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GPU and many core computing: a view from the top

Basic principle (today's GPUs, many-core coprocessors):

● accelerator “cards” for standard cluster nodes (PCIe)

● many (~50...500) “lightweight” cores (~ 1 GHz)

● high thread concurrency, fast (local) memories

System architecture:

● currently: x86 “Linux-clusters” with nodes comprising

● 2 CPUs (2x 8 cores)

● max. 2...3 accelerator cards (GPU, MIC) per node

● future: smaller CPU component (extreme: “host-less”,many-core chips)

Programming paradigms:

● use CPU for program control, communication and maximum single-thread

performance

● “offload” data-parallel parts of computation to accelerator for maximum 

throughput performance

● requires heterogeneous programming & load-balancing, careful assessment

of “speedups”



Motivation

Compute performance

● GPU/many-core computing is promising huge application-performance gains

● caveat: sustained performance on “real-world”, scientific applications

● observations:

● apparent GPU success stories: PetaFlops performance (Gordon-Bell Price 

nominations)

● from aggressive marketing for Intel MIC, NVIDIA GPUs…

… towards more realistic attitudes: factor 2x..3x speedups (GPU vs. multi-core CPU)

Energy efficiency

● GPU/many-core computing is promising substantial energy-efficiency gains (a 

must for exascale)

● caveat: sustained efficiency on “real-world” CPU-GPU clusters

Existing resources

● there is significant GPU/many-core-based compute-power around in the world

● by many, the technology is considered inevitable for the future

● caveat: the price to pay for application development ?



NVIDIA GPU TECHNOLOGY

Hardware overview (NVIDIA Tesla series)

● since 2011: “Fermi”: first product with HW support for double-precision and ECC memory

● up to 512 cores, 6 GB RAM

● high internal memory bandwidth ~180 GB/s

● 0.5 TFlops (DP, floating point)

● data exchange with host via PCIe (~8 GB/s)

● enhancements: MPI optimization, intra-node comm.

(“GPU direct”, “HyperQ”, ...)

Q1/2013: “Kepler K20”:

● GK110 GPU: up to 2880 cores, 6...12 GB RAM

● internal memory bandwidth: ~200 GB/s

● nominal peak performance: ~ 1.3 TFlops (DP)

plans for a “hostless” chip (for Exascale)



NVIDIA GPU TECHNOLOGY

Programming languages

● CUDA (NVIDIA), OpenCL (open standard)

● host program (C, executes on CPU) and device kernels (C, launch on

GPU)

● numerical libraries: CUBLAS, CUFFT, higher LA: CULA, MAGMA

● tools: debuggers, profiling, system monitoring,…

● CUDA-FORTRAN (PGI)

● directive-based approaches (PGI, CRAY, CAPS, OpenACC, OpenMP-4)

● high-level, comparable to OpenMP

● proprietary (CRAY, PGI, HMPP, ...) → OpenACC → OpenMP

Software & programming models

● paradigm: split program into host code (CPU) and device code (GPU)

● GPU hardware architecture requires highly homogeneous program flow (SIMT, no if-

branches!)

● PCIe bottleneck for communication of data between CPU and GPU:

● O(n2)...O(n3) computations for communication of n data

● overlapping of communication and computation phases



NVIDIA GPU TECHNOLOGY

OpenACC

● joint effort of vendors to shortcut/guide OpenMP 4.0 standardization effort

● functional (not performance) portability

● minimally invasive to existing code

● facilitates incremental porting

● compilers: PGI, CRAY, CAPS

● no free lunch!



INTEL MIC TECHNOLOGY

Hardware overview

● since 2011: “Knights Ferry”: software development platform

● Q4/2012: “Knights Corner”: first product of the new Intel Xeon Phi processor line (MIC 

arch)

● approx 60 x86 cores (~ 1GHz), 8 GB RAM

● internal memory bandwidth: 175 GB/s

● nominal peak performance: 1 TFlops (DP)

● more than a device: runs Linux OS, IP addressable

● data exchange with host via PCIe (~8 GB/s)

● towards a true many-core chip (“Knights Landing”, 2014)

Software & programming models

● paradigms:

1) offload model (like GPU: split program into host code (CPU) and device code 

(MIC))

2) cluster models (MPI ranks distributed across CPUs and/or MICs)

● tools & libraries: the familiar Intel tool chain: compilers, MPI/OpenMP, MKL, ...

● syntax: “data offload” directives + OpenMP (and/or MPI)

● OpenCL
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• Graphics  Processor   Unit

– a device equipped with an 

highly parallel microprocessor 

(many-core) and a private 

memory with very high 

bandwidth

• born in response to the growing 

demand for high definition 3D 

rendering graphic applications

GPU TECHNOLOGY



CPU vs GPU Architectures
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GPU hardware is specialized for problems which can be classified as intense data-

parallel computations
the same set of operation is executed many times in parallel on different data

designed such that more transistors are devoted to data processing rather than data caching and flow control

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

“The GPU devotes more transistors to Data Processing”

(NVIDIA CUDA Programming Guide)
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• Compute Unified Device Architecture (CUDA)

• a general purpose parallel computing platform and programming model that easy 

GPU programming, which provides:
• a new hierarchical multi-threaded programming paradigm
• a new architecture instruction set called PTX (Parallel Thread eXecution) 

• a small set of syntax extensions to higher level programming languages (C, Fortran) to express thread parallelism
within a familiar programming environment

• A complete collection of development tools to compile, debug and profile CUDA programs.

CUDA Parallel Computing Architecture

GPU Computing Applications

CUDA C OpenCL
CUDA

Fortran
DirectCompute

NVIDIA GPU + Driver



CUDA Programming Model

19

• GPU is seen as an auxiliary coprocessor with its own memory space

• data-parallel, computational-intensive portions of a program can be executed on 

the GPU 
each data-parallel computational portion can be isolated into a function, called CUDA kernel, that is executed on the 

GPU

CUDA kernels are executed by many different threads in parallel

each thread can compute different data elements independently

the GPU parallelism is very close to the SPMD (Single Program Multiple Data) paradigm. Single Instruction Multiple 

Threads (SIMT) according to the Nvidia definition. 

• GPU threads are extremely light weight
no penalty in case of a context-switch (each thread has its own registers)

the more are the threads in flight, the more the GPU hardware is able to hide memory or computational latencies, i.e

better overall performances at executing the kernel function



CUDA Execution Model
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• serial portions of a program, or those with low level of parallelism, keep running

on the CPU (host)

• Data-parallel , computational intensive portions of the program are  isolated into

CUDA kernel function. The CUDA kernel are  executed onto the GPU (device)

Host code (CPU)

Host code (CPU)

Device code (GPU)

. . .

. . .

Device code (GPU)



More on the CUDA Execution Model

when a CUDA kernel is invoked:
each thread block is assigned to a SM in 
a round-robin mode

a maximum number of blocks can be assigned to each SM, 
depending on hardware generation and on how many resorses 
each block needs to be executed (registers, shared memory, etc)
the runtime system maintains a list of blocks that need to execute 
and assigns new blocks to SMs as they complete the execution of 
blocks previously assigned to them.
once a block is assigned to a SM, it remains on that SM until the 
work for all threads in the block is completed
each block execution is independent from the other
(no synchronization is possible among them)

thread of each block are partitioned into 
warps of 32 thread each, so to map  each 
thread with a unique consecutive thread 
index in the block, starting from index 0.
the scheduler select for execution a warp 
from one of the residing blocks in each 
SM.
A warp execute one common instruction 
at a time

each CUDA core take care of one thread in the warp
fully efficiency when all threads agree on their execution path

Software Hardware

Thread

CUDA 

core

Blocco di 

Thread Streaming

Multiprocessor

...

Griglia GPU



Trasparent Scalability

CUDA runtime system can execute blocks in any order relative to each other.

This flexibility enables to execute the same application code on hardware with different 

numbers of SM

Device

SM1

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

SM1 SM2 SM3 SM4

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

time

SM2



CUDA syntax extensions to the C language

• CUDA defines a small set of extensions to the high level language as the C in 

order to define the kernels and to configure the kernel execution.  

• A CUDA kernel function is defined using the __global__ declaration

• when a CUDA kernel is called, it will be executed N times in parallel by N different 

CUDA threads on the device

• the number of CUDA threads that execute that kernel is specified using a new 

syntax, called kernel execution configuration
• cudaKernelFunction <<<...>>> (arg_1, arg_2, ..., arg_n)

• each thread has a unique thread ID 
• the thread ID is accessible within the CUDA kernel through the built-in threadIdx variable 

• the built-in variables threadIdx are a 3-component vector 
• use .x, .y, .z to access its components



A simple CUDA program
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int main(int argc, char *argv[]) {

int i; 

const int N = 1000;

double u[N], v[N], z[N];

initVector (u, N, 1.0);

initVector (v, N, 2.0);

initVector (z, N, 0.0);

printVector (u, N);

printVector (v, N);

// z = u + v

for (i=0; i<N; i++)

z[i] = u[i] + v[i];

printVector (z, N);

return 0;

}

__global__

void gpuVectAdd( const double *u, 

const double *v, double *z)

{  // use GPU thread id as index

i = threadIdx.x;

z[i] = u[i] + v[i];

}

int main(int argc, char *argv[]) {

...

// z = u + v

{

// run on GPU using 

// 1 block of N threads in 1D

gpuVectAdd <<<1,N>>> (u, v, z);

}

...

}



CUDA Threads

• threads are organized into blocks of threads
• blocks can be 1D, 2D, 3D sized in threads
• blocks can be organized into a 1D, 2D, 3D grid of blocks
• each block of threads will be executed independently
• no assumption is made on the blocks execution order

• each block has a unique block ID
• the block ID is accessible within the CUDA kernel through the built-in 

blockIdx variable

• The built-in variable blockIdx is a 3-component vector 
• use .x, .y, .z to access its components

Grid

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,0)

Block
(1,0)

Block
(2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

Thread
(4,3)

blockIdx:

block coordinates inside the grid

blockDim:

block dimensions in thread units

gridDim:

grid dimensions in block units



Simple 1D CUDA vector add
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__global__

void gpuVectAdd( int N, const double *u, const double *v, double *z)

{  

// use GPU thread id as index

index = blockIdx.x * blockDim.x + threadIdx.x;

// check out of border access

if ( index < N ) {

z[index] = u[index] + v[index];

}

}

int main(int argc, char *argv[]) {

...

// use 1D block threads

dim3 blockSize = 512;

// use 1D grid blocks

dim3 gridSize = (N + blockSize-1) / blockSize.x;

gpuVectAdd <<< gridSize,blockSize >>> (N, u, v, z);

...

}



Composing 2D CUDA Thread Indexing

i = blockIdx.x * blockDim.x + threadIdx.x;

j = blockIdx.y * blockDim.y + threadIdx.y;

index = j * gridDim.x * blockDim.x + i;

threadIdx:

thread coordinates inside a block

blockIdx:

block coordinates inside the grid

blockDim:

block dimensions in thread units

gridDim:

grid dimensions in block units

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(0,3) (1,3) (2,3)

gridDim.x * blockDim.x

(0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

(0,3) (1,3) (2,3) (3,3) (4,3)
*(index)

i

j



2D array element-wise add (matrix add)

As an example, the following code adds two matrices A and B of size NxN and stores the result into the 

matrix C

__global__ void matrixAdd(int N, const float *A,  const float *B, float *C) {

int i = blockIdx * blockDim.x + threadIdx.x;

int j = blockIdx * blockDim.y + threadIdx.y;

// matrix elements are organized in row major order in memory 

int index = i * N + j;

C[index] = A[index] + B[index];

}

int main(int argc, char *argv[]) {

...

// add NxN matrices on GPU using 1 block of NxN threads

matrixAdd <<< 1, N >>> (N, A, B, C);

...

}



Memory allocation on GPU device

• CUDA API provides functions to manage data allocation on the 

device global memory:

• cudaMalloc(void** bufferPtr, size_t n)
It allocates a buffer into the device global memory 

The first parameter is the address of a generic pointer variable that must point to the allocated 

buffer 

it must be cast to (void**)! 

The second parameter is the size in bytes of the buffer to be allocated

• cudaFree(void* bufferPtr)
It frees the storage space of the object 



Memory Initialization on GPU device

• cudaMemset(void* devPtr, int value, size_t count)

• It fills the first count bytes of the memory area pointed to 

by devPtr with the constant byte of the int  value 

converted to unsigned char.
it’s like the standard library C memset() function

devPtr - Pointer to device memory 

value - Value to set for each byte of specified memory 

count - Size in bytes to set

• To initialize an array of double (float, int, …) to a specific 

value you need to execute a CUDA kernel. 



Memory copy between CPU and GPU

• cudaMemcpy(void *dst, void *src, size_t size, direction) 
dst: destination buffer pointer

src: source buffer pointer

size: number of bytes to copy

direction: macro name which defines the direction of data copy

from CPU to GPU: cudaMemcpyHostToDevice (H2D)

from GPU to CPU: cudaMemcpyDeviceToHost (D2H)

on the same GPU: cudaMemcpyDeviceToDevice

the copy begins only after all previous kernel have finished

the copy is blocking: it prevents CPU control to proceed further in the program until last byte 

has been transfered

returns only after copy is complete



Three steps for a CUDA porting

1. identify data-parallel, computational intensive 
portions

isolate them into functions (CUDA kernels candidates)
identify involved data to be moved between CPU and GPU

2. translate identified CUDA kernel candidates into real 
CUDA kernels

choose the appropriate thread index map to access data
change code so that each thead acts on its own data

3. modify code in order to manage memory and kernel 
calls

allocate memory on the device
transfer needed data from host to device memory
insert calls to CUDA kernel with execution configuration syntax
transfer resulting data from device to host memory



Vector Sum
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int main(int argc, char *argv[]) {

int i; 

const int N = 1000;

double u[N], v[N], z[N];

initVector (u, N, 1.0);

initVector (v, N, 2.0);

initVector (z, N, 0.0);

printVector (u, N);

printVector (v, N);

// z = u + v

for (i=0; i<N; i++)

z[i] = u[i] + v[i];

printVector (z, N);

return 0;

}

program vectoradd

integer :: i

integer, parameter :: N=1000

real(kind(0.0d0)), dimension(N):: u, v, z

call initVector (u, N, 1.0)

call initVector (v, N, 2.0)

call initVector (z, N, 0.0)

call  printVector (u, N)

call  printVector (v, N)

! z = u + v

do i = 1,N

z(i) = u(i) + v(i)

end do

call printVector (z, N)

end program

1. identify data-parallel computational intensive portions



• each thread execute the same kernel, but act on different data:
– turn the loop into a CUDA kernel function 

– map each CUDA thread onto a unique index to access data

– let each thread retrieve, compute and store its own data using the unique address

– prevent out of border access to data if data is not a multiple of thread block size
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const int N = 1000;

double u[N], v[N], z[N];

// z = u + v

for (i=0; i<N; i++)

z[i] = u[i] + v[i];

__global__ void gpuVectAdd (int N, const double *u, const double *v, double *z) 

{

// index is a unique identifier for each GPU thread

int index =  blockIdx * blockDim.x + threadIdx.x ;

if (index < N)

z[index] = u[index] + v[index];

}

2. translate the identified data-parallel portions into CUDA kernels



__global__  void gpuVectAdd (int N, const double *u, const double *v, double *z) 

{

// index is a unique identifier of each GPU thread

int index =  blockIdx.x * blockDim.x + threadIdx.x  ;

if (index < N)

z[index] = u[index] + v[index];

}

(0) (1) (2)

^(index)

(3)(0) (1) (2) (3) (4)

The __global__ qualifier declares a CUDA kernel

CUDA kernels are special C functions:

• can be called from host only

• must be called using the execution configuration 

syntax

• the return type must be void

• they are asynchronous: control is returned

immediately to the host code
• an explicit synchronization is needed in order to be sure that a CUDA 

kernel has completed the execution

2. translate the identified data-parallel portions into CUDA kernels
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Insert calls to CUDA kernels using the execution configuration syntax: 

kernelCUDA<<<numBlocks,numThreads>>>(...)

specifying the thread/block hierarchy you want to apply:

• numBlocks: specify grid size in terms of thread blocks along each 
dimension

• numThreads: specify the block size in terms of threads along each 
dimension

dim3 numThreads(32);

dim3 numBlocks( ( N + numThreads – 1 ) / numThreads.x );

gpuVectAdd<<<numBlocks, numThreads>>>( N, u_dev, v_dev, z_dev );

type(dim3) :: numBlocks, numThreads

numThreads = dim3( 32, 1, 1 )

numBlocks = dim3( (N + numThreads.x - 1) / numThreads.x, 1, 1 )

call gpuVectAdd<<<numBlocks,numThreads>>>( N, u_dev, v_dev, z_dev )

3. manage memory transfers and kernel calls



Heterogeneous High Performance 
Programming framework
• http://www.hpcwire.com/hpcwire/2012-02-

28/opencl_gains_ground_on_cuda.html

“As the two major programming frameworks for GPU computing, OpenCL and 

CUDA have been competing for mindshare in the developer community for the 

past few years. Until recently, CUDA has attracted most of the attention from 

developers, especially in the high performance computing realm. But OpenCL

software has now matured to the point where HPC practitioners are taking a 

second look.

Both OpenCL and CUDA provide a general-purpose model for data parallelism 

as well as low-level access to hardware, but only OpenCL provides an open, 

industry-standard framework. As such, it has garnered support from nearly all 

processor manufacturers including AMD, Intel, and NVIDIA, as well as others 

that serve the mobile and embedded computing markets. As a result, 

applications developed in OpenCL are now portable across a variety of GPUs 

and CPUs.”

http://www.hpcwire.com/hpcwire/2012-02-28/opencl_gains_ground_on_cuda.html


Heterogeneous High Performance 
Programming framework (2)

A modern computing 

platform includes:

• One or more CPUs

• One of more GPUs

• DSP processors

• Accelerators

• … other?

E.g. Samsung® Exynos 5:

• Dual core ARM A15 

1.7GHz,  Mali T604 GPU

OpenCL lets Programmers write a single 
portable program that uses ALL resources in 

the heterogeneous platform



Microprocessor trends

Individual processors have many (possibly heterogeneous) cores.

The Heterogeneous many-core challenge:

How are we to build a software ecosystem for the

Heterogeneous many core platform?

Third party names are the property of their owners.

61 cores

16 wide SIMD

NVIDIA® Tesla® C2090

10 cores

16 wide SIMD

ATI™ RV770

16 cores

32 wide SIMD

Intel® Xeon Phi™ 

coprocessor



Industry Standards for Programming Heterogeneous 

Platforms

OpenCL – Open Computing Language

Open, royalty-free standard for portable, parallel programming of heterogeneous 
parallel computing CPUs, GPUs, and other processors

CPUs
Multiple cores driving performance 

increases

GPUs
Increasingly general purpose data-

parallel computing

Graphics APIs and 
Shading 

Languages
Multi-processor 

programming – e.g. 
OpenMP

Emerging
Intersection

Heterogeneous
Computing



OpenCL Working Group within 

Khronos

• Diverse industry participation

– Processor vendors, system OEMs, middleware vendors, 

application developers.

• OpenCL became an important standard upon release by virtue 

of the market coverage of the companies behind it.

Third party names are the property of their owners.

http://www.codeplay.com/
http://www.codeplay.com/
http://www.amd.com/
http://www.amd.com/
http://www.umu.se/umu/index_eng.html
http://www.umu.se/umu/index_eng.html
http://www.gshark.com/
http://www.gshark.com/


OpenCL Platform Model

• One Host and one or more OpenCL Devices
– Each OpenCL Device is composed of one or more

Compute Units
• Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing 

Element

OpenCL Device

…
…

…

…
……

…
…

……
…

…
……

…

Host

Compute Unit



OpenCL Platform Example

(One node, two CPU sockets, two GPUs)

CPUs:

• Treated as one OpenCL 

device

– One CU per core

– 1 PE per CU, or if PEs 

mapped to SIMD lanes, n PEs 

per CU, where n matches the 

SIMD width

• Remember:

– the CPU will also have to be 

its own host!

GPUs:

• Each GPU is a separate 

OpenCL device

• One CU per Streaming 

Multiprocessor

• Can use CPU and all GPU 

devices concurrently through 

OpenCL

CU = Compute Unit; PE = Processing Element



Example: vector addition

• The “hello world” program of data parallel programming is a program to 

add two vectors

C[i] = A[i] + B[i] for i=0 to N-1

• For the OpenCL solution, there are two parts

– Kernel code

– Host code



Vector Addition – Host

• The host program is the code that runs on the host to:

– Setup the environment for the OpenCL program

– Create and manage kernels

• 5 simple steps in a basic host program:

1. Define the platform … platform = devices+context+queues

2. Create and Build the program (dynamic library for kernels)

3. Setup memory objects

4. Define the kernel (attach arguments to kernel functions)

5. Submit commands … transfer memory objects and execute kernels

Please, refer to he reference card.  This will help you get used to the reference 

card and how to pull information from the card and express it in code. 



Vector Addition – Host Program

// create the OpenCL context on a GPU device

cl_context context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);

clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcb, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY, 

sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0], 

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1], 

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2], 

sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,

global_work_size, NULL,0,NULL,NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2], 

CL_TRUE, 0,

n*sizeof(cl_float), dst,

0, NULL, NULL);

Define platform and queues

Define memory objects

Create the program

Build the 

program

Create and setup kernel

Execute the kernel

Read results on the host

It’s complicated, but most of this is “boilerplate” and not as bad as it looks.



OpenCL C for Compute Kernels

• Derived from ISO C99

– A few restrictions: no recursion, function pointers, functions in C99 standard 

headers ...

– Preprocessing directives defined by C99 are supported (#include etc.)

• Built-in data types

– Scalar and vector data types, pointers

– Data-type conversion functions:

• convert_type<_sat><_roundingmode> 

– Image types:

• image2d_t, image3d_t and sampler_t



OpenCL C for Compute Kernels

• Built-in functions — mandatory

– Work-Item functions, math.h, read and write image

– Relational, geometric functions, synchronization functions

– printf (v1.2 only, so not currently for NVIDIA GPUs)

• Built-in functions — optional (called “extensions”)

– Double precision, atomics to global and local memory

– Selection of rounding mode, writes to image3d_t surface



OpenCL C Language Highlights

• Function qualifiers

– __kernel qualifier declares a function as a kernel

• I.e. makes it visible to host code so it can be enqueued

– Kernels can call other kernel-side functions

• Address space qualifiers

– __global, __local, __constant, __private

– Pointer kernel arguments must be declared with an address space qualifier

• Work-item functions

– get_work_dim(),  get_global_id(), get_local_id(), get_group_id()

• Synchronization functions

– Barriers - all work-items within a work-group must execute the barrier function 

before any work-item can continue

– Memory fences - provides ordering between memory operations



Host programs can be “ugly”

• OpenCL’s goal is extreme 

portability, so it exposes everything 

– (i.e. it is quite verbose!).

• But most of the host code is the 

same from one application to the 

next – the re-use  makes the 

verbosity a non-issue.

• You can package common API 

combinations into functions or even 

C++ or Python classes to make the 

reuse more convenient.



PORTING CUDA TO OPENCL



• If you have CUDA code, you’ve already done the hard 

work!

– I.e. working out how to split up the problem to run 

effectively on a many-core device

• Switching between CUDA and OpenCL is mainly 

changing the host code syntax

– Apart from indexing and naming conventions in the 

kernel code (simple to change!)



Allocating and copying memory

CUDA C OpenCL C

Allocate float* d_x;

cudaMalloc(&d_x, sizeof(float)*size);

cl_mem d_x =

clCreateBuffer(context,

CL_MEM_READ_WRITE,

sizeof(float)*size,

NULL, NULL);

Host to Device cudaMemcpy(d_x, h_x,

sizeof(float)*size,

cudaMemcpyHostToDevice);

clEnqueueWriteBuffer(queue, d_x,

CL_TRUE, 0, 

sizeof(float)*size,

h_x, 0, NULL, NULL);

Device to Host cudaMemcpy(h_x, d_x,

sizeof(float)*size,

cudaMemcpyDeviceToHost);

clEnqueueReadBuffer(queue, d_x,

CL_TRUE, 0, 

sizeof(float)*size,

h_x, 0, NULL, NULL);



Allocating and copying memory

CUDA C OpenCL C++

Allocate float* d_x;

cudaMalloc(&d_x,

sizeof(float)*size);

cl::Buffer

d_x(begin(h_x), end(h_x), true);

Host to Device cudaMemcpy(d_x, h_x,

sizeof(float)*size,

cudaMemcpyHostToDevice);

cl::copy(begin(h_x), end(h_x),

d_x);

Device to Host cudaMemcpy(h_x, d_x,

sizeof(float)*size,

cudaMemcpyDeviceToHost);

cl::copy(d_x, 

begin(h_x), end(h_x));



Declaring dynamic local/shared memory

CUDA C

1. Define an array in the kernel 

source as extern

__shared__ int array[];

2. When executing the kernel, 

specify the third parameter as 

size in bytes of shared memory

func<<<num_blocks,

num_threads_per_block,

shared_mem_size>>>(args);

OpenCL C++
1. Have the kernel accept a local 

array as an argument

__kernel void func(

__local int *array)   

{}

2. Define a local memory kernel 

kernel argument of the right size

cl::LocalSpaceArg localmem =

cl::Local(shared_mem_size);

3. Pass the argument to the kernel 

invocation

func(EnqueueArgs(…),localmem);



Declaring dynamic local/shared memory

CUDA C

1. Define an array in the kernel 

source as extern

__shared__ int array[];

2. When executing the kernel, 

specify the third parameter as 

size in bytes of shared memory

func<<<num_blocks,

num_threads_per_block,

shared_mem_size>>>(args);

OpenCL C

1. Have the kernel accept a local 

array as an argument

__kernel void func(

__local int *array) {}

2. Specify the size by setting the 

kernel argument

clSetKernelArg(kernel, 0,          

sizeof(int)*num_elements,                                    

NULL);



Dividing up the work

• To enqueue the kernel

– CUDA – specify the number of thread blocks and threads 

per block

– OpenCL – specify the problem size and (optionally) 

number of work-items per work-group

Problem size

CUDA OpenCL

Work-itemThread

Thread block Work-group



Enqueue a kernel (C)

CUDA C

dim3 threads_per_block(30,20);

dim3 num_blocks(10,10);

kernel<<<num_blocks,

threads_per_block>>>();

OpenCL C

const size_t global[2] =

{300, 200};

const size_t local[2] = 

{30, 20};

clEnqueueNDRangeKernel(

queue, &kernel,

2, 0, &global, &local,

0, NULL, NULL);



Enqueue a kernel (C++)

CUDA C

dim3 threads_per_block(30,20);

dim3 num_blocks(10,10);

kernel<<<num_blocks,       

threads_per_block>>>(…);

OpenCL C++

const cl::NDRange

global(300, 200);

const cl::NDRange

local(30, 20);

kernel(

EnqueueArgs(global, local),

…);



Indexing work

gridDim

blockIdx

blockDim

gridDim * blockDim

threadIdx

blockIdx * blockdim + threadIdx

OpenCL

get_num_groups()

get_group_id()

get_local_size()

get_global_size()

get_local_id()

get_global_id()



Differences in kernels

• Where do you find the kernel?

– OpenCL - either a string (const char *), or read from 

a file

– CUDA – a function in the host code

• Denoting a kernel

– OpenCL - __kernel

– CUDA - __global__

• When are my kernels compiled?

– OpenCL – at runtime

– CUDA – with compilation of host code



Host code

• By default, CUDA initializes the GPU automatically

– If you needed anything more complicated (multi-

device etc.) you must do so manually

• OpenCL always requires explicit device initialization

– It runs not just on NVIDIA® GPUs and so you 

must tell it which device(s) to use



Thread Synchronization

CUDA OpenCL

__syncthreads() barrier()

__threadfenceblock() mem_fence(

CLK_GLOBAL_MEM_FENCE |

CLK_LOCAL_MEM_FENCE)

No equivalent read_mem_fence()

No equivalent write_mem_fence()

__threadfence() Finish one kernel and start 

another



Translation from CUDA to OpenCL

CUDA OpenCL

GPU Device (CPU, GPU etc)

Multiprocessor Compute Unit, or CU

Scalar or CUDA core Processing Element, or PE

Global or Device Memory Global Memory

Shared Memory (per block) Local Memory (per workgroup)

Local Memory (registers) Private Memory

Thread Block Work-group

Thread Work-item

Warp No equivalent term (yet)

Grid NDRange



OpenCL live@Eurora



• Eurora CINECA-Eurotech

prototype

• 1 rack

• Two Intel SandyBridge and

• two NVIDIA K20 cards per 

node or:

• Two Intel MIC card per 

node

• Hot water cooling

• Energy efficiency record 

(up to 3210 MFLOPs/w)  

• 100 TFLOPs sustained

Eurora



NVIDIA Tesla K20

• 13 Multiprocessors

• 2496 CUDA Cores

• 5 GB of global memory

• GPU clock rate 760MHz

Intel MIC Xeon Phi

• 236 compute units

• 8 GB of global memory

• CPU clock rate 1052 MHz

Running environment



Setting up OpenCL on Eurora

• Login on front-end. 

Then:

>module load profile/advanced

> module load intel_opencl/none--intel--cs-xe-2013--binary

It defines: 

INTEL_OPENCL_INCLUDE

and 

INTEL_OPENCL_LIB 

environmental variables that can be used:

>cc -I$INTEL_OPENCL_INCLUDE -L$INTEL_OPENCL_LIB -lOpenCL vadd.c -o vadd



Intel OpenCL

platform found and 

3 devices (cpu and 

Intel MIC card)

Intel MIC device was selected

Results are OK no matter

what performances

Running on Intel  

PROFILE=FULL_PROFILE

VERSION=OpenCL 1.2 LINUX

NAME=Intel(R) OpenCL

VENDOR=Intel(R) Corporation

EXTENSIONS=cl_khr_fp64 cl_khr_global_int32_base_atomics 

cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics 

cl_khr_local_int32_extended_atomics cl_khr_byte_addressable_store

--0--

DEVICE NAME=       Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz

DEVICE VENDOR=Intel(R) Corporation

DEVICE VERSION=OpenCL 1.2 (Build 67279)

DEVICE_MAX_COMPUTE_UNITS=16

DEVICE_MAX_WORK_GROUP_SIZE=1024

DEVICE_MAX_WORK_ITEM_DIMENSIONS=3

DEVICE_MAX_WORK_ITEM_SIZES=1024 1024 1024

DEVICE_GLOBAL_MEM_SIZE=16685436928

--1--

DEVICE NAME=Intel(R) Many Integrated Core Acceleration Card

DEVICE VENDOR=Intel(R) Corporation

DEVICE VERSION=OpenCL 1.2 (Build 67279)

DEVICE_MAX_COMPUTE_UNITS=236

DEVICE_MAX_WORK_GROUP_SIZE=1024

DEVICE_MAX_WORK_ITEM_DIMENSIONS=3

DEVICE_MAX_WORK_ITEM_SIZES=1024 1024 1024

DEVICE_GLOBAL_MEM_SIZE=6053646336

--2--

DEVICE NAME=Intel(R) Many Integrated Core Acceleration Card

DEVICE VENDOR=Intel(R) Corporation

DEVICE VERSION=OpenCL 1.2 (Build 67279)

DEVICE_MAX_COMPUTE_UNITS=236

DEVICE_MAX_WORK_GROUP_SIZE=1024

DEVICE_MAX_WORK_ITEM_DIMENSIONS=3

DEVICE_MAX_WORK_ITEM_SIZES=1024 1024 1024

DEVICE_GLOBAL_MEM_SIZE=6053646336

Computed sum = 549754961920.0.

Check passed.



Exercise

• Goal: 

– To inspect and verify that you can run an OpenCL kernel on Eurora machines

• Procedure: 

– Take the provided C vadd.c and vadd.cl source programs from VADD 

directory

– Compile and link vadd.c

– Run on NVIDIA or Intel platform.

• Expected output:

– A message verifying that the vector addition completed successfully

– Some useful info about OpenCL environment (Intel and NVIDIA) 



Matrix-Matrix product: HOST

void MatrixMulOnHost (float* M, float* N, float* P, int Width) 

{

// loop on rows

for (int row = 0; row < Width; ++row) {

// loop on columns

for (int col = 0; col < Width; ++col) {

// accumulate element-wise products

float pval = 0;

for (int k = 0; k < Width; ++k) {

float a = M[row * Width + k];

float b = N[k * Width + col];

pval += a * b;

}

// store final results

P[row * Width + col] = pval;

}

}

}

P = M * N



Matrix-Matrix product: launch grid

i = blockIdx.x * blockDim.x + threadIdx.x;

j = blockIdx.y * blockDim.y + threadIdx.y;

index = j * MatrixWidth + i;

Matrix

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(0,3) (1,3) (2,3)

i

j

gridDim.x * blockDim.x

* index

MatrixWidth



Matrix-Matrix product: CUDA Kernel

__global__ void MMKernel (float* dM, float *dN, float *dP,

int width) {

// row,col from built-in thread indeces(2D block of threads)

int col = blockIdx.x * blockDim.x + threadIdx.x;

int row = blockIdx.y * blockDim.y + threadIdx.y;

// check if current CUDA thread is inside matrix borders

if (row < width && col < width) {

// accumulate element-wise products

// NB: pval stores the dP element computed by the thread

float pval = 0;

for (int k=0; k < width; k++)

pval += dM[row * width + k] * dN[k * width + col];

// store final results (each thread writes one element)

dP[row * width + col] = Pvalue;

}

}



OpenCL Memory model

• Private Memory
– Per work-item

• Local Memory
– Shared within a

work-group

• Global/Constant 
Memory
– Visible to all

work-groups

• Host memory
– On the CPU

Memory management is explicit: 

You are responsible for moving data from

host → global → local and back



OpenCL Memory model

• Private Memory

– Fastest & smallest: O(10) words/WI

• Local Memory

– Shared by all WI’s in a work-group

– But not shared between work-groups!

– O(1-10) Kbytes per work-group

• Global/Constant Memory

– O(1-10) Gbytes of Global memory

– O(10-100) Kbytes of Constant 

memory

• Host memory

– On the CPU - GBytes

Memory management is explicit: 

O(1-10) Gbytes/s bandwidth to discrete GPUs for

Host <-> Global transfers



get_

local_

size(1)

OpenCL mapping

Index Space

• In OpenCL:
get_global_size(0)

get_

global_

size(1)

Work 

Group

(0, 0)

Work 

Group

(1, 0)

Work 

Group

(2, 0)

Work 

Group

(0, 1)

Work 

Group

(1, 1)

Work 

Group

(2, 1)

get_local_size(0)

Work

Item

(0, 0)

Work Group (0,0)

Work

Item

(1, 0)

Work

Item

(2, 0)

Work

Item

(3, 0)

Work

Item

(4, 0)

Work

Item

(0, 1)

Work

Item

(1, 1)

Work

Item

(2, 1)

Work

Item

(3, 1)

Work

Item

(4, 1)

Work

Item

(0, 2)

Work

Item

(1, 2)

Work

Item

(2, 2)

Work

Item

(3, 2)

Work

Item

(4, 2)



OpenCL mapping (again)

You should use OpenCL mapping functions for element values recovery(this may be a common 

source of bugs when write a kernel) 



__kernel void mat_mul(

const int Mdim, const int Ndim, const int Pdim,

__global float *A, __global float *B, __global float *C)

{

int i, j, k;

for (i = 0; i < Ndim; i++) {

for (j = 0; j < Mdim; j++) {

for (k = 0; k < Pdim; k++) { 

// C(i, j) = sum(over k) A(i,k) * B(k,j)

C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

}

}

}

}

Matrix multiplication: OpenCL kernel 

Remove outer loops and set work-item co-

ordinates



__kernel void mat_mul(

const int Mdim, const int Ndim, const int Pdim,

__global float *A, __global float *B, __global float *C)

{

int i, j, k;

j = get_global_id(0);

i = get_global_id(1);

// C(i, j) = sum(over k) A(i,k) * B(k,j)

for (k = 0; k < Pdim; k++) { 

C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

}

}

Matrix multiplication: OpenCL kernel



__kernel void mat_mul(

const int Mdim,

const int Ndim,

const int Pdim,

__global float *A,

__global float *B,

__global float *C)

Matrix multiplication: OpenCL kernel improved

{

int k;

int j = get_global_id(0);

int i = get_global_id(1);

float tmp = 0.0f;

for (k = 0; k < Pdim; k++) 

tmp += A[i*Ndim+k]*B[k*Pdim+j];

}

C[i*Ndim+j] += tmp;

}

Rearrange and use a local scalar for intermediate C element values (a common optimization in Matrix 

Multiplication functions) 



Matrix multiplication: OpenCL kernel improved

{

int k;

int j = get_global_id(0);

int i = get_global_id(1);

float tmp = 0.0f;

for (k = 0; k < Pdim; k++) 

tmp += A[i*Ndim+k]*B[k*Pdim+j];

}

C[i*Ndim+j] += tmp;

}

Rearrange and use a local scalar for intermediate C element values (a common optimization in Matrix 

Multiplication functions) 

Matrix 

Size

Platfor

m

Kernel

time 

(sec.)

GFLOP/

s

2048 NVIDIA 

K20s

0.24 71

2048 Intel MIC 0.47 37



Matrix-Matrix product: selecting optimum thread block size

83

Which is the best thread block /work-group size to select (i.e. TILE_WIDTH)?

On Fermi architectures: each SM can handle up to 1536 total threads
TILE_WIDTH = 8

8x8 = 64 threads  >>>  1536/64 = 24 blocks needed to fully load a SM

… yet there is a limit of maximum 8 resident blocks per SM for cc 2.x

so we end up with just 64x8 = 512 threads per SM on a maximum of 1536 (only 33% occupancy)
TILE_WIDTH = 16

16x16 = 256 threads  >>>  1536/256 = 6 blocks to fully load a SM

6x256 = 1536 threads per SM … reaching full occupancy per SM!
TILE_WIDTH = 32

32x32 = 1024 threads  >>>  1536/1024 = 1.5 = 1 block fully loads SM

1024 threads per SM (only 66% occupancy)

TILE_WIDTH = 16



Matrix-Matrix product: selecting optimum thread block size

84

Which is the best thread block size/work-group size to select (i.e. TILE_WIDTH)?

On Kepler architectures: each SM can handle up to 2048 total threads
TILE_WIDTH = 8

8x8 = 64 threads  >>>  2048/64 = 32 blocks needed to fully load a SM

… yet there is a limit of maximum 16 resident blocks per SM for cc 3.x

so we end up with just 64x16 = 1024 threads per SM on a maximum of 2048 (only 50% occupancy)
TILE_WIDTH = 16

16x16 = 256 threads  >>>  2048/256 = 8 blocks to fully load a SM

8x256 = 2048 threads per SM … reaching full occupancy per SM!
TILE_WIDTH = 32

32x32 = 1024 threads  >>>  2048/1024 = 2 blocks fully load a SM

2x1024 = 2048 threads per SM … reaching full occupancy per SM!

TILE_WIDTH = 16 or 32



Matrix-Matrix product: selecting optimum thread block size

85

Which is the best thread block size/work-group size to select (i.e. TILE_WIDTH)?

On Kepler architectures: each SM can handle up to 2048 total threads
TILE_WIDTH = 8

8x8 = 64 threads  >>>  2048/64 = 32 blocks needed to fully load a SM

… yet there is a limit of maximum 16 resident blocks per SM for cc 3.x

so we end up with just 64x16 = 1024 threads per SM on a maximum of 2048 (only 50% occupancy)
TILE_WIDTH = 16

16x16 = 256 threads  >>>  2048/256 = 8 blocks to fully load a SM

8x256 = 2048 threads per SM … reaching full occupancy per SM!
TILE_WIDTH = 32

32x32 = 1024 threads  >>>  2048/1024 = 2 blocks fully load a SM

2x1024 = 2048 threads per SM … reaching full occupancy per SM!

TILE_WIDTH Kernel time 

(sec.)

GFLOP/s 

(NVIDIA K20)

8 0.33 52

16 0.20 82

32 0.16 104



Matrix-Matrix product: check inside matrix

borders

__global__ void MMKernel (float* dM, float *dN, float *dP,

int width) {

// row,col from built-in thread indeces(2D block of threads)

int col = blockIdx.x * blockDim.x + threadIdx.x;

int row = blockIdx.y * blockDim.y + threadIdx.y;

// check if current CUDA thread is inside matrix borders

if (row < width && col < width) {

...

...

}

kernel chek (Yes/No) Matrices Size Kernel Error GFLOP/s (Intel MIC)

Yes 2047 / 20

Yes 2048 / 35

No 2047 Failed (different results from 

reference)

21

No 2048 / 37



Local Memory*

• Tens of KBytes per Compute Unit

– As multiple Work-Groups will be running on each CU, this means only a 

fraction of the total Local Memory size is available to each Work-Group

• Assume O(1-10) KBytes of Local Memory per Work-Group

– Your kernels are responsible for transferring data between Local and 

Global/Constant memories … there are optimized library functions to help

• Use Local Memory to hold data that can be reused by all the work-items in a 

work-group

• Access patterns to Local Memory affect performance in a similar way to 

accessing Global Memory

– Have to think about things like coalescence & bank conflicts

* Typical figures for a 2013 GPU



Local Memory

• Local Memory doesn’t always help…

– CPUs, MICs don’t have special hardware for it

– This can mean excessive use of Local Memory might slow down kernels on 

CPUs

– GPUs now have effective on-chip caches which can provide much of the 

benefit of Local Memory but without programmer intervention

– So, your mileage may vary!



Using Local/Shared Memory for Thread 

Cooperation

Threads belonging to the same block can cooperate 

togheter using the shared memory to share data

if a thread needs some data which has been 

already retrived by another thread in the 

same block, this data can be shared 

using the shared memory
Typical Shared Memory usage:

1. declare a buffer residing on shared memory (this 

buffer is per block)
2. load data into shared memory buffer
3. synchronize threads so to make sure all needed 

data is present in the buffer
4. performe operation on data
5. synchronize threads so all operations have been 

performed 
6. write back results to global memory

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Threads

Registers

Block (1, 0)

Shared Memory

Threads

Registers



Matrix-matrix using Shared Memory

it = threadIdx.y

jt = threadIdx.x

ib = blockIdx.y

jb = blockIdx.x

Cij=0.

Cycle on block

kb=0, N/NB

As(it,jt) = A(ib*NB + it, kb*NB + jt)

Bs(it,jt) = B(kb*NB + it, jb*NB + jt)

Thread Synchronization

Cij=Cij+As(it,k)·Bs(k,jt)

Thread Synchronization

Cycle on block k=1,NB

C(i,j)=Cij A

B

N

N

NB

NB

C



Matrix-matrix using Shared Memory: CUDA Kernel

91

// Matrix multiplication kernel called by MatMul_gpu() 

__global__ void MatMul_kernel (float *A, float *B, float *C, int N)

{

// Shared memory used to store Asub and Bsub respectively

__shared__  float Asub[NB][NB];

__shared__  float Bsub[NB][NB];

// Block row and column 

int ib = blockIdx.y;

int jb = blockIdx.x;

// Thread row and column within Csub 

int it = threadIdx.y;

int jt = threadIdx.x;

int a_offset , b_offset, c_offset;

// Each thread computes one element of Csub 

// by accumulating results into Cvalue 

float Cvalue = 0;

// Loop over all the sub-matrices of A and B that are 

// required to compute Csub 

// Multiply each pair of sub-matrices together 

// and accumulate the results 

for (int kb = 0; kb < (A.width / NB); ++kb) {

// Get the starting address of Asub and Bsub

a_offset = get_offset (ib, kb, N);

b_offset = get_offset (kb, jb, N);

// Load Asub and Bsub from device memory to shared memory 

// Each thread loads one element of each sub-matrix 

Asub[it][jt] = A[a_offset + it*N + jt];

Bsub[it][jt] = B[b_offset + it*N + jt];

// Synchronize to make sure the sub-matrices are loaded 

// before starting the computation 

__syncthreads();

// Multiply Asub and Bsub together 

for (int k = 0; k < NB; ++k) {

Cvalue += Asub[it][k] * Bsub[k][jt];

}

// Synchronize to make sure that the preceding 

// computation is done 

__syncthreads();

}

// Get the starting address (c_offset) of Csub

c_offset = get_offset (ib, jb, N);  

// Each thread block computes one sub-matrix Csub of C 

C[c_offset + it*N + jt] = Cvalue;

}



Matrix-matrix using Shared Memory: OpenCL Kernel
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// Matrix multiplication kernel called by MatMul_gpu() 

__kernel_ void MatMul_kernel (float *A, float *B, float *C, int N)

{

// Shared memory used to store Asub and Bsub respectively

__local float Asub[NB][NB];

__local float Bsub[NB][NB];

// Block row and column 

int ib = get_group_id(1);

int jb = get_group_id(0);

// Thread row and column within Csub 

int it = get_local_id(1);

int jt = get_local_id(0);

int a_offset , b_offset, c_offset;

// Each thread computes one element of Csub 

// by accumulating results into Cvalue 

float Cvalue = 0;

// Loop over all the sub-matrices of A and B that are 

// required to compute Csub 

// Multiply each pair of sub-matrices together 

// and accumulate the results 

for (int kb = 0; kb < (A.width / NB); ++kb) {

// Get the starting address of Asub and Bsub

a_offset = get_offset (ib, kb, N);

b_offset = get_offset (kb, jb, N);

// Load Asub and Bsub from device memory to shared memory 

// Each thread loads one element of each sub-matrix 

Asub[it][jt] = A[a_offset + it*N + jt];

Bsub[it][jt] = B[b_offset + it*N + jt];

// Synchronize to make sure the sub-matrices are loaded 

// before starting the computation 

barrier(CLK_LOCAL_MEM_FENCE);

// Multiply Asub and Bsub together 

for (int k = 0; k < NB; ++k) {

Cvalue += Asub[it][k] * Bsub[k][jt];

}

// Synchronize to make sure that the preceding 

// computation is done 

barrier(CLK_LOCAL_MEM_FENCE);

}

// Get the starting address (c_offset) of Csub

c_offset = get_offset (ib, jb, N);  

// Each thread block computes one sub-matrix Csub of C 

C[c_offset + it*N + jt] = Cvalue;

}



Matrix-matrix using Shared Memory: OpenCL Kernel
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// Matrix multiplication kernel called by MatMul_gpu() 

__kernel_ void MatMul_kernel (float *A, float *B, float *C, int N)

{

// Shared memory used to store Asub and Bsub respectively

__local float Asub[NB][NB];

__local float Bsub[NB][NB];

// Block row and column 

int ib = get_group_id(1);

int jb = get_group_id(0);

// Thread row and column within Csub 

int it = get_local_id(1);

int jt = get_local_id(0);

int a_offset , b_offset, c_offset;

// Each thread computes one element of Csub 

// by accumulating results into Cvalue 

float Cvalue = 0;

// Loop over all the sub-matrices of A and B that are 

// required to compute Csub 

// Multiply each pair of sub-matrices together 

// and accumulate the results 

for (int kb = 0; kb < (A.width / NB); ++kb) {

// Get the starting address of Asub and Bsub

a_offset = get_offset (ib, kb, N);

b_offset = get_offset (kb, jb, N);

// Load Asub and Bsub from device memory to shared memory 

// Each thread loads one element of each sub-matrix 

Asub[it][jt] = A[a_offset + it*N + jt];

Bsub[it][jt] = B[b_offset + it*N + jt];

// Synchronize to make sure the sub-matrices are loaded 

// before starting the computation 

barrier(CLK_LOCAL_MEM_FENCE);

// Multiply Asub and Bsub together 

for (int k = 0; k < NB; ++k) {

Cvalue += Asub[it][k] * Bsub[k][jt];

}

// Synchronize to make sure that the preceding 

// computation is done 

barrier(CLK_LOCAL_MEM_FENCE);

}

// Get the starting address (c_offset) of Csub

c_offset = get_offset (ib, jb, N);  

// Each thread block computes one sub-matrix Csub of C 

C[c_offset + it*N + jt] = Cvalue;

}

Matrix Size Platform Kernel time (sec.) GFLOP/s

2048 NVIDIA K20s 0.10 166

2048 Intel MIC 0.15 115



OpenCL on Intel MIC

• Intel MIC combines many core onto a single chip. Each core runs exactly 4 

hardware threads. In particular:

1. All cores/threads are a single OpenCL device

2. Separate hardware threads are OpenCL CU.

• In the end, you’ll have parallelism at the work-group level (vectorization) and 

parallelism between work-groups (threading).



OpenCL on Intel MIC

• To reach performances, the number of work-groups should be not less than 

CL_DEVICE_MAX_COMPUTE_UNITS parameter (more is better)

• Again, automatic vectorization module should be fully utilized. This module:

 packs adiacent work-items (from dimension 0 of NDRange)

 executes them with SIMD instructions

• Use the recommended work-group size as multiple of 16 (SIMD width for float, 

int, …data type).



Matrix-matrix on Intel MIC (skeleton)

for i from 0 to NUM_OF_TILES_M-1 

for j from 0 to NUM_OF_TILES_N-1 

C_BLOCK = ZERO_MATRIX(TILE_SIZE_M, TILE_SIZE_N) 

for k from 0 to size-1 

for ib = from 0 to TILE_SIZE_M-1 

for jb = from 0 to TILE_SIZE_N-1

C_BLOCK(jb, ib) = C_BLOCK(ib, jb) + A(k, i*TILE_SIZE_M + ib)*B(j*TILE_SIZE_N + jb, k) 

end for jb

end for ib

end for k

for ib = from 0 to TILE_SIZE_M-1 

for jb = from 0 to TILE_SIZE_N-1 

C(j*TILE_SIZE_M + jb, i*TILE_SIZE_N + ib) = C_BLOCK(jb, ib) 

end for jb

end for ib

end for j

end for i

TILE_SIZE_K = size

of block for 

internal

computation of 

C_BLOCK

TILE_GROUP_M x TILE_GROUP_N = 

number of WI within each WG

TILE_SIZE_M x TILE_SIZE_N = 

number of elements of C computed

by one WI



Matrix-matrix on Intel MIC (results)

for i from 0 to NUM_OF_TILES_M-1 

for j from 0 to NUM_OF_TILES_N-1 

C_BLOCK = ZERO_MATRIX(TILE_SIZE_M, TILE_SIZE_N) 

for k from 0 to size-1 

for ib = from 0 to TILE_SIZE_M-1 

for jb = from 0 to TILE_SIZE_N-1

C_BLOCK(jb, ib) = C_BLOCK(ib, jb) + A(k, i*TILE_SIZE_M + ib)*B(j*TILE_SIZE_N + jb, k) 

end for jb

end for ib

end for k

for ib = from 0 to TILE_SIZE_M-1 

for jb = from 0 to TILE_SIZE_N-1 

C(j*TILE_SIZE_M + jb, i*TILE_SIZE_N + ib) = C_BLOCK(jb, ib) 

end for jb

end for ib

end for j

end for i

Matrices Size Kernel time (sec.) GFLOP/s (Intel

MIC)

3968 0.3 415



The future of Accelerator 
Programming

Most of the latest 

supercomputers are based on 

accelerators platform. This 

huge adoption is the result of:

• High (peak) performances

• Good energy efficiency

• Low price

Accelerators should be used everywhere and all 
the time. So, why aren’t there? 

Conclusions



The future of Accelerator 
Programming

There are two main difficulties 
with accelerators:

• They can only execute 
certain type of programs 
efficiently (high parallelism, 
data reuse, regular control 
flow and data access)

• Architectural disparity with 
respect to CPU 
(cumbersome 
programming, portability is 
an issue)

Accelerators should be used everywhere and all 
the time. So, why aren’t there? 

Conclusions



The future of Accelerator 
Programming

GPUs are now more general-
purpose computing devices 
thanks to CUDA adoption. On the 
other hand, the fact that CUDA is 
a proprietary tool and its 
complexity triggered the creation 
of other programming 
approaches: 

• OpenCL

• OpenAcc

• …

• …

Accelerators should be used everywhere and all 
the time. So, why aren’t there? 

Conclusions



The future of Accelerator 
Programming

• OpenCL is the non-proprietary 
counterpart of CUDA (also supports 
AMD GPUs, CPUs, MIC, 
FPGAs….really portable!) but just like 
CUDA , is very low level and require a 
lot of programming skills to be used.

• OpenACC is a very high-level 
approach. Similar to OpenMP (they 
should be merged in a near(?) future) 
but still at its infancy and currently 
supported by a few compilers

• Other approaches like C++AMP only 
tied to exhotic HPC environment 
(Windows) and impractical for 
standard HPC applications 

Accelerators should be used everywhere and all 
the time. So, why aren’t there? 

Conclusions



The future of Accelerator 
Programming

• So, how to (efficiently) program actual and 
future devices? 

• A possible answer could be surprisingly simple 
and similar to how today’s multicore (CPUs) are 
used (including SIMD extensions, 
accelerators,…)

• Basically, there are three levels:

- libraries

- automated tools

- do-it-yourself

• Programmers will employ library approach 
whenever possible. In absence of efficient 
libraries, tools could be used.

• For the remaining cases, the do-it-yourself 
approach will have to be used (OpenCL or a 
derivative of it should be preferred to 
proprietary CUDA) 

Accelerators will be used everywhere and all the 
time. So, start to use them! 

Conclusions
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