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Rank

S

Site

Mational Super Computer Center in
Guangzhou
China

DOE/SC/Oak Ridge MNational Laboratory
United States

DOE/NNSA/LLNL
United States

RIKEN Advanced Institute for
Computational Science (AICS)
Japan

DOE/SC/Arganne National Laboratory
United States

Swiss Mational Supercomputing Centre
(CsCs)
Switzerland

Texas Advanced Computing Center/Univ.
of Texas
United States

Forschungszentrum Juelich (FZJ)
Germany

DOE/NNSA/LLNL
United States

Leibniz Rechenzentrum
Germany

System

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel
Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel
Xeon Phi 31S1P

NUDT

Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray
Gemini interconnect, NVIDIA K20x
Cray Inc.

Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz,
Custom
IEM

K computer, SPARCE4 VIIIfx 2.0GHz, Tofu
interconnect

Fujitsu

Mira - BlueGene/Q, Power BQC 16C 1.60GHz,
Custom

IBM

Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz,
Aries interconnect , NVIDIA K20x
Cray Inc.

Stampede - PowerEdge C8220, Xeon E5-2680 8C
2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P
Dell

JUQUEEN - BlueGene/Q), Power BQC 16C
1.600GHz, Custom Interconnect
IEM

Vulcan - BlueGene/Q), Power BQC 16C 1.600GHz,
Custom Interconnect
IEM

SuperMUC - iDataPlex DX360M4, Xeon E5-2680 BC
2.70GHz, Infiniband FDR
IEM

Cores
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MFLOPS/W Site*

Rank

GS5IC Center, Tokyo Institute of

1 4303.17 Technology

2 3,631.86  Cambridge University

3 sema Spmmcmon
4 3,185.91 ggli_ls{rsel\égtl; {I;-lg; Supercomputing
5 mamm e Ademe

6 3,068.71 ?j;lﬁncgﬁjlgjrl Tokyo Institute of
7 2,70216  University of Arizona

8 2,629.10 Max-Planck-Gesellschaft MPIIPP
] 262910  Financial Institution
10 235869 CSIRO

(
e/

Computer*

TSUBAME-KFC - LX 1U-4GPU/104Re-1G Cluster, Intel Xeon E5- 5778

2620v2 6C 2.100GHz, Infiniband FDR, NVIDIA K20x ‘

Wilkes - Dell T&G20 Cluster, Intel Xeon E5-2630v2 6C 2.600GHz, 52 62

Infiniband FDR, NVIDIA K20 '

HA-PACS TCA - Cray 3623G4-5M Cluster, Intel Xeon E5-2680v2 10C 78.77
2.800GHz, Infiniband QDR, MVIDIA K20x ’

Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect

 NVIDIA K20x 1,753.66

Level 3 measurement data available :
romeo - Bull R421-E3 Cluster, Intel Xeon E5-2650v2 8C 2.600GHz, 8141

Infiniband FDR, NVIDIA K20x "

TSUBAME 2.5 - Cluster Platform SL380s G7, Xeon X5670 6C 922 54
2.930GHz, Infiniband QDR, MVIDIA K20x ‘

iDataPlex DX360M4, Intel Xeon E5-2650v2 8C 2.600GHz, Infiniband 5362 '
FDR14, NVIDIA K20x ’

iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband, 260.04 )
MVIDIA K20x ' ’
iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.B00GHZ, Infiniband, 55 67

MVIDIA K20x "

CSIRO GPU Cluster - Nitro G16 3GPU, Xeon E5-2650 8C 2.000GHz, 7101 '
Infiniband FOR, Mvidia K20m '
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GPU and many core computing: a view from the top

Basic principle (today's GPUs, many-core coprocessors):

e accelerator “cards” for standard cluster nodes (PCle)
e many (~50...500) “lightweight” cores (~ 1 GHz)
e high thread concurrency, fast (local) memories

System architecture:

e currently: x86 “Linux-clusters” with nodes comprising
e 2 CPUs (2x 8 cores)

e max. 2...3 accelerator cards (GPU, MIC) per node

3 q.
ri -.E- 36
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PCle

e future: smaller CPU component (extreme: “host-less”,many-core chips)

Programming paradigms:

CP

U L

e use CPU for program control, communication and maximum single-thread

performance

e “offload” data-parallel parts of computation to accelerator for maximum

throughput performance

e requires heterogeneous programming & load-balancing, careful assessment

of “speedups”
CINECA
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Compute performance

e GPU/many-core computing is promising huge application-performance gains

e caveat: sustained performance on “real-world”, scientific applications

e observations:

e apparent GPU success stories: PetaFlops performance (Gordon-Bell Price
nominations)

e from aggressive marketing for Intel MIC, NVIDIA GPUs...

... towards more realistic attitudes: factor 2x..3x speedups (GPU vs. multi-core CPU)

Energy efficiency

e GPU/many-core computing is promising substantial energy-efficiency gains (a
must for exascale)

e caveat: sustained efficiency on “real-world” CPU-GPU clusters

Existing resources

e there is significant GPU/many-core-based compute-power around in the world
e by many, the technology is considered inevitable for the future

e caveat: the price to pay for application development ?

CINECA
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Hardware overview (NVIDIA Tesla series)
e since 2011: “Fermi”: first product with HW support for double-precision and ECC memory
e Up to 512 cores, 6 GB RAM

e high internal memory bandwidth ~180 GB/s
e 0.5 TFlops (DP, floating point)

e data exchange with host via PCle (~8 GB/s)

e enhancements: MPI optimization, intra-node comm.
(“GPU direct”, “HyperQ?, ...)
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Q1/2013: “Kepler K20”:

e GK110 GPU: up to 2880 cores, 6...12 GB RAM
e internal memory bandwidth: ~200 GB/s

e nominal peak performance: ~ 1.3 TFlops (DP)

Host Memory
plans for a “hostless” chip (for Exascale) _

CINECA
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Software & programming models
e paradigm: split program into host code (CPU) and device code (GPU)
e GPU hardware architecture requires highly homogeneous program flow (SIMT, no if-

branches!)
e PCle bottleneck for communication of data between CPU and GPU: o pevice
e O(n2)...0(n3) computations for communication of n data o

e overlapping of communication and computation phases e || o | e

Programming languages

e CUDA (NVIDIA), OpenCL (open standard)

e host program (C, executes on CPU) and device kernels (C, launch on
GPU)

e numerical libraries: CUBLAS, CUFFT, higher LA: CULA, MAGMA

e tools: debuggers, profiling, system monitoring,...

e CUDA-FORTRAN (PGI)

e directive-based approaches (PGI, CRAY, CAPS, OpenACC, OpenMP-4)
e high-level, comparable to OpenMP

e proprietary (CRAY, PGI, HMPP, ...) —» OpenACC — OpenMP

CINECA Ty,



NVIDIA GPU TECHNOLOGY

OpenACC

e joint effort of vendors to shortcut/guide OpenMP 4.0 standardization effort

e functional (not performance) portability
e minimally invasive to existing code

e facilitates incremental porting

e compilers: PGI, CRAY, CAPS

e no free lunch!

CINECA

CPU GPU
CEE
EEE

Your original code,, . rer

Program myscience
... serial code ...
ISacc parallel logg
dok=1,n1
doi=1,n2

... parallelcode ...
enddo

enddo
ISacc end parellel loop

End Program myscience

(
e/
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INTEL MIC TECHNOLOGY Summer
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Hardware overview

e since 2011: “Knights Ferry”: software development platform
e Q4/2012: “Knights Corner”: first product of the new Intel Xeon Phi processor line (MIC
arch)

e approx 60 x86 cores (~ 1GHz), 8 GB RAM

e internal memory bandwidth: 175 GB/s — N —8—f—
e nominal peak performance: 1 TFlops (DP) i - e [e] e
e more than a device: runs Linux OS, IP addressable | |
) ) GooRme| -+ Lapd Laod - - Lapd Laod o- |Goormd]
e data exchange with host via PCle (~8 GB/s) lGooRwe| -+ GDY AT - - DY RGDY +- [GoDRME
e towards a true many-core chip (“Knights Landing”, 2014) N o
21 21 21 21

Software & programming models _ . m B

e paradigms:

1) offload model (like GPU: split program into host code (CPU) and device code

(MIC))

2) cluster models (MPI ranks distributed across CPUs and/or MICs)

e tools & libraries: the familiar Intel tool chain: compilers, MPI/OpenMP, MKL, ...
e syntax: “data offload” directives + OpenMP (and/or MPI)

*:QpenCL
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GPU TECHNOLOGY Summer

School on

: : COMPUTING
e Graphics Processor Unit

— a device equipped with an
highly parallel microprocessor
(many-core) and a private
memory with very high
bandwidth

* born in response to the growing
demand for high definition 3D
rendering graphic applications

CINECA
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CPU vs GPU Architectures

GPU hardware is specialized for problems which can be classified as intense data-
parallel computations

the same set of operation is executed many times in parallel on different data
designed such that more transistors are devoted to data processing rather than data caching and flow control

CPU GPU

=
=
=
=
EII

|

|

|
=
=

DRAM DRAM

“The GPU devotes more transistors to Data Processing”
(NVIDIA CUDA Programming Guide)

CINECA
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« Compute Unified Device Architecture (CUDA)
« ageneral purpose parallel computing platform and programming model that easy
GPU programming, which provides:

a new hierarchical multi-threaded programming paradigm
a new architecture instruction set called PTX (Parallel Thread eXecution)

a small set of syntax extensions to higher level programming languages (C, Fortran) to express thread parallelism
within a familiar programming environment

A complete collection of development tools to compile, debug and profile CUDA programs.

CUDA

Fortran

NVIDIA GPU + Driver

CINECA
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« GPU is seen as an auxiliary coprocessor with its own memory space
» data-parallel, computational-intensive portions of a program can be executed on
the GPU

each data-parallel computational portion can be isolated into a function, called CUDA kernel, that is executed on the
GPU

CUDA kernels are executed by many different threads in parallel

each thread can compute different data elements independently

the GPU parallelism is very close to the SPMD (Single Program Multiple Data) paradigm. Single Instruction Multiple
Threads (SIMT) according to the Nvidia definition.

* GPU threads are extremely light weight

no penalty in case of a context-switch (each thread has its own registers)
the more are the threads in flight, the more the GPU hardware is able to hide memory or computational latencies, i.e
better overall performances at executing the kernel function

CINEL9
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» serial portions of a program, or those with low level of parallelism, keep running
on the CPU (host)

« Data-parallel , computational intensive portions of the program are isolated into
CUDA kernel function. The CUDA kernel are executed onto the GPU (device)

Host code (CPU)

Device code (GPU) KR | | KR | | < 4 <

Host code (CPU)

Device code (GPU)

CINECA
20



More on the CUDA Execution Model Summer

Software

Griglia

Blocco di
Thread

Thread

CINECA

Hardware

Streaming
Multiprocessor

]

CUDA
core
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when a CUDA kernel is invoked:
each thread block is assigned to a SM in
a round-robin mode

a maximum number of blocks can be assigned to each SM,
depending on hardware generation and on how many resorses
each block needs to be executed (registers, shared memory, etc)
the runtime system maintains a list of blocks that need to execute
and assigns new blocks to SMs as they complete the execution of
blocks previously assigned to them.

once a block is assigned to a SM, it remains on that SM until the
work for all threads in the block is completed

each block execution is independent from the other

(no synchronizatjon is possible among them)

thread of each block are partltioned into
warps of 32 thread each, so to map each
thread with a unique consecutive thread
index in the block, starting from index O.
the scheduler select for execution a warp
from one of the residing blocks in each
SM.

A warp execute one common instruction
at a time

each CUDA core take care of one thread in the warp
fully efficiency when all threads agree on their execution path



Trasparent Scalability
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CUDA runtime system can execute blocks in any order relative to each other.
This flexibility enables to execute the same application code on hardware with different

numbers of SM

Device

PPéde
CINECA
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CUDA syntax extensions to the C language Summer
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 CUDA defines a small set of extensions to the high level language as the C in
order to define the kernels and to configure the kernel execution.

A CUDA kernel function is defined using the _ global  declaration

« when a CUDA kernel is called, it will be executed N times in parallel by N different
CUDA threads on the device

« the number of CUDA threads that execute that kernel is specified using a new
syntax, called kernel execution configuration

cudaKernelFunction <<<...>>> (arg_1, arg_2, ..., arg_n)
« each thread has a unique thread ID

the thread ID is accessible within the CUDA kernel through the built-in threadldx variable
» the built-in variables threadldx are a 3-component vector

use .x, .y, .z to access its components

CINECA



A simple CUDA program

int main(int argc,
int i;

char *argv([])

{

return 0;

CINECA

const int N = 1000;
double u[N], VvI[N], z[N];
initVector (u, N, 1.0);
initVector (v, N, 2.0);
initVector (z, N, 0.0);
printVector (u, N);
printVector (v, N);
// z =u + v
for (i=0; 1i<N; 1i++)
z[1i] = uli] + vI[i];
printVector (z, N);

Summer
School on
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f_global_
void gpuVectAdd( const double *u,
const double *v, double *z)
{ // use GPU thread id as index
i = threadIdx.x;
z[1] = uli] + VvI[i];
}
. J
int main(int argc, char *argv[]) {
// z =u + v
(1 )
// run on GPU using
// 1 block of N threads in 1D
gpuVectAdd <<<1,N>>> (u, v, z);
}
}
. J

24




CUDA Threads

» threads are organized into blocks of threads

blocks can be 1D, 2D, 3D sized in threads

blocks can be organized into a 1D, 2D, 3D grid of blocks
each block of threads will be executed independently

no assumption is made on the blocks execution order

» each block has a unique block ID

the block ID is accessible within the CUDA kernel through the built-in
blockldx variable

« The built-in variable blockldx is a 3-component vector

use .x, .y, .z to access its components

blockIdx:
block coordinates inside the grid

blockDim:
block dimensions in thread units

gridDim:
grid dimensions in block units

CINECA \
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Simple 1D CUDA vector add - School o
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__global
void gpuVectAdd( int N, const double *u, const double *v, double *z)

{
// use GPU thread id as index

index = blockIdx.x * blockDim.x + threadldx.x;
// check out of border access

if ( index < N ) {
z[index] = ulindex] + v[index];

int main(int argc, char *argv[]) {
// use 1D block threads
dim3 blockSize = 512;

// use 1D grid blocks
dim3 gridSize = (N + blockSize-1) / blockSize.x;

gpuVectAdd <<< gridSize,blockSize >>> (N, u, v, z);

CINECA
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threadIdx:
(0,0) (1,0 2,0) thread coordinates inside a block

blockIdx:
block coordinates inside the grid

0,1) (1,) J 1) blOCk]?im: . . -
block dimensions in thread units

gridDim:

(0,0) (1,0) (2,0) (3,0) (H0) . . . . .
L grid dimensions in block units

i en | an | ey | ey | dy
0,2) (2.2)

n7”n 19 79 29 (4,2)

(03) (13) (23) (33) (43) [ 1 ndex )

0,3 3 (2,3)

| gridDim{x * blockDim.x I
i = blockIdx.x * blockDim.x + threadIdx.x;
jJ = blockIdx.y * blockDim.y + threadIdx.y;

index = j * gridDim.x * blockDim.x + i;

CINECA\




2D array element-wise add (matrix add)  seoren
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As an example, the following code adds two matrices A and B of size NxN and stores the result into the
matrix C

__global _ void matrixAdd(int N, const float *A, const float *B, float *C) {
int i = blockIdx * blockDim.x + threadIdx.x;
int j = blockIdx * blockDim.y + threadIdx.y;

// matrix elements are organized in row major order in memory

int index = i * N + j;

Cl[index] = Alindex] + Blindex];

int main(int argc, char *argv[]) {

// add NxN matrices on GPU using 1 block of NxN threads
matrixAdd << 1, N >>> (N, A, B, C);

c';lf-"A ‘
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Memory allocation on GPU device Summer

School on

COMPUTING

« CUDA API provides functions to manage data allocation on the
device global memory:

« cudaMalloc(void** bufferPtr, size_t n)

It allocates a buffer into the device global memory

The first parameter is the address of a generic pointer variable that must point to the allocated
buffer

it must be cast to (void**)!

The second parameter is the size in bytes of the buffer to be allocated

« cudaFree(void* bufferPtr)
It frees the storage space of the object

CINECA
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« cudaMemset(void* devPtr, int value, size t count)

« It fills the first count bytes of the memory area pointed to
by devPtr with the constant byte of the int value

converted to unsigned char.

it's like the standard library C memset() function

devPtr - Pointer to device memory
value - Value to set for each byte of specified memory

count - Size in bytes to set

» To initialize an array of double (float, int, ...) to a specific
value you need to execute a CUDA kernel.

CINECA
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Memory copy between CPU and GPU Summer
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« cudaMemcpy(void *dst, void *src, size t size, direction)

dst: destination buffer pointer

src: source buffer pointer

size: number of bytes to copy

direction: macro name which defines the direction of data copy
from CPU to GPU: cudaMemcpyHostToDevice (H2D)
from GPU to CPU: cudaMemcpyDeviceToHost (D2H)
on the same GPU: cudaMemcpyDeviceToDevice

the copy begins only after all previous kernel have finished

the copy is blocking: it prevents CPU control to proceed further in the program until last byte
has been transfered

returns only after copy is complete



‘Three steps for a CUDA porting ~__Summer
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identify data-parallel, computational intensive
portions

isolate them into functions (CUDA kernels candidates)
identify involved data to be moved between CPU and GPU

translate identified CUDA kernel candidates into real
CUDA kernels

choose the appropriate thread index map to access data
change code so that each thead acts on its own data

modify code in order to manage memory and kernel
calls

allocate memory on the device

transfer needed data from host to device memory

insert calls to CUDA kernel with execution configuration syntax
transfer resulting data from device to host memory



Vector Sum

1. identify data-parallel computational intensive portions

| |
int main (int argc,
int i;

char *argvl([])

{

program vectoradd
integer :: 1

L

Summer
School on

COMPUTING

h P Y AWA WA

const int N =
double u[N],

initVector
initVector
initVector

(v,

(u,
(v,

printVector
printVector

(z, N, O.

1000;
v[N],

z[N];

(u, N, 1.0);

N) ;
N) ;

'
I
J_J.LL—\/\_j\/J_, b/uJ_ullL\/L—\/J_

IN L U UU

// z =u + v
for (i=0; 1i<N;
z[1] = ul[i]

i++)

+ v[i];

printVector (z,

return 0;

}

N) ;

real (kind(0.0d0)), dimension(N):: u, v, =z
call initVector (u, N, 1.0)
call initVector (v, N, 2.0)
call initVector (z, N, 0.0)
call printVector (u, N)
call printVector (v, N)
4 )
'z =u + v
do 1 = 1,N

z(1) = u(i) + v(i)
end do
\, J
call printVector (z, N)

end program

33




2. translate the identified data-parallel portions into CUDA kernels Summer
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 each thread execute the same kernel, but act on different data:
— turn the loop into a CUDA kernel function
— map each CUDA thread onto a unique index to access data
— let each thread retrieve, compute and store its own data using the unique address
— prevent out of border access to data if data is not a multiple of thread block size

const int N = 1000;
double u[N], VvI[N], z[N];

u + v
1=0; 1<N; 1i++)
[1] = uli] + vI[1i];

__global  void gpuVectAdd (int N, const double *u, const double *v, double *z)
{

// index is a unique identifier for each GPU thread

int index = blockIdx * blockDim.x + threadIdx.x ;
if (index < N)
z[index] = u[index] + v[index];
}
CINECA
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2. translate the identified data-parallel portions into CUDA kernels

_ _ " ? °

A (index)

if (index < N)

z[index] = ul[index] + v[index];

CINECA

void gpuVectAdd (int N, const double *u, const double *v,

// index is a unique identifier of each GPU thread
int index = blockIdx.x * blockDim.x + threadIdx.x

Summer
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3. manage memory transfers and kernel calls
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Insert calls to CUDA kernels using the execution configuration syntax-

kernelCUDA<K<L<numBlocks,numThreads>>>(...)

specifying the thread/block hierarchy you want to apply:

« numBlocks: specify grid size in terms of thread blocks along each
dimension

« numThreads: specify the block size in terms of threads along each
dimension

dim3 numThreads (32) ;
dim3 numBlocks( ( N + numThreads - 1 ) / numThreads.x );
gpuVectAdd<<<numBlocks, numThreads>>>( N, u dev, v dev, z dev );

type (dim3) :: numBlocks, numThreads
numThreads = dim3( 32, 1, 1 )
numBlocks = dim3( (N + numThreads.x - 1) / numThreads.x, 1, 1 )

call gpuVectAdd<<<numBlocks,numThreads>>>( N, u dev, v dev, z dev )

CINECA
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Heterogeneous High Performance
Programming framework

. http://www.hpcwire.com/hpcwire/2012-02-
28/opencl gains ground on cuda.html

11
As the two major programming frameworks for GPU computing, OpenCL and

CUDA have been competing for mindshare in the developer community for the
past few years. Until recently, CUDA has attracted most of the attention from
developers, especially in the high performance computing realm. But OpenCL
software has now matured to the point where HPC practitioners are taking a
second look.

Both OpenCL and CUDA provide a general-purpose model for data parallelism
as well as low-level access to hardware, but only OpenCL provides an open,
industry-standard framework. As such, it has garnered support from nearly all
processor manufacturers including AMD, Intel, and NVIDIA, as well as others

that serve the mobile and embedded computing markets. As a result,
applications developed in OpenCL are now portable across a variety of GPUs

J)
CINECA \

and CPUs.
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Heterogeneous High Performance
Programming framework (2)

A modern computing
platform includes: i

e One or more CPUs

* One of more GPUs |
. DSP processors E.g. Samsung® EXynos 5:

. Accelerators  Dual core AR_M Al5
e _ other? 1.7GHZ, Mali To04 GPU

OpenCL lets Programmers write a single
portable program that uses ALL resources In
f the heterogeneous platform

CINECA
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ATI™ RV770

Intel® Xeon Phi™
coprocessor NVIDIA® Tesla® C2090

The Heterogeneous many-core challenge:

How are we to build a software ecosystem for the

Heterogeneous many core platform?
CINECA
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Industry Standards for Programming Heterogeneous Scs'huofg{“jr"‘
Platforms

COMPUTING

GPUs

CPUs . Increasingly general purpose data-
Multiple cores driving performance Emerglr_]g parallel computing
increases Intersection

=
o

OpenCL Graphics APIs and
Multi-processor Shading
programming — e.g. Heterogen_eous Languages
OpenMP Computing

OpenCL — Open Computing Language

Open, royalty-free standard for portable, parallel programming of heterogeneous
parallel computing CPUs, GPUs, and other processors

CINECA
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OpenCL Working Group within

Khronos COMPUTING

« Diverse industry participation

— Processor vendors, system OEMs, middleware vendors,
application developers.

* OpenCL became an important standard upon release by virtue
of the market coverage of the companies behind it.

30LABS  acnvmion BIZERY 0 AMDCl  ARM  sodbeon @

. @ —— e = - .
%Lod&?\k)? ERICSSON Z = “freescale- Q). Ei2EE intel
imgation ,%\ ’ﬁ;A.amos ) @ meida NIOKIA (CIINIXS

ssssssssssss J OTOROLA - W nVID'A. ANX SOFTWARE SYSTEMS
wlVe
) . - i < P
SRR 1 15 U cd A Axumi X2 Texas ‘B
Seaweed INSTRUMENTS oY ~
SYSTEMS 2 . 3>
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OpenCL Platform Model | e mAt

COMPUTING

[0 M [
00 H

0
0 ﬁHM//7

(O
=

Processing =

Element oo
[alaln

: r}] ' Host
1"

T

Compute Unit ~ OpenCL Device

o BE]

 One Host and one or more OpenCL Devices

— Each OpenCL Device is composed of one or more
Compute Units

« Each Compute Unit is divided into one or more Processing Elements
 Memory divided into host memory and device memory

CINECA
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OpenCL Platform Example

" (One node, two CPU sockets, two GPUS)™

COMPUTING

CPUs: GPUs:
* Treated as one OpenCL Each GPU is a separate

device OpenCL device

— One CU per core * One CU per Streaming

— 1 PE per CU, or if PEs Multiprocessor
mapped to SIMD lanes, n PEs  « Can use CPU and all GPU
per CU, where n matches the devices concurrently through
SIMD width OpenCL

« Remember:

— the CPU will also have to be
its own host!

CU = Compute Unit; PE = Processing Element

CINECA




Example: vector addition Schoal on

COMPUTING

* The “hello world” program of data parallel programming is a program to
add two vectors

C[i] = A[i] + BJ[i] for i=0 to N-1
« For the OpenCL solution, there are two parts

— Kernel code
— Host code

CINECA



Vector Addition — Host e mAt

COMPUTING

* The host program is the code that runs on the host to:
— Setup the environment for the OpenCL program
— Create and manage kernels
« 5 simple steps in a basic host program:
Define the platform ... platform = devices+context+queues
Create and Build the program (dynamic library for kernels)
Setup memory objects
Define the kernel (attach arguments to kernel functions)
Submit commands ... transfer memory objects and execute kernels

a bk wnheE

Please, refer to he reference card. This will help you get used to the reference
card and how to pull information from the card and express it in code.

CINECA
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Vector Addition — Host Program

// build the prog Build the

err = clBuildPrc ILL,NULL);

Define platform and queues
Create and setup kernel

/l allocate the buffer memory objects

memobjs . .
Define memory objects 1)

memobjs| L] = ciLreateBurrer(Context,
, Sizeof( )*n, srcb, NULL);

Execute the kernel
Read results on the host

It's complicated, but most of this is “boilerplate” and not as bad as it looks.

Create the program

CINECA




OpenCL C for Compute Kernels e mAt

COMPUTING

 Derived from ISO C99

— A few restrictions: no recursion, function pointers, functions in C99 standard
headers ...

— Preprocessing directives defined by C99 are supported (#include etc.)
« Built-in data types
— Scalar and vector data types, pointers
— Data-type conversion functions:
e convert_type<_sat><_roundingmode>
— Image types:
* image2d_t, image3d_tand sampler t

CINECA



OpenCL C for Compute Kernels e mAt

COMPUTING

« Built-in functions — mandatory
— Work-Item functions, math.h, read and write image
— Relational, geometric functions, synchronization functions
— printf (v1.2 only, so not currently for NVIDIA GPUSs)
« Built-in functions — optional (called “extensions”)
— Double precision, atomics to global and local memory
— Selection of rounding mode, writes to image3d_t surface

CINECA
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* Function qualifiers

— __kernel qualifier declares a function as a kernel

* |.e. makes it visible to host code so it can be enqueued

— Kernels can call other kernel-side functions
« Address space qualifiers

— __global, local, constant, private

— Pointer kernel arguments must be declared with an address space qualifier
« Work-item functions

— get_work _dim(), get global id(), get_local id(), get _group id()
« Synchronization functions

— Barriers - all work-items within a work-group must execute the barrier function
before any work-item can continue

— Memory fences - provides ordering between memory operations

CINECA
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Host programs can be “ugly School ‘'on
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« OpenCL’s goal is extreme
portability, so it exposes everything

— (i.e. itis quite verbose!).
« But most of the host code is the
same from one application to the

next — the re-use makes the
verbosity a non-issue.

* You can package common API
combinations into functions or even
C++ or Python classes to make the
reuse more convenient.

CINECA \
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COMPUTING

 If you have CUDA code, you've already done the hard
work!

— |.e. working out how to split up the problem to run
effectively on a many-core device

« Switching between CUDA and OpenCL is mainly
changing the host code syntax

— Apart from indexing and naming conventions in the
kernel code (simple to change!)

CINECA



Allocating and copying memory Summer

School on
COMPUTING
CUDA C OpenCL C
Allocate float* d_x; cl_mem d_x =
(&d_x, sizeof(float)*size); clCreateBuffer(context,
CL_MEM_READ_WRITE,
sizeof(float)*size,
NULL, NULL);
Host to Device (d_x, h_x, clEnqueueWriteBuffer(queue, d_x,
sizeof(float)*size, CL_TRUE, 0,
); sizeof(float)*size,
h_x, 0, NULL, NULL);
Device to Host (h_x, d_x, clEnqueueReadBuffer(queue, d_x,
sizeof(float)*size, CL_TRUE, 0,
); sizeof(float)*size,

h_x, 0, NULL, NULL);

CINECA
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Allocating and copying memory

COMPUTING

CUDA C OpenCL C++

Allocate float* d_x; cl::Buffer
(&d_x, d_x(begin(h_x), end(h_x), true);
sizeof(float)*size);

Host to Device (d_x, h_x, cl::copy(begin(h_x), end(h_x),
sizeof(float)*size, d_x);

Device to Host (h_x, d_x, cl::copy(d_x,
sizeof(float)*size, begin(h_x), end(h_x));

CINECA
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Declaring dynamic local/shared memory School on
COMPUTING
CUDA C OpenCL C++
_ _ 1. Have the kernel accept a local
1. Define an array in the kernel array as an argument
SOurce as gxtern __kernel void func(
int array[]; __local int *array)
| {}
2. When executing the kernel,
specify the third parameter as 2. Define a local memory kernel
size in bytes of shared memory kernel argument of the right size
func - num_blocks, cl::LocalSpaceArg localmem =
num_threads_per_block, cl::Local(shared_mem_size);

shared_mem _size  (args);
3. Pass the argument to the kernel
invocation

CINECA func(EnqueueArgs(...),localmem);



Declaring dynamic local/shared memory o SUmmSL

COMPUTING

CUDA C OpenCL C

1. Define an array in the kernel
source as extern

Int array(];

1. Have the kernel accept a local
array as an argument

__kernel void func(

- local int *arra
2. When executing the kernel, — y) {}

specify the third parameter as

size in bytes of shared memory 2. Specify the size by setting the

kernel argument

func num_blocks,
— clSetKernelArg(kernel, O,
num_threads_per_block, . .
— — sizeof(int)*num_elements,

shared_mem_size  (args); NULL):

CINECA



Dividing up the work Summer
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COMPUTING
CUDA OpenCL
Thread >I I I I I I I F Work-item

Thread block (

Work-group

 To enqueue the kernel

— CUDA - specify the number of thread blocks and threads
per block

— OpenCL — specify the and (optionally)
~number of work-items per work-group

CINECA
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Engueue a kernel (C)
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CUDA C OpenCL C
threads_per_block(30,20); const size t global[2] =
{300, 200},

num_blocks(10,10);
const size tlocal[2] =
kernel num_blocks, {30, 20};
threads_per_block ()

queue, &kernel,
2,0, &global, &local,
0, NULL, NULL);

CINECA \




Enqueue a kernel (C++) Summer

School on

COMPUTING

CUDA C OpenCL C++

threads_per_block(30,20); const cl::NDRange
global(300, 200);

num_blocks(10,10); const cl::NDRange
local (30, 20);
kernel num_blocks,

threads_per_block — (...); kernel(

EnqueueArgs(global, local),

e);

CINECA



Indexing work

gridDim
blockldx
blockDim
gridDim * blockDim
threadldx

blockldx * blockdim + threadldx

CINECA
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get_num_groups()
get_group_id()
get local size()
get_global size()
get _local id()

get _global id()



Differences In kernels Summer
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 Where do you find the kernel?

— OpenCL - either a string (const char *), or read from
a file

— CUDA - a function in the host code
« Denoting a kernel
— OpenCL - __ kernel
— CUDA - _global
 When are my kernels compiled?
— OpenCL — at runtime
— CUDA — with compilation of host code

CINECA



Host code e mAt

COMPUTING

« By default, CUDA initializes the GPU automatically

— If you needed anything more complicated (multi-
device etc.) you must do so manually

 OpenCL always requires explicit device initialization

— It runs not just on NVIDIA® GPUs and so you
must tell it which device(s) to use

CINECA



Thread Synchronization e mAt
COMPUTING
___syncthreads() barrier()
___threadfenceblock() mem_fence(

CLK_GLOBAL MEM_FENCE |
CLK_LOCAL_MEM_FENCE)

No equivalent read _mem_fence()
No equivalent write_mem_fence()
__threadfence() Finish one kernel and start

another

CINECA
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CUDA

OpenCL

GPU

Multiprocessor

Scalar or CUDA core
Global or Device Memory
Shared Memory (per block)
Local Memory (registers)
Thread Block

Thread

Warp

Grid

Device (CPU, GPU etc)
Compute Unit, or CU
Processing Element, or PE
Global Memory

Local Memory (per workgroup)
Private Memory

Work-group

Work-item

No equivalent term (yet)
NDRange

CINECA
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Eurora

CINECA

Eurora CINECA-Eurotech
prototype

1 rack
Two Intel SandyBridge and

two NVIDIA K20 cards per
node or:

Two Intel MIC card per
node

Hot water cooling

Energy efficiency record
(up to 3210 MFLOPs/w)

100 TFLOPs sustained

Summer
School on

COMPUTING
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School on

COMPUTING

NVIDIA Tesla K20 Intel MIC Xeon Phi

e 13 Multiprocessors e 236 compute units

e 2496 CUDA Cores « 8 GB of global memory

5 GB of global memory e CPU clock rate 1052 MHz

e GPU clock rate 760MHz

CINECA \




Setting up OpenCL on Eurora Summer

School on
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« Login on front-end.
Then:

>module load profile/advanced

> module load intel_opencl/none--intel--cs-xe-2013--binary
It defines:

INTEL _OPENCL_INCLUDE

and

INTEL_OPENCL_LIB

environmental variables that can be used:

>cc -I$INTEL_OPENCL_INCLUDE -L$INTEL_OPENCL_LIB -IOpenCL vadd.c -o vadd

CINECA \




Running on Intel

PROFILE=FULL_PROFILE
VERSION=OpenCL 1.2 LINUX
NAME-=Intel(R) OpenCL
VENDOR-=Intel(R) Corporation
EXTENSIONS=cl_khr_fp64 cl_khr_global_int32_base_atomics
cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics
cl_khr_local_int32_extended_atomics cl_khr_byte_addressable_store
--0--

DEVICE NAME= Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz
DEVICE VENDOR=Intel(R) Corporation

DEVICE VERSION=OpenCL 1.2 (Build 67279)
DEVICE_MAX_COMPUTE_UNITS=16
DEVICE_MAX_WORK_GROUP_SIZE=1024
DEVICE_MAX_WORK_ITEM_DIMENSIONS=3
DEVICE_MAX_WORK_ITEM_SIZES=1024 1024 1024
DEVICE_GLOBAL_MEM_SIZE=16685436928

--1--

DEVICE NAME-=Intel(R) Many Integrated Core Acceleration Card
DEVICE VENDOR=Intel(R) Corporation

DEVICE VERSION=OpenCL 1.2 (Build 67279)
DEVICE_MAX_COMPUTE_UNITS=236
DEVICE_MAX_WORK_GROUP_SIZE=1024
DEVICE_MAX_WORK_ITEM_DIMENSIONS=3
DEVICE_MAX_WORK_ITEM_SIZES=1024 1024 1024
DEVICE_GLOBAL_MEM_SIZE=6053646336

--2--

DEVICE NAME=Intel(R) Many Integrated Core Acceleration Card
DEVICE VENDOR=Intel(R) Corporation

DEVICE VERSION=OpenCL 1.2 (Build 67279)
DEVICE_MAX_COMPUTE_UNITS=236
DEVICE_MAX_WORK_GROUP_SIZE=1024
DEVICE_MAX_WORK_ITEM_DIMENSIONS=3
DEVICE_MAX_WORK_ITEM_SIZES=1024 1024 1024
DEVICE_GLOBAL_MEM_SIZE=6053646336

Computed sum = 549754961920.0.
Check passed.

(
e/

Summer
School on
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COMPUTING
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« Goal:
— To inspect and verify that you can run an OpenCL kernel on Eurora machines
* Procedure:

— Take the provided C vadd.c and vadd.cl source programs from VADD
directory

— Compile and link vadd.c
— Run on NVIDIA or Intel platform.
« Expected output:
— A message verifying that the vector addition completed successfully
— Some useful info about OpenCL environment (Intel and NVIDIA)

CINECA



Matrix-Matrix product: HOST

void MatrixMulOnHost (float* M, float* N, float* P,
{
// loop on rows
for (int row = 0; row < Width; ++row) {
// loop on columns
for (int col = 0; col < Width; ++col) {

// accumulate element-wise products

float pval = 0;

for (int k = 0; k < Width; ++k) {
float a = M[row * Width + k];
float b = N[k * Width + col];
pval += a * b;

}

// store final results
P[row * Width + col] = pval;

CINECA \

int Width)
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Matrix-Matrix product: launch grid Summer
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= .

gridDim.x * blockDim.x

=

i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;

\ index = j * MatrixWidth + i;
CINECA N—




Matrix-Matrix product: CUDA Kernel
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__global _ void MMKernel (float* dM, float *dN, float *dP,

int width) {
// row,col from built-in thread indeces (2D block of threads)
int col = blockIdx.x * blockDim.x + threadIdx.x;
int row = blockIdx.y * blockDim.y + threadIdx.y;

// check if current CUDA thread is inside matrix borders
if (row < width && col < width) {

// accumulate element-wise products
// NB: pval stores the dP element computed by the thread
float pval = 0;
for (int k=0; k < width; k++)
pval += dM[row * width + k] * dAN[k * width + col];

// store final results (each thread writes one element)
dP[row * width + col] = Pvalue;

CINECA
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— Per work-item

Private Private
Memory Memory
— Shared within a 1 ]
work-group  Nemmamm s .
* Global/Constant
Memo ry Work-Group Work-Group
— Visible to all

Global Memory & Constant Memory

Compute Device

work-groups
 Host memory
— On the CPU Host Memory

Host
Memory management IS €XP ICIT:

—~ You are responsible for moving data from
CINECA Sy host — global — local and back
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OpenCL Memory model

COMPUTING

* Private Memory
— Fastest & smallest: O(10) words/WI
* Local Memory memory | Moy Momry: [l Moy
— Shared by all Wl's in a work-group |
— But not shared between work-groups! | 2 ]
— 0O(1-10) Kbytes per work-group
Work-Group Work-Group
* Global/Constant Memory

— 0(1_10) Gbytes Of G |0ba| memory | Global Memory & Constant Memory I

— 0O(10-100) Kbytes of Constant Compute Device
memory

 Host memory
— Onthe CPU - GBytes

Work-Iltem Work-ltem Work-ltem Work-Item

Host Memory

Memory management is explicit:
O(1-10) Gbytes/s bandwidth to discrete GPUs for

\ Host <-> Global transfers
CINECA
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€—— get global size(0) _— >

* In OpenCL.: d
Index Space

€—— get local size(0) _—
Work Group (0,0)
N get
global
. . . |
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COMPUTING

Kernels: Work-item and Work-group Example

240 local id: (4,2)
EEEEEEEE global id: (28,10)

8

32

waorkgroup id: (3,1)
local size: 8x8=64

dimension: 2
global size: 32x32=1024
num of groups: 16

You should use OpenCL mapping functions for element values recovery(this may be a common

‘ source of bugs when write a kernel
CINECA \
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__kernel void mat_mul(
const int Mdim, const int Ndim, const int Pdim,
__global float *A, __global float *B, __global float *C)
{
inti,j, k;
(i=0; 1 <Ndim;i++) {
( =0; ) <Mdim; j++) {
(k =0; k <Pdim; k++) {
Il C(i, }) =sum(over k) A(i,k) * B(k,))
C[iI*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

} RRge———"

CINECA
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__kernel void mat_mul(
const int Mdim, const int Ndim, const int Pdim,
__global float *A, __global float *B, __global float *C)
{

inti,j, k;

j =get_global _id(0);

| = get_global _id(1);

I/ C(i, }) = sum(over k) A(i,k) * B(k,))

(k =0; k < Pdim; k++) {
C[iI*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];
}
1}

CINECA
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Rearrange and use a local scalar for intermediate C element values (a common optimization in Matrix

Multiplication functions)

__kernel void mat_mul(

const int Mdim, int k:
const int Ndim, int j = get_global_id(0);
: : inti=get_global_id(1);

const int Pdim, float tmp = 0.0f;

global float *A, (k =0; k < Pdim; k++)
- tmp += A[i*Ndim+k]*B[k*Pdim+j];
__global float *B, }

global float *C) CLi*Ndim+]] +=tmp;

CINECA
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Rearrange and use a local scalar for intermediate C element values (a common optimization in Matrix

Multiplication functions)

int k;
int j = get_global_id(0);
int i =get_global_id(1);

2048 NVIDIA 0.24 71 float tmp = 0.0f;
K20s (k =0; k < Pdim; k++)
tmp += A[iI*Ndim+k]*B[k*Pdim+j];
}
2048 Intel MIC 0.47 37 C[i*Ndim+j] += tmp;
}
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Which is the best thread block /work-group size to select (i.e. TILE_WIDTH)?

On Fermi architectures: each SM can handle up to 1536 total threads
TILE WIDTH=S8

8x8 = 64 threads >>> 1536/64 = 24 blocks needed to fully load a SM
... yet there is a limit of maximum 8 resident blocks per SM for cc 2.x
so we end up with just 64x8 = 512 threads per SM on a maximum of 1536 (only 33% occupancy)
TILE WIDTH= 16
16x16 = 256 threads >>> 1536/256 = 6 blocks to fully load a SM
6x256 = 1536 threads per SM ... reaching full occupancy per SM!
TILE WIDTH = 32
32x32 = 1024 threads >>> 1536/1024 = 1.5 = 1 block fully loads SM
1024 threads per SM (only 66% occupancy)

TILE WIDTH =16

CINEEZ \
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Matrix-Matrix product: selecting optimum thread block size & hool o

COMPUTING

Which is the best thread block size/work-group size to select (i.e. TILE_WIDTH)?

On Kepler architectures: each SM can handle up to 2048 total threads
TILE WIDTH=38

8x8 = 64 threads >>> 2048/64 = 32 blocks needed to fully load a SM
... yet there is a limit of maximum 16 resident blocks per SM for cc 3.x
so we end up with just 64x16 = 1024 threads per SM on a maximum of 2048 (only 50% occupancy)
TILE WIDTH= 16
16x16 = 256 threads >>> 2048/256 = 8 blocks to fully load a SM
8x256 = 2048 threads per SM ... reaching full occupancy per SM!
TILE WIDTH= 32
32x32 = 1024 threads >>> 2048/1024 = 2 blocks fully load a SM
2x1024 = 2048 threads per SM ... reaching full occupancy per SM!

TILE WIDTH = 16 or 32

CINEEGA \
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Matrix-Matrix product: selecting optimum thread block size

COMPUTING

Which is the best thread block size/work-group size to select (i.e. TILE_WIDTH)?

On Kepler architectures: each SM can handle up to 2048 total threads
TILE WIDTH =8

8x8 = 64 threads >>> 2048/64 = 32 blocks needed to fully load a SM
... yet there is a limit of maximum 16 resident blocks per SM for cc 3.x
so we end up with just 64x16 = 1024 threads per SM on a maximum of 2048 (only 50% occupancy)
TILE WIDTH =16
16x16 = 256 threads >>> 2048/256 = 8 blocks to fully load a SM
8x256 = 2048 threads per SM ... reaching full occupancy per SM!
TILE WIDTH = 32
32x32 =1024 threads >>> 2048/1024 = 2 blocks fully load a SM
2x1024 = 2048 threads per SM ... reaching full occupancy per SM!

8 0.33 52
16 0.20 82
| T 32 0.16 104

CINEBA
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oroduct: check inside matrix
borders

Matrix-Matrix
COMPUTING

__global _ void MMKernel (float* dM, float *dN, float *dP,
int width) {
// row,col from built-in thread indeces (2D block of threads)
int col = blockIdx.x * blockDim.x + threadIdx.x;
int row = blockIdx.y * blockDim.y + threadIdx.y;

// check if current CUDA thread is inside matrix borders
if (row < width && col < width) {

2047 /
2048 /

2047 Failed (different results from
reference)

2048 / 37

CINECA
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« Tens of KBytes per Compute Unit

— As multiple Work-Groups will be running on each CU, this means only a
fraction of the total Local Memory size is available to each Work-Group

 Assume O(1-10) KBytes of Local Memory per Work-Group

— Your kernels are responsible for transferring data between Local and
Global/Constant memories ... there are optimized library functions to help

« Use Local Memory to hold data that can be reused by all the work-items in a
work-group

» Access patterns to Local Memory affect performance in a similar way to
accessing Global Memory

— Have to think about things like coalescence & bank conflicts

* Typical figures for a 2013 GPU

CINECA



Local Memory e mAt

COMPUTING

« Local Memory doesn’t always help...

CINECA

CPUs, MICs don’t have special hardware for it

This can mean excessive use of Local Memory might slow down kernels on
CPUs

GPUs now have effective on-chip caches which can provide much of the
benefit of Local Memory but without programmer intervention

So, your mileage may vary!
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Using Local/Shared Memory for Thread School on
Cooperation COMPUTING

(Device) Grid

Threads belonging to the same block can cooperate Block (0, 0) Block (1, 0)
togheter using the shared memory to share data

Shared Memory Shared Memory

if a thread needs some data which has been A 4
already retrived by another thread in the Registers Registers
same block, this data can be shared ¢ ¢

using the shared memory
Typical Shared Memory usage: Threads Threads

declare a buffer residing on shared memory (this
buffer is per block)
load data into shared memory buffer Siobal
synchronize threads so to make sure all needed Memory
data is present in the buffer
performe operation on data et
synchronize threads so all operations have been Memory
performed
write back results to global memory

o gk wh e

Texture
Memory

CINECA



Matrix-matrix using Shared Memory

Cij=0.
R0

Cycle on block
kb=0, N/NB

=)

4

As(it,jt) = A(Ib*NB + it, kb*NB + jt)

Bs(it,jt) = B(kb*NB + it, jp*NB + jt)

' 4

Thread Synchronization

v

Cycle on block k=1,NB

¥

Cij=Cij+As(it,k)-Bs(k,jt)

it
Jjt

ib

threadldx.y
threadIdx.x

blockIdx.y
blockIdx.x

Summer
School on

COMPUTING

Thread Synchronization

—

CINECA
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Matrix-matrix using Shared Memory: CUDA Kernel School on

COMPUTING

/I Matrix multiplication kernel called by MatMul_gpu()
__global__ void MatMul_kernel (float *A, float *B, float *C, int N)

{ for (int kb = 0; kb < (Awidth / NB); ++kb) {

/I Shared memory used to store Asub and Bsub respectively
_ shared__ float Asub[NB][NB];
__shared__ float Bsub[NB][NB];

/I Get the starting address of Asub and Bsub
a_offset = get_offset (ib, kb, N);
b_offset = get_offset (kb, jb, N);

/I Block row and column
int ib = blockldx.y;
int jb = blockldx.x;

/I Load Asub and Bsub from device memory to shared memory
/I Each thread loads one element of each sub-matrix
Asub[it][jt] = Ala_offset + it*N + jt];

/I Thread row and column within Csub Bsublit][jt] = B[b_offset +it*N + jt];

int it = threadldx.y;

int jt = threadidx.x. Il Synchronize to make sure the sub-matrices are loaded

1/ before starting the computation
int a_offset , b_offset, c_offset; —syncthreads();
/I Multiply Asub and Bsub together
for (int k = 0; k < NB; ++k) {

Cvalue += Asub[it][k] * Bsub[K][jt];
}
/I Synchronize to make sure that the preceding
/I computation is done
__syncthreads();

}

/I Get the starting address (c_offset) of Csub

c_offset = get_offset (ib, jb, N);

// Each thread block computes one sub-matrix Csub of C
C[c_offset +it*N + jt] = Cvalue;

// Each thread computes one element of Csub
/I by accumulating results into Cvalue
float Cvalue = 0;

/I Loop over all the sub-matrices of A and B that are
/I required to compute Csub

/I Multiply each pair of sub-matrices together

/I 'and accumulate the results

CINECA
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Matrix-matrix using Shared Memory: OpenCL Kernel School ‘'on

COMPUTING

/I Matrix multiplication kernel called by MatMul_gpu()
__kernel_ void MatMul_kernel (float *A, float *B, float *C, int N)

{ for (int kb = 0; kb < (Awidth / NB); ++kb) {

/I Shared memory used to store Asub and Bsub respectively

/I Get the starting address of Asub and Bsub
__local float Asub[NB][NB]J; a_offset = get_offset (ib, kb, N);
__local float Bsub[NB][NB]; b_offset = get_offset (kb, jb, N);

/I Block row and column /I Load Asub and Bsub from device memory to shared memory
int ib = get_group_id(1); /I Each thread loads one element of each sub-matrix
int jb = get_group_id(0); Asub[it][jt] = Ala_offset + it*N + jt];

Bsub[it][jt] = B[b_offset + it*N + jt];
/I Thread row and column within Csub
int it = get_local_id(1); /I Synchronize to make sure the sub-matrices are loaded
int jt = get_local_id(0); 1/ before starting the computation
barrier(CLK_LOCAL_MEM_FENCE);
int a_offset , b_offset, c_offset;
/I Multiply Asub and Bsub together

/I Each thread computes one element of Csub for (int k = 0; k < NB; ++k) {
/I by accumulating results into Cvalue Cvalue += Asub[it][k] * Bsub[k][jt];
float Cvalue = 0; }
/I Synchronize to make sure that the preceding
/I Loop over all the sub-matrices of A and B that are /I computation is done
/I required to compute Csub barrier(CLK_LOCAL_MEM_FENCE);
/I Multiply each pair of sub-matrices together }

/I 'and accumulate the results

/I Get the starting address (c_offset) of Csub

c_offset = get_offset (ib, jb, N);

// Each thread block computes one sub-matrix Csub of C
C[c_offset +it*N + jt] = Cvalue;

CINECA




Matrix-matrix using Shared Memory: OpenCL Kernel School ‘'on

/I Matrix multiplication kernel called by MatMul_gpu()

__kernel_ void MatMul_kernel (float *A, float *B, float *C, int N)

{

/I Shared memory used to store Asub and Bsub respectively

__local float Asub[NB][NB];
__local float Bsub[NB][NB];

/I Block row and column
int ib = get_group_id(1);
int jb = get_group_id(0);

Il Thread row and column within Csub
int it = get_local_id(1);
int jt = get_local_id(0);

int a_offset , b_offset, c_offset;
// Each thread computes one element of Csub
Il by accumulating results into Cvalue

float Cvalue = 0;

/I Loop over all the sub-matrices of A and B that are

Il vamiivad +a ramnnitn Conh

2048 NVIDIA K20s
2048 Intel MIC
CINECA

0.10 166

0.15 115

Summer

COMPUTING

for (int kb = 0; kb < (A.width / NB); ++kb) {

/I Get the starting address of Asub and Bsub
a_offset = get_offset (ib, kb, N);
b_offset = get_offset (kb, jb, N);

/I Load Asub and Bsub from device memory to shared memory
/I Each thread loads one element of each sub-matrix
Asublit][jt] = A[a_offset + it*N + jt];

Bsub[it][jt] = B[b_offset + it*N + jt];

Il Synchronize to make sure the sub-matrices are loaded
1/ before starting the computation
barrier(CLK_LOCAL_MEM_FENCE);

/I Multiply Asub and Bsub together
for (int k = 0; k < NB; ++k) {
Cvalue += Asub[it][k] * Bsub[K][jt];
}
/I Synchronize to make sure that the preceding
/I computation is done

havvinv/C1 I/ T NCAL NERA CERNICEN.
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OpenCL on Intel MIC Summer

School on

COMPUTING

* Intel MIC combines many core onto a single chip. Each core runs exactly 4
hardware threads. In particular:

1. All cores/threads are a single OpenCL device
2. Separate hardware threads are OpenCL CU.

* Inthe end, you'll have parallelism at the work-group level (vectorization) and
parallelism between work-groups (threading).

CINECA



OpenCL on Intel MIC Summer

School on

COMPUTING

« To reach performances, the number of work-groups should be not less than
CL_DEVICE_MAX COMPUTE_UNITS parameter (more is better)

« Again, automatic vectorization module should be fully utilized. This module:
O packs adiacent work-items (from dimension O of NDRange)
0 executes them with SIMD instructions

* Use the recommended work-group size as multiple of 16 (SIMD width for float,
int, ...data type).

CINECA



Matrix-matrix on Intel MIC (skeleton)

for i from O to NUM_OF_TILES_M-1
for j from O to NUM_OF_TILES_N-T1

C_BLOCK = ZERO_MATRIX(TILE_SIZE_M, TILE SIZE_N)

for k from O to size-T
for ib = from O to TILE_SIZE M-T

for jb = from O to TILE_SIZE_N-1

Summer
School on

COMPUTING

C_BLOCK(jb, ib) = C_BLOCK(ib, jb) + Ak, *TILE_SIZE_M + ib)*B(*TILE_SIZE_N + jb, k)

end for jb

end for ib

end for k

for ib = from O to TILE_SIZE M-T
for jb = from O to TILE_SIZE_N-1

CPTILE_SIZE_M + jb, *TILE_SIZE_N + ib) = C_BLOCK(jb, ib)

end for jb

end for ib
end for j
end for i

CINECA

TILE GROUP M x TILE GROUP N =
number of WI within each WG

TILE SIZE M x TILE SIZE N =

number of elements of C computed
by one WI

TILE SIZE K = size
of block for
internal
computation of
C_BLOCK



Matrix-matrix on Intel MIC (results) o mmr

COMPUTING

for i from O to NUM_OF_TILES mM-1
for j from O to NUM_OF_TILES_N-T1
C_BLOCK = ZERO_MATRIX(TILE_SIZE_M, TILE_SIZE_N)
for k from O to size-T
for ib = from O to TILE_SIZE_M-T
for jb = from O to TILE_SIZE_N-T1
C_BLOCK(jb, ib) = C_BLOCK(ib, jb) + ACk, *TILE_SIZE.M + ib)*B(*TILE_SIZE_N + jb, k)
end for jb
end for ib
end for k
for ib = from O to TILE_SIZE M-T
for jb = from O to TILE_SIZE_N-1
C(*TILE_SIZE_M + jb, (*TILE_SIZE_N + ib) = C_BLOCK(jb, ib)
end for jb
end for ib
end for j
end for i

3968 0.3 415
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COMPUTING

The future of Accelerator
Programming

Most of the latest
supercomputers are based on
accelerators platform. This
huge adoption is the result of:

* High (peak) performances
« Good energy efficiency
* Low price

Accelerators should be used everywhere and all
the time. So, why aren’t there?

CINECA
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The future of Accelerator
Programming

There are two main difficulties
with accelerators:

« They can only execute
certain type of programs
efficiently (high parallelism,
data reuse, regular control
flow and data access)

« Architectural disparity with
respect to CPU
(cumbersome
programming, portability is

an IssUe) pccelerators should be used everywhere and all
the time. So, why aren’t there?

CINECA
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Conclusions Summer

COMPUTING

The future of Accelerator
Programming

GPUs are now more general-
purpose computing devices
thanks to CUDA adoption. On the
other hand, the fact that CUDA is
a proprietary tool and its
complexity triggered the creation
of other programming
approaches:

« OpenCL
« OpenAcc

Accelerators should be used everywhere and all
the time. So, why aren’t there?

CINECA




Conclusions SSummer
— chool on

COMPUTING

The future of Accelerator
Programming

OpenCL is the non-proprietary
counterpart of CUDA (also supports
AMD GPUs, CPUs, MIC,
FPGAs....really portable!) but just like
CUDA , is very low level and require a
lot of programming skills to be used.

OpenACC is a very high-level
approach. Similar to OpenMP (they
should be merged in a near(?) future)
but still at its infancy and currently
supported by a few compilers

Other approaches like C++AMP only
tied to exhotic HPC environment
(Windows) and impractical for
standard HPC applications

Accelerators should be used everywhere and all
the time. So, why aren’t there?

CINECA
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- libraries
- automated tools
- do-it-yourself

COMPUTING

The future of
Programming

So, how to (efficiently) program actual and
future devices?

A possible answer could be surprisingly simple
and similar to how today’s multicore (CPUs) are
used (including SIMD extensions,
accelerators,...)

Basically, there are three levels:

Programmers will employ library approach
whenever possible. In absence of efficient
libraries, tools could be used.

For the remaining cases, the do-it-yourself
approach will have to be used (OpenCL or a
derivative of it should be preferred to
proprietary CUDA)

Accelerators will be used everywhere and all the

CINECA

time. So, start to use them!
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Among the others:

« Simon Mcintosh Smith for OpenCL

« CUDA Team in CINECA (Luca Ferraro, Sergio
Orlandini, Stefano Tagliaventi)

« MontBlanc project (EU) Team

CINECA



