical Exascale Entry Platform)

- DEEP is an Exascale project funded by the EU 7th framework programme. The main goal is to develop a novel, Exascale-enabling supercomputing platform.

The hardware will be based on a conventional Xeon cluster linked to a socalled "Booster" consisting of Xeon Phi nodes. The idea is that highly scalable portions of the application will run on the Booster, while the remainder of the code runs on the traditional cluster. Porting scientific applications to run on the prototype is a major objective.

The Road to Exascale- Mont Blanc

MONT-BLANC

EUROPEAN APPROACH TOWARDS ENERGY EFFICIENT HIGH PERFORMANCE

- Emphasis on Energy Efficiency by constructing a machine from ARM chips, more usually found in mobile or embedded devices.
- This project is coordinated by the Barcelona Supercomputing Center (BSC) and has a budget of over 14 million, including over 8 million Euros funded by the European Commission.

Summary and Trends - Hardware

Reaching physical limits of transistor densities and increasing clock frequencies further is too expensive and difficult(e.g. energy consumption, heat dissipation).

Parallelism is only solution in HPC but the BlueGene road is no longer being pursued. Hybrids with accelerators such as GPUs or Xeon PHIs becoming the norm.

Accelerator technologies advancing to remove limits associated with, for example, the PCle bus (e.g. Nvidia NVLINK or Intel KNL).

A range of novel architectures being explored (e.g Mont Blanc, DEEP) and technologies in many areas (NVRAM, SSD, NAM,...).

Monitoring systems for energy efficiency are becoming more sophisticated. Some schedulers now report energy consumed.

Summary and Trends - Software

As usual software lags behind hardware but must learn to exploit accelerators.

Reluctance by some software developers to learn new languages such as CUDA or OpenCL is driving interest in compiler-directive languages such as OpenAcc or OpenMP (4.x) (despite lower efficiency.)

Continued investment in efficient filesystems, checkpointing, resilience, parallel I/O, etc.

Bit and Byte on Information Society

Gigabyte [1,000,000,000 bytes OR 10^{9} bytes]
500 megabytes: A CD-ROM
100 megabytes: 1 meter of shelved books
10 megabytes: A minute of high-fidelity sound
5 megabytes:The complete works of Shakespeare
2 megabytes: A high-resolution photograph
1 megabyte: A small novel OR a 3.5-inch floppy disk
Megabyte [1,000,000 bytes OR 10^{6} bytes]
200 kilobytes: A box of punched cards
100 kilobytes: A low-resolution photograph
50 kilobytes: A compressed document image page
10 kilobytes: An encyclopaedia page
2 kilobytes: A typewritten page
1 kilobyte: A very short story
Kilobyte [1,000 bytes OR 10^{3} bytes]
100 bytes: A telegram or a punched card
10 bytes: A single word
1 byte: A single character

Bits and Bytes on Information Society/1

Zettabyte [1,000,000,000,000,000,000,000 bytes OR $10^{\mathbf{2 1}}$ bytes]
5 exabytes: All words ever spoken by human beings
2 exabytes: Total volume of information generated worldwide annually
Exabyte [1,000,000,000,000,000,000 bytes OR 10^{18} bytes]
200 petabytes: All printed material
8 petabytes: All information available on the Web
2 petabytes: All U.S. academic research libraries
1 petabyte: 3 years of Earth Observing System (EOS) data (2001)
Petabyte [1,000,000,000,000,000 bytes OR 10^{15} bytes]
400 terabytes: National Climatic Data Center (NOAA) database
50 terabytes:The contents of a large mass storage system
10 terabytes:The printed collection of the U.S. Library of Congress
2 terabytes: An academic research library
1 terabyte: 50,000 trees made into paper and printed OR daily rate of EOS data (1998)
Terabyte [1,000,000,000,000 bytes OR 10^{12} bytes]
500 gigabytes: The biggest FTP site
100 gigabytes: A floor of academic journals
50 gigabytes: A floor of books
2 gigabytes: 1 movie on a Digital Video Disk (DVD)
1 gigabyte: A pickup truck filled with paper

Finally just to show we have come a long COMPUTING

8 Mb
way
2015

128Gb
storage

1975

400 Mflops
PERFORMANCE

SOFTWARE

[^0]: Fourth production system available by mid 2012: 3 Petaflop/s IBM
 (SuperMUC) at GCS partner LRZ (Leibniz-Rechenzentrum). \qquad

