
Intel Xeon Phi: Architecture and Programming
F. Affinito(f.affinito@cineca.it) V. Ruggiero (v.ruggiero@cineca.it)

Roma, 23 July 2015
SuperComputing Applications and Innovation Department

Outline

Architectures

Optimization

Vectorization

Performance and parallelism

Programmming Models

Profiling and Debugging

Trends: transistor...

Trends: clock rates...

Trends: core and threads ...

Trends: summarizing...

I The number of transistors increases
I The power consumption must not increase
I The density cannot increase on a single chip

Solution :
I Increase the number of cores

GP-GPU and Intel Xeon Phi..

I Coupled to the CPU
I To accelerate highly parallel kernels, facing with the Amdahl

Law

What is Intel Xeon Phi?

I 7100 / 5100 / 3100 Series available
I 5110P:

I Intel Xeon Phi clock: 1053 MHz
I 60 cores in-order
I 1 TFlops/s DP peak performance (2 Tflops SP)
I 4 hardware threads per core
I 8 GB DDR5 memory
I 512-bit SIMD vectors (32 registers)
I Fully-coherent L1 and L2 caches
I PCIe bus (rev. 2.0)
I Max Memory bandwidth (theoretical) 320 GB/s
I Max TDP: 225 W

MIC vs GPU naive comparison

I The comparison is naive

System K20s 5110P
cores 2496 60 (*4)
Memory size 5 GB 8 GB
Peak performance (SP) 3.52 TFlops 2 TFlops
Peak performance (DP) 1.17 TFlops 1 TFlops
Clock rate 0.706 GHz 1.053 GHz
Memory Bandwidth 208 GB/s (ECC off) 320 GB/s

Terminology

I MIC = Many Integrated Cores is the name of the architecture
I Xeon Phi = Commercial name of the Intel product based on the

MIC architecture
I Knight’s corner, Knight’s landing, Knight’s ferry are

development names of MIC architectures
I We will often refer to the CPU as HOST and Xeon Phi as

DEVICE

Is it an accelerator?

I YES: It can be used to "accelerate" hot-spots of the code that
are highly parallel and computationally extensive

I In this sense, it works alongside the CPU
I It can be used as an accelerator using the "offload"

programming model
I An important bottleneck is represented by the communication

between host and device (through PCIe)
I Under this respect, it is very similar to a GPU

Is it an accelerator? / 2

I NOT ONLY: the Intel Xeon Phi can behave as a many-core X86
node.

I Code can be compiled and run "natively" on the Xeon Phi
platform using MPI + OpenMP

I The bottleneck is the scalability of the code
I Amdahl Law

I Under this respect, the Xeon Phi is completely different from a
GPU

I This is way we often call the Xeon Phi "co-processor" rather
than "accelerator"

Many-core performances

Architecture key points/1
I Instruction Pipelining

I Two independent pipelines arbitrarily known as the U and V
pipelines

I (only) 5 stages to cope with a reduced clock rate, e.g. compared
to the Pentium 20 stages

I In-order instruction execution
I Manycore architecture

I Homogeneous
I 4 hardware threads per core

Architecture key points/2

I Interconnect: bidirectional ring topology
I All the cores talk to one another through a bidirectional

interconnect
I The cores also access the data and code residing in the main

memory through the ring connecting the cores to memory
controller

I Given eight memory controllers with two GDDR5 channels
running at 5.5 GB/s

I Aggregate Memory Bandwidth = 8 memory controllers x 2
channels x 5.5 GB/s x 4 bytes/transfer = 352 GB/s

I System interconnect
I Xeon Phi are often placed on PCIe slots to work with the host

processors

Architecture key points/3

I Cache:
I L1: 8-ways set-associative 32-kB instruction and 32-kB data
I L1 access time: 3 cycles
I L2: 8-way set associative and 512 kB in size

(unified)Interconnect: bidirectional ring topology

I TLB cache:
I L1 data TLB supports three page sizes: 4 kB, 64 kB, and 2 MB
I L2 TLB
I If one misses L1 and also misses L2 TLB, one has to walk four

levels of page table, which is pretty expensive

Architecture key points/4

I The VPU (vector processing unit) implements a novel
instruction set architecture (ISA), with 218 new instructions
compared with those implemented in the Xeon family of SIMD
instruction sets.

I The VPU is fully pipelined and can execute most instructions
with four-cycle latency and single-cycle throughput.

I Each vector can contain 16 single-precision floats or 32-bit
integer elements or eight 64-bit integer or double-precision
floating point elements.

Architecture key points/5
I Each VPU instruction passes through one or more of the

following five pipelines to completion:
I Double-precision (DP) pipeline: Used to execute float64

arithmetic, conversion from float64 to float32, and DP-compare
instructions.

I Single-precision (SP) pipeline: Executes most of the instructions
including 64-bit integer loads. This includes float32/int32
arithmetic and logical operations, shuffle/broadcast, loads
including loadunpack, type conversions from float32/int32
pipelines, extended math unit (EMU) transcendental
instructions, int64 loads, int64/float64 logical, and other
instructions.

I Mask pipeline: Executes mask instructions with one-cycle
latencies.

I Store pipeline: Executes the vector store operations.
I Scatter/gather pipeline: Executes the vector register read/writes

from sparse memory locations.
I Mixing SP and DP computations is expensive!

Architecture sketch/1

Architecture sketch/2

Outline

Architectures

Optimization

Vectorization

Performance and parallelism

Programmming Models

Profiling and Debugging

Optimizing code step by step
1. Check correctness of your application by building it without optimization

using -O0.

2. Use the general optimization options (-O1,-O2,or-O3) and determine
which one works best for your application by measuring performance with
each.(Most users should start at -O2 (default) before trying more advanced
optimizations. Next, -O3 for loop intensive applications.)

3. Fine-tune performance to target Intel 64-based systems with
processor-specific options. (Example is -xsse4.2. Alternatively, you can
use -xhost which will use the most advanced instruction set for the
processor on which you compiled)

4. Add interprocedural optimization -ipo and/or profile-guided optimization
(-prof-gen and -prof-use) , then measure performance again to
determine whether your application benefits from one or both of them

5. Optimize your application for vector and parallel execution on multi-threaded,
multi-core and multi-processor system

6. Use specific tools to help you identify serial and parallel performance
"hotspots" so that you know which specific parts of your application could
benefit from further tuning

Compiler: what it can do

I It performs these code modifications
I Register allocation
I Register spilling
I Copy propagation
I Code motion
I Dead and redundant code removal
I Common subexpression elimination
I Strength reduction
I Inlining
I Index reordering
I Loop pipelining , unrolling, merging
I Cache blocking
I . . .

I Everything to maximize performances!!

Compiler: what it cannot do

I Global optimization of "big" source code, unless switch on
interprocedural analisys (IPO) but it is very time consuming . . .

I Understand and resolve complex indirect addressing
I Strenght reduction (with non-integer values)
I Common subexpression elimination through function calls
I Unrolling, Merging, Blocking with:

I functions/subroutine calls
I I/O statement

I Implicit function inlining
I Knowing at run-time variabile’s values

Optimizations: levels

I All compilers have
“predefined” optimization levels -O<n>

I with n from 0 a 3 (IBM up to 5)
I Usually :

I -O0: no optimization is performed, simple translation (tu use
with -g for debugging)

I -O: default value
I -O1: basic optimizations
I -O2: memory-intensive optimizations
I -O3: more aggressive optimizations, it can alter the instruction

order
I Some compilers have -fast option (-O3 plus more options)

Intel compiler: -O0 option

I Before doing any optimization you should ensure that the
unoptimized version of your code works.

I On very rare occasions optimizing can change the intended
behavior of your applications, so it is always best to start from a
program you know builds and works correctly.

I Building with Optimisation Disabled
I Code is not re-ordered
I Improves visibility when using profiling tools.

I You should use this option when looking for threading errors!
I The code is usually much slower
I The binaries are usually much bigger
I -g produce debug information (can be used with
-O1,-O2.-O3, etc.)

Intel compiler: -O1 option

Optimize for speed and size
I This option is very similar to -O2 except that it omits

optimizations that tend to increase object code size , such as
the in-lining of functions. Generally useful where memory
paging due to large code size is a problem, such as server and
database applications.

I Auto-vectorization is not turned on , even if it is invoked
individually by its fine grained switch -vec. However, at -O1
the vectorization associated with array notation is enableded.

Intel compiler: -O2 option

Optimize for maximum speed
I This option creates faster code in most cases.
I Optimizations include scalar optimizations
I inlining and some other interprocedural optimizations between

functions/subroutines in the same source file
I vectorization
I limited versions of a few other loop optimizations, such as loop

versioning and unrolling that facilitate vectorization.

Intel compiler: -O3 option

Optimizes for further speed increases
I This includes all the -O2 optimizations, as well as other

high-level optimizations
I including more aggressive strategies such as scalar

replacement, data pre-fetching, and loop optimization, among
others

I It is particularly recommended for applications that have loops
that do many floating - point calculations or process large data
sets. These aggressive optimizations may occasionally slow
down other types of applications compared to -O2

Optimization Report

I The compiler can produce reports on what optimizations were
carried out. By default, these reports are disabled
-opt-report[n] n=0(none),1(min),2(med),3(max)
-opt-report-file<file>
-opt-report-routine<routine>
-opt-report-phase<phase>

I one or more *.optrpt file are generated
I To know the difference phases.

icc(ifort,icpc) -qopt-report-help

Optimization Report:example

ifort -O3 -opt-report

....
LOOP BEGIN at mm.f90(44,10)

remark #15300: LOOP WAS VECTORIZED
LOOP END
....
LOOP BEGIN at mm.f90(65,5)

remark #25444: Loopnest Interchanged: (1 2 3) --> (2 3 1)
....
LOOP BEGIN at mm.f90(66,8)

remark #25442: blocked by 128 (pre-vector)
remark #25440: unrolled and jammed by 4 (pre-vector)

....

Different operations, different latencies

For a CPU different operations could present different latencies

I Sum: few clock cycles
I Product: few clock cycles
I Sum+Product: few clock cycles
I Division: many clock cycle (O(10))
I Sin,Cos: many many clock cycle (O(100))
I exp,pow: many many clock cycle (O(100))
I I/O operations: many many many clock cycles

(o(1000 − 10000))

Outline

Architectures

Optimization

Vectorization

Performance and parallelism

Programmming Models

Profiling and Debugging

What is Vectorization?

I Hardware Perspective: Specialized instructions, registers, or
functional units to allow in-core parallelism for operations on
arrays (vectors) of data.

I Compiler Perspective: Determine how and when it is possible
to express computations in terms of vector instructions

I User Perspective: Determine how to write code in a manner
that allows the compiler to deduce that vectorization is
possible.

Processor Specifing Options
I When you use the compiler out of the box (that is, the default

behavior), auto-vectorization is enabled, supporting SSE2
instructions.

I You can enhance the optimization of auto-vectorization beyond
the default behavior by explicitly using some additional options.

I If you run an application on a CPU that does not support the
level of auto-vectorization you chose when it was built, the
program will fail to start. The following error message will be
displayed:
This program was not built to run on the processor in your system}.

I You can get the compiler to add multiple paths in your code so
that your code can run on both lower- and higher-spec CPUs,
thus avoiding the risk of getting an error message or program
abort

What Happened To Clock Speed?

I Everyone loves to misquote Moore’s Law:
I "CPU speed doubles every 18 months."

I Correct formulation:
I "Available on-die transistor density doubles every 18 months."

I For a while, this meant easy increases in clock speed
I Greater transistor density means more logic space on a chip

Clock Speed Wasn’t Everything
I Chip designers increased

performance by adding
sophisticated features to
improve code efficiency.

I Branch-prediction hardware.
I Out-of-order and speculative

execution.
I Superscalar chips.
I Superscalar chips look like

conventional single-core
chips to the OS.

I Behind the scenes, they use
parallel instruction pipelines
to (potentially) issue multiple
instructions simultaneously.

SIMD Parallelism

I CPU designers had, in fact, been exposing explicit parallelism
for a while.

I MMX is an early example of a SIMD (Single Instruction Multiple
Data) instruction set.

I Also called a vector instruction set.
I Normal, scalar instructions operate on single items in memory.

I Can be different size in terms of bytes, of course.
I Standard x86 arithmetic instructions are scalar. (ADD, SUB,

etc.)
I Vector instructions operate on packed vectors in memory.
I A packed vector is conceptually just a small array of values in

memory.
I A 128-bit vector can be two doubles, four floats, four int32s, etc.
I The elements of a 128-bit single vector can be thought of as

v[0], v[1], v[2], and v[3].

SIMD Parallelism

I Vector instructions are handled by an additional unit in the CPU
core, called something like a vector arithmetic unit.

I If used to their potential, they can allow you to perform the
same operation on multiple pieces of data in a single
instruction.

I Single-Instruction, Multiple Data parallelism.
I Your algorithm may not be amenable to this...
I ... But lots are. (Spatially-local inner loops over arrays are a

classic.)
I It has traditionally been hard for the compiler to vectorise code

efficiently, except in trivial cases.
I It would suck to have to write in assembly to use vector

instructions...

Vector units
I Auto-vectorization is transforming sequential code to exploit

the SIMD (Single Instruction Multiple Data) instructions within
the processor to speed up execution times

I Vector Units performs parallel floating/integer point operations
on dedicate SIMD units

I Intel: MMX, SSE, SSE2, SSE3, SSE4, AVX
I Think vectorization in terms of loop unrolling
I Example: summing 2 arrays of 4 elements in one single

instruction
C(0) = A(0) + B(0)
C(1) = A(1) + B(1)
C(2) = A(2) + B(2)
C(3) = A(3) + B(3)

no vectorization vectorization

SIMD - evolution

I SSE: 128 bit register (Intel Core - AMD Opteron)
I 4 floating/integer operations in single precision
I 2 floating/integer operations in double precision

I AVX: 256 bit register (Intel Sandy Bridge - AMD Bulldozer)
I 8 floating/integer operations in single precision
I 4 floating/integer operations in double precision

I MIC: 512 bit register (Intel Knights Corner - 2013)
I 16 floating/integer operations in single precision
I 8 floating/integer operations in double precision

Vector-aware coding
I Know what makes vectorizable at all

I "for" loops (in C) or "do" loops (in fortran) that meet certain
constraints

I Know where vectorization will help
I Evaluate compiler output

I Is it really vectorizing where you think it should?
I Evaluate execution performance

I Compare to theoretical speedup
I Know data access patterns to maximize efficiency
I Implement fixes: directives, compilation flags, and code

changes
I Remove constructs that make vectorization

impossible/impractical
I Encourage and (or) force vectorization when compiler doesn’t,

but should
I Better memory access patterns

Writing Vector Loops

I Basic requirements of vectorizable loops:
I Countable at runtime

I Number of loop iterations is known before loop executes
I No conditional termination (break statements)

I Have single control flow
I No Switch statements
I ’if’ statements are allowable when they can be implemented as

masked assignments
I Must be the innermost loop if nested

I Compiler may reverse loop order as an optimization!
I No function calls

I Basic math is allowed: pow(), sqrt(), sin(), etc
I Some inline functions allowed

Tuning on Auto-Vectorization

I Auto-vectorization is included implicitly within some of the
general optimization options, and implicitly switched off by
others.

I It can be further controlled by the auto-vectorization option
-vec.

I Normally the only reason you would use the -vec option would
be to disable(using -novec) is for the purposes of testing.

I The general options -O2 , -O3 , and -Ox turn on
auto-vectorization. You can override these options by placing
the option -novec directly on the compiler’s command line.

I The general options -O0 and -O1 turn off auto-vectorization,
even if it is specifically set on the compiler’s command line by
using the -vec option.

Option -x

Option Description
CORE-AVX2 AVX2, AVX, SSE4.2, SSE4.1, SSSE3, SSE3, SSE2, and SSE instructions
CORE-AVX-I RDND instr, AVX, SSE4.2, SSE4.1, SSSE3, SSE3, SSE2, and SSE instructions
AVX AVX, SSE4.2, SSE4.1, SSSE3, SSE3, SSE2, and SSE instructions
SSE4.2 SSE4 Efficient Accelerated String and Text Processing instructions

supported by Intel CoreTM i7 processors. SSE4 .1, SSSE3, SSE3, SSE2,
and SSE. May optimize for the Intel CoreTM processor family

SSE4.1 SSE4 Vectorizing Compiler and Media Accelerator,
SSSE3, SSE3, SSE2, and SSE . May optimize for Intel
45nm Hi-k next generation Intel CoreTM microarchitecture

SSSE3_ATOM MOVBE , (depending on -minstruction), SSSE3, SSE3, SSE2,
and SSE . Optimizes for the Intel AtomTM processor and Intel Centrino
AtomTM Processor Technology

SSSE3 SSSE3, SSE3, SSE2, and SSE. Optimizes for the Intel CoreTM microarchitecture
SSE3 SSE3, SSE2, and SSE. Optimizes for the enhanced

Pentium M processor microarchitecture and
Intel NetBurst microarchitecture

SSE2 SSE2 and SSE . Optimizes for the Intel NetBurst microarchitecture

When vectorization fails

I Not Inner Loop: only the inner loop of a nested loop may be
vectorized, unless some previous optimization has produced a
reduced nest level. On some occasions the compiler can
vectorize an outer loop, but obviously this message will not
then be generated.

I Low trip count:The loop does not have sufficient iterations for
vectorization to be worthwhile.

I Vectorization possible but seems inefficient: the compiler has
concluded that vectorizing the loop would not improve
performance. You can override this by placing
#pragma vector always before the loop in question

I Contains unvectorizable statement: certain statements, such
as those involving switch and printf , cannot be vectorized

When vectorization fails
I Subscript too complex: an array subscript may be too

complicated for the compiler to handle. You should always try
to use simplified subscript expressions

I Condition may protect exception: when the compiler tries to
vectorize a loop containing an if statement, it typically
evaluates the RHS expressions for all values of the loop index,
but only makes the final assignment in those cases where the
conditional evaluates to TRUE. In some cases, the compiler
may not vectorize because the condition may be protecting
against accessing an illegal memory address. You can use the
#pragma ivdep to reassure the compiler that the conditional
is not protecting against a memory exception in such cases.

I Unsupported loop Structure: loops that do not fulfill the
requirements of countability, single entry and exit, and so on,
may generate these messages

When vectorization fails

I Operator unsuited for vectorization: Certain operators, such as
the % (modulus) operator, cannot be vectorized

I Non-unit stride used: non-contiguous memory access.
I Existence of vector dependence: vectorization entails changes

in the order of operations within a loop, since each SIMD
instruction operates on several data elements at once.
Vectorization is only possible if this change of order does not
change the results of the calculation

https://software.intel.com/en-us/articles/
vectorization-diagnostics-for-intelr-c-compiler-150-and-above

Strided access

I Fastest usage pattern is "stride 1": perfectly sequential
I Best performance when CPU can load L1 cache from memory

in bulk, sequential manner
I Stride 1 constructs:

I Iterating Structs of arrays vs arrays of structs
I Multi dimensional array:

I Fortran: stride 1 on "inner" dimension
I C / C++: Stride 1 on "outer" dimension

do j = 1,n; do i=1,n
a(i,j)=b

enddo; endo

for(j=0;j<n;j++)
for(i=0;i<n;i++)

a[j][i]=b[j][i]*s;

Data Dependencies

I Read after write: When a variable is written in one iteration and
read in a subsequent iteration, also known as a flow
dependency:

A[0]=0;
for (j=1; j<MAX; j++)
A[j]=A[j-1]+1;
// this is equivalent to:
A[1]=A[0]+1; A[2]=A[1]+1; A[3]=A[2]+1; A[4]=A[3]+1;

I The above loop cannot be vectorized safely because if the first
two iterations are executed simultaneously by a SIMD
instruction, the value of A[1] may be used by the second
iteration before it has been calculated by the first iteration
which could lead to incorrect results.

Data Dependencies

I write-after-read: When a variable is read in one iteration and
written in a subsequent iteration, sometimes also known as an
anti-dependency

for (j=1; j<MAX; j++)
A[j-1]=A[j]+1;
// this is equivalent to:
A[0]=A[1]+1; A[1]=A[2]+1; A[2]=A[3]+1; A[3]=A[4]+1;

I This is not safe for general parallel execution, since the
iteration with the write may execute before the iteration with the
read. However, for vectorization, no iteration with a higher
value of j can complete before an iteration with a lower value of
j, and so vectorization is safe (i.e., gives the same result as
non- vectorized code) in this case.

Data Dependencies

I Read-after-read: These situations aren’t really dependencies,
and do not prevent vectorization or parallel execution. If a
variable is not written, it does not matter how often it is read.

I Write-after-write: Otherwise known as ’output’, dependencies,
where the same variable is written to in more than one
iteration, are in general unsafe for parallel execution, including
vectorization.

Help to auto-vectoriser

I Change data layout - avoid non-unit strides
I Use the restrict key word (C C++)
I Use array notation
I Use #pragma ivdep

I Use #pragma vector always

I Use #pragma simd

I Use elemental functions

Vectorization: arrays and restrict
I Writing "clean" code is a good starting point to have

the code vectorized
I Prefer array indexing instead of explicit pointer arithmetic
I Use restrict keyword to tell the compiler that there is no array

aliasing
I The use of the restrict keyword in pointer declarations informs

the compiler that it can assume that during the lifetime of the
pointer only this single pointer has access to the data
addressed by it that is, no other pointers or arrays will use the
same data space. Normally, it is adequate to just restrict
pointers associated with the left-hand side of any assignment
statement, as in the following code example. Without the
restrict keyword, the code will not vectorize.
void f(int n, float *x, float *y, float *restrict z, float *d1, float *d2)
{
for (int i = 0; i < n; i++)
z[i] = x[i] + y[i]-(d1[i]*d2[i]);
}

Vectorization: array notation

I Using array notation is a good way to guarantee the compiler
that the iterations are independent

I In Fortran this is consistent with the language array syntax
a(1:N) = b(1:N) + c(1:N)

I In C the array notation is provided by Intel Cilk Plus
a[1:N] = b[1:N] + c[1:N]

I Beware:
I The first value represents the lower bound for both languages
I But the second value is the upper bound in Fortran whereas it is

the length in C
I An optional third value is the stride both in Fortran and in C
I Multidimensional arrays supported, too

Algorithm & Vectorization

I Different algorithm for the same problem could be vectorazable
or not

I Gauss-Seidel: data dependencies, can not be vectorized

for(i = 1; i < n-1; ++i)
for(j = 1; j < m-1; ++j)
a[i][j] = w0 * a[i][j] +

w1*(a[i-1][j] + a[i+1][j] + a[i][j-1] + a[i][j+1]);

I Jacobi: no data dependence, can be vectorized

for(i = 1; i < n-1; ++i)
for(j = 1; j < m-1; ++j)

b[i][j] = w0*a[i][j] +
w1*(a[i-1][j] + a[i][j-1] + a[i+1][j] + a[i][j+1]);

for(i = 1; i < n-1; ++i)
for(j = 1; j < m-1; ++j)

a[i][j] = b[i][j];

Optimization & Vectorization

I “coding tricks” can inhibit vectorization
I can be vectorized

for(i = 0; i < n-1; ++i){
b[i] = a[i] + a[i+1];

}

I can not be vectorized

x = a[0];
for(i = 0; i < n-1; ++i){

y = a[i+1];
b[i] = x + y;
x = y;

}

Help to auto-vectoriser:directives

I #pragma ivdep: this tells the compiler to ignore vector
dependencies in the loop that immediately follows the
directive/pragma. However, this is just a recommendataion,
and the compiler will not vectorize the loop if there is a clear
dependency. Use #pragma ivdep only when you know that
the assumed loop dependencies are safe to ignore.

#pragma ivdep
for(int i = 0;i < m; i++)
a[i] = a[i + k] * c;

Help to auto-vectoriser:directives

I #pragma vector: This overrides default heuristics for vectorization of the loop. You can provide a clause for a
specific task. For example, it will try to vectorize the immediately-following loop that the compiler normally would not
vectorize because of a performance efficiency reason. As another example, #pragma vector aligned will
inform that all data in the loop are aligned at a certain byte boundary so that aligned load or store SSE or AVX
instructions can be used.This directive may be ignored by the compiler when it thinks that there is a data
dependency in the loop.

I #pragma novector: This tells the compiler to disable vectorizaton for the loop that follows

void vec(int *a, int *b, int m)
{
#pragma vector
for(int i = 0; i <= m; i++)
a[32*i] = b[99*i];
}

I You can use #pragma vector always to override any efficiency heuristics during the decision to vectorize or
not, and to vectorize non-unit strides or unaligned memory accesses. The loop will be vectorized only if it is safe to
do so. The outer loop of a nest of loops will not be vectorized, even if #pragma vector always is placed before it

Help to auto-vectoriser:directives

I #pragma simd: This is used to enforce vectorization for a
loop that the compiler doesn’t auto-vectorize even with the use
of vectorization hints such as #pragma vector always or
#pragma ivdep. Because of this nature of enforcement, it is
called user-mandated vectorization. A clause can be
accompanied to give a more specific direction (see
documentation).
#pragma simd private(b)
for(i=0; i<MAXIMUS; i++)
{
if(a[i] > 0)
{
b = a[i];
a[i] = 1.0/a[i];
}
if(a[i] > 1)a[i] += b;
}

Elemental function
I Elemental functions are user-defined functions that can be

used to operate on each element of an array. The three steps
to writing a function are as follows:

1. Write the function using normal scalar operations. Restrictions
exist on what kind of code can be included. Specifically, you
must not include loops, switch statements, goto , setjmp ,
longjmp , function calls (except to other elemental functions or
math library intrinsics).

2. Decorate the function name with __declspec(vector) .
3. Call the function with vector arguments.

I In the following code snippet, the multwo function is applied to
each element of array A . At optimization levels -O2 and above,
the compiler generates vectorized code for the example.
int __declspec(vector) multwo(int i){return i * 2;}
int main()
{
int A[100];
A[:] = 1;
for (int i = 0 ; i < 100; i++)
multwo(A[i]);
}

Consistency of SIMD results

Two issues can effect reproducibility: because the order of the
calculations can change

I Alignment
I Parallelism

I Try to align to the SIMD register size
I MMX: 8 Bytes;
I SSE2: 16 bytes,
I AVX: 32 bytes
I MIC: 64 bytes

I Try to align blocks of data to cacheline size - ie 64 bytes

Compiler Intrinsics for Alignment

I __declspec(align(base, [offset])) Instructs the
compiler to create the variable so that it is aligned on an
"base"-byte boundary, with an "offset" (Default=0) in bytes from
that boundary

I void* _mm_malloc (int size, int n) Instructs the
compiler to create a pointer to memory such that the pointer is
aligned on an n-byte boundary

I #pragma vector aligned | unaligned Use aligned or
unaligned loads and stores for vector accesses

I __assume_aligned(a,n) Instructs the compiler to assume
that array a is aligned on an n-byte boundary

Vectorized loops?

-vec-report[N] (deprecated)
-qopt-report[=N] -qopt-report-phase=vec

N Diagnostic Messages
0 No diagnostic messages; same as not using switch

and thus default
1 Tells the vectorizer to report on vectorized loops.
2 Tells the vectorizer to report on vectorized

and non-vectorized loops.
3 Tells the vectorizer to report on vectorized

and non-vectorized loops and any proven
or assumed data dependences.

4 Tells the vectorizer to report on non-vectorized loops.
5 Tells the vectorizer to report on non-vectorized loops

and the reason why they were not vectorized.
6 Tells the vectorizer to use greater detail when reporting

on vectorized and non-vectorized loops and any proven
or assumed data dependences.

7 Tells the vectorizer to emit vector code quality message ids
and corresponding data values for vectorized loops.
It provides information such as the expected speedup,
memory access patterns, and the number of vector idioms
for vectorized loops.

Vectorization Report:example

ifort -O3 -qopt-report=5

LOOP BEGIN at matmat.F90(51,1)
remark #25427: Loop Statements Reordered
remark #15389: vectorization support: reference C has unaligned access
remark #15389: vectorization support: reference B has unaligned access

[matmat.F90(50,1)]
remark #15389: vectorization support: reference A has unaligned access

[matmat.F90(49,1)]
remark #15381: vectorization support: unaligned access used inside loop body

[matmat.F90(49,1)]
remark #15301: PERMUTED LOOP WAS VECTORIZED
remark #15451: unmasked unaligned unit stride stores: 3
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 229
remark #15477: vector loop cost: 43.750
remark #15478: estimated potential speedup: 5.210
remark #15479: lightweight vector operations: 24
remark #15480: medium-overhead vector operations: 2
remark #15481: heavy-overhead vector operations: 1
remark #15482: vectorized math library calls: 2
remark #15487: type converts: 2
remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=28

LOOP END

Vectorization:conclusion

I Vectorization occurs in tight loops "automatically" by the
compiler

I Need to know where vectorization should occur, and verify that
compiler is doing that.

I Need to know if a compiler’s failure to vectorize is legitimate
I Fix code if so, use #pragma if not

I Need to be aware of caching and data access issues
I Very fast vector units need to be well fed

Will it vectorize?

Assume a, b and x are known to be independent

for (j=1; j<MAX; j++) a[j]=a[j-n]+b[j];

Vectorizes if n≤ 0; doesn’t vectorize if n > 0 and small; may vectorize if n≥ number of
elements in a vector register

for (int i=0; i<SIZE; i+=2) b[i] += a[i] * x[i];

Unlikely to vectorize because of non-unit stride (inefficient)

for (int j=0; j<SIZE; j++) {
for (int i=0; i<SIZE; i++) b[i] += a[i][j] * x[j];

Doesn’t vectorize because of non-unit stride, unless compiler can first interchange the

order of the loops. (Here, it can)

Will it vectorize?

Assume a, b and x are known to be independent

for (j=1; j<MAX; j++) a[j]=a[j-n]+b[j];

Vectorizes if n≤ 0; doesn’t vectorize if n > 0 and small; may vectorize if n≥ number of
elements in a vector register

for (int i=0; i<SIZE; i+=2) b[i] += a[i] * x[i];

Unlikely to vectorize because of non-unit stride (inefficient)

for (int j=0; j<SIZE; j++) {
for (int i=0; i<SIZE; i++) b[i] += a[i][j] * x[j];

Doesn’t vectorize because of non-unit stride, unless compiler can first interchange the

order of the loops. (Here, it can)

Will it vectorize?

Assume a, b and x are known to be independent

for (j=1; j<MAX; j++) a[j]=a[j-n]+b[j];

Vectorizes if n≤ 0; doesn’t vectorize if n > 0 and small; may vectorize if n≥ number of
elements in a vector register

for (int i=0; i<SIZE; i+=2) b[i] += a[i] * x[i];

Unlikely to vectorize because of non-unit stride (inefficient)

for (int j=0; j<SIZE; j++) {
for (int i=0; i<SIZE; i++) b[i] += a[i][j] * x[j];

Doesn’t vectorize because of non-unit stride, unless compiler can first interchange the

order of the loops. (Here, it can)

Will it vectorize?

Assume a, b and x are known to be independent

for (j=1; j<MAX; j++) a[j]=a[j-n]+b[j];

Vectorizes if n≤ 0; doesn’t vectorize if n > 0 and small; may vectorize if n≥ number of
elements in a vector register

for (int i=0; i<SIZE; i+=2) b[i] += a[i] * x[i];

Unlikely to vectorize because of non-unit stride (inefficient)

for (int j=0; j<SIZE; j++) {
for (int i=0; i<SIZE; i++) b[i] += a[i][j] * x[j];

Doesn’t vectorize because of non-unit stride, unless compiler can first interchange the

order of the loops. (Here, it can)

Will it vectorize?

Assume a, b and x are known to be independent

for (j=1; j<MAX; j++) a[j]=a[j-n]+b[j];

Vectorizes if n≤ 0; doesn’t vectorize if n > 0 and small; may vectorize if n≥ number of
elements in a vector register

for (int i=0; i<SIZE; i+=2) b[i] += a[i] * x[i];

Unlikely to vectorize because of non-unit stride (inefficient)

for (int j=0; j<SIZE; j++) {
for (int i=0; i<SIZE; i++) b[i] += a[i][j] * x[j];

Doesn’t vectorize because of non-unit stride, unless compiler can first interchange the

order of the loops. (Here, it can)

Will it vectorize?

Assume a, b and x are known to be independent

for (j=1; j<MAX; j++) a[j]=a[j-n]+b[j];

Vectorizes if n≤ 0; doesn’t vectorize if n > 0 and small; may vectorize if n≥ number of
elements in a vector register

for (int i=0; i<SIZE; i+=2) b[i] += a[i] * x[i];

Unlikely to vectorize because of non-unit stride (inefficient)

for (int j=0; j<SIZE; j++) {
for (int i=0; i<SIZE; i++) b[i] += a[i][j] * x[j];

Doesn’t vectorize because of non-unit stride, unless compiler can first interchange the

order of the loops. (Here, it can)

Will it vectorize?

Assume a, b and x are known to be independent

for (j=1; j<MAX; j++) a[j]=a[j-n]+b[j];

Vectorizes if n≤ 0; doesn’t vectorize if n > 0 and small; may vectorize if n≥ number of
elements in a vector register

for (int i=0; i<SIZE; i+=2) b[i] += a[i] * x[i];

Unlikely to vectorize because of non-unit stride (inefficient)

for (int j=0; j<SIZE; j++) {
for (int i=0; i<SIZE; i++) b[i] += a[i][j] * x[j];

Doesn’t vectorize because of non-unit stride, unless compiler can first interchange the

order of the loops. (Here, it can)

Will it vectorize?
for (int i=0; i<SIZE; i++) b[i] += a[i] * x[index[i]];

Doesn’t vectorize because of indirect addressing (non-unit stride), would be inefficient.
If x[index[i]] appeared on the LHS, this would also introduce potential dependency
(index[i] might have the same value for different values of i)

for (j=1; j<MAX; j++) sum = sum + a[j]*b[j]

Reductions such as this will vectorize. The compiler accumulates a number of partial
sums (equal to the number of elements in a vector register), and adds them together at
the end of the loop.

for (int i=0; i<length; i++) {
float s = b[i]*b[i]-4.f*a[i]*c[i];
if (s >= 0) x2[i] = (-b[i]+sqrt(s))/(2.*a[i]);

}

This will vectorize. Neither "if" masks nor most simple math intrinsic functions prevent

vectorization. But with SSE, the sqrt is evaluated speculatively. If FP exceptions are

unmasked, this may trap if s<0, despite the if clause. With AVX, there is a real

hardware mask, so the sqrt will never be evaluated if s<0, and no exception will be

trapped.

Will it vectorize?
for (int i=0; i<SIZE; i++) b[i] += a[i] * x[index[i]];

Doesn’t vectorize because of indirect addressing (non-unit stride), would be inefficient.
If x[index[i]] appeared on the LHS, this would also introduce potential dependency
(index[i] might have the same value for different values of i)

for (j=1; j<MAX; j++) sum = sum + a[j]*b[j]

Reductions such as this will vectorize. The compiler accumulates a number of partial
sums (equal to the number of elements in a vector register), and adds them together at
the end of the loop.

for (int i=0; i<length; i++) {
float s = b[i]*b[i]-4.f*a[i]*c[i];
if (s >= 0) x2[i] = (-b[i]+sqrt(s))/(2.*a[i]);

}

This will vectorize. Neither "if" masks nor most simple math intrinsic functions prevent

vectorization. But with SSE, the sqrt is evaluated speculatively. If FP exceptions are

unmasked, this may trap if s<0, despite the if clause. With AVX, there is a real

hardware mask, so the sqrt will never be evaluated if s<0, and no exception will be

trapped.

Will it vectorize?
for (int i=0; i<SIZE; i++) b[i] += a[i] * x[index[i]];

Doesn’t vectorize because of indirect addressing (non-unit stride), would be inefficient.
If x[index[i]] appeared on the LHS, this would also introduce potential dependency
(index[i] might have the same value for different values of i)

for (j=1; j<MAX; j++) sum = sum + a[j]*b[j]

Reductions such as this will vectorize. The compiler accumulates a number of partial
sums (equal to the number of elements in a vector register), and adds them together at
the end of the loop.

for (int i=0; i<length; i++) {
float s = b[i]*b[i]-4.f*a[i]*c[i];
if (s >= 0) x2[i] = (-b[i]+sqrt(s))/(2.*a[i]);

}

This will vectorize. Neither "if" masks nor most simple math intrinsic functions prevent

vectorization. But with SSE, the sqrt is evaluated speculatively. If FP exceptions are

unmasked, this may trap if s<0, despite the if clause. With AVX, there is a real

hardware mask, so the sqrt will never be evaluated if s<0, and no exception will be

trapped.

Will it vectorize?
for (int i=0; i<SIZE; i++) b[i] += a[i] * x[index[i]];

Doesn’t vectorize because of indirect addressing (non-unit stride), would be inefficient.
If x[index[i]] appeared on the LHS, this would also introduce potential dependency
(index[i] might have the same value for different values of i)

for (j=1; j<MAX; j++) sum = sum + a[j]*b[j]

Reductions such as this will vectorize. The compiler accumulates a number of partial
sums (equal to the number of elements in a vector register), and adds them together at
the end of the loop.

for (int i=0; i<length; i++) {
float s = b[i]*b[i]-4.f*a[i]*c[i];
if (s >= 0) x2[i] = (-b[i]+sqrt(s))/(2.*a[i]);

}

This will vectorize. Neither "if" masks nor most simple math intrinsic functions prevent

vectorization. But with SSE, the sqrt is evaluated speculatively. If FP exceptions are

unmasked, this may trap if s<0, despite the if clause. With AVX, there is a real

hardware mask, so the sqrt will never be evaluated if s<0, and no exception will be

trapped.

Will it vectorize?
for (int i=0; i<SIZE; i++) b[i] += a[i] * x[index[i]];

Doesn’t vectorize because of indirect addressing (non-unit stride), would be inefficient.
If x[index[i]] appeared on the LHS, this would also introduce potential dependency
(index[i] might have the same value for different values of i)

for (j=1; j<MAX; j++) sum = sum + a[j]*b[j]

Reductions such as this will vectorize. The compiler accumulates a number of partial
sums (equal to the number of elements in a vector register), and adds them together at
the end of the loop.

for (int i=0; i<length; i++) {
float s = b[i]*b[i]-4.f*a[i]*c[i];
if (s >= 0) x2[i] = (-b[i]+sqrt(s))/(2.*a[i]);

}

This will vectorize. Neither "if" masks nor most simple math intrinsic functions prevent

vectorization. But with SSE, the sqrt is evaluated speculatively. If FP exceptions are

unmasked, this may trap if s<0, despite the if clause. With AVX, there is a real

hardware mask, so the sqrt will never be evaluated if s<0, and no exception will be

trapped.

Will it vectorize?
for (int i=0; i<SIZE; i++) b[i] += a[i] * x[index[i]];

Doesn’t vectorize because of indirect addressing (non-unit stride), would be inefficient.
If x[index[i]] appeared on the LHS, this would also introduce potential dependency
(index[i] might have the same value for different values of i)

for (j=1; j<MAX; j++) sum = sum + a[j]*b[j]

Reductions such as this will vectorize. The compiler accumulates a number of partial
sums (equal to the number of elements in a vector register), and adds them together at
the end of the loop.

for (int i=0; i<length; i++) {
float s = b[i]*b[i]-4.f*a[i]*c[i];
if (s >= 0) x2[i] = (-b[i]+sqrt(s))/(2.*a[i]);

}

This will vectorize. Neither "if" masks nor most simple math intrinsic functions prevent

vectorization. But with SSE, the sqrt is evaluated speculatively. If FP exceptions are

unmasked, this may trap if s<0, despite the if clause. With AVX, there is a real

hardware mask, so the sqrt will never be evaluated if s<0, and no exception will be

trapped.

Interprocedural Optimization
I O2 and O3 activate "almost" file-local IPO (-ip)

I Only a very few, time-consuming IP-optimizations are not done
but for most codes, -ip is not adding anything

I Switch -ip-no-inlining disables in-lining
I IPO extends compilation time and memory usage

I See compiler manual when running into limitations
I In-lining of functions is most important feature of IPO but there

is much more
I Inter-procedural constant propagation
I MOD/REF analysis (for dependence analysis)
I Routine attribute propagation
I Dead code elimination
I Induction variable recognition
I ...many, many more

I IPO improves auto-vectorization results of the sample
application

I IPO brings some new ’tricky-to-find’ auto-vectorization
opportunities.

Profile Guided Optimization

I All the optimization methods described have been static
I Static analysis is good, but it leaves many questions open
I PGO uses a dynamic approach
I One or more runs are made on unoptimized code with typical

data, collecting profi le information each time
I This profile information is then used with optimizations set to

create a final executable

Profile Guided Optimization:benefits

I More accurate branch prediction
I Basic code block movements to improve instruction cache

behavior
I Better decision of functions to inline
I Can optimize function ordering
I Switch-statement optimizer
I Better vectorization decisions

Profile Guided Optimization
1. Compile your unoptimized code with PGO

icc -prof-gen prog.c

It produces an executable with instrumented information included
2. Make multiple runs with different sets of typical data input; each run

automatically produces a dynamic information (.dyn) file

./a.out

If you change your code during test runs, you need to remove any existing
.dyn files before creating others with the new code

3. Finally, switch on all your desired optimizations and do a feedback compile
with PGO to produce a fi nal PGO executable

icc -prof-use prog.c

In addition to the optimized executable, the compiler produces a pgopti.dpi
file. You typically specify the default optimizations, -02 , for phase 1, and
specify more advanced optimizations, -ipo , for phase 3. For example, the
example shown above used -O2 in phase 1 and -ipo in phase 3

I -opt-report-phase=pgo Creates a PGO report

Outline

Architectures

Optimization

Vectorization

Performance and parallelism

Programmming Models

Profiling and Debugging

Performance and parallelism

I In principle the main advantage of using Intel MIC technology
with respect to other coprocessors is the simplicity of the
porting

I Programmers may compile their source codes based on
common HPC languages (Fortran/ C / C++) specifying MIC as
the target architecture (native mode)

I Is it enough to achieve good performances? By the way, why
offload?

I Usually not, parallel programming is not easy
I A general need is to expose parallelism

GPU vs MIC

I GPU paradigms (e.g. CUDA):
I Despite the sometimes significant effort required to port the

codes...
I ...are designed to force the programmer to expose (or even

create if needed) parallelism
I Programming Intel MIC

I The optimization techniques are not far from those devised for
the common CPUs

I As in that case, achieving optimal performance is far from being
straightforward

I What about device maturity?

Intel Xeon Phi very basic features

I Let us recall 3 basic features of current Intel Xeon Phi:
I Peak performance originates from "many slow but vectorizable

cores"

clock frequency x n. cores x n. lanes x 2 FMA Flops/cycle
1.091 GHz x 61 cores x 16 lanes x 2 = 2129.6 Gflops/cycle
1.091 GHz x 61 cores x 8 lanes x 2 = 1064.8 Gflops/cycle

I Bandwidth is (of course) limited, caches and alignment matter
I The card is not a replacement for the host processor. It is a

coprocessor providing optimal power efficiency

Optimization key points

In general terms, an application must fulfill three requirements
to efficiently run on a MIC

1. Highly vectorizable, the cores must be able to exploit the vector
units. The penalty when the code cannot be vectorized is very
high

2. high scalability, to exploit all MIC multi-threaded cores:
scalability up to 240 processors (processes/threads) running
on a single MIC, and even higher running on multiple MIC

3. ability of hiding I/O communications with the host processors
and, in general, with other hosts or coprocessors

Outline

Architectures

Optimization

Vectorization

Performance and parallelism

Programmming Models

Profiling and Debugging

Introduction

I The programming model and compiler make it easy to develop
or port code to run on a system with an Intel Xeon Phi
coprocessor

I Full integration into both C/C++ and Fortran
I Enables use of Intel’s optimizing compilers on both host and

coprocessor
I Vectorization
I Parallel programming with TBB, Intel Cilk Plus, OpenMP, MPI,

OpenCL
I Enables co-operative processing between host and

coprocessor

Programming models
I An Intel Xeon Phi coprocessor is accessed via the host

system, but may be programmed either as a coprocessor(s) or
as an autonomous processor.

I The appropriate model may depend on application and context.

I Host only
I Coprocessor only "native"

I Target Code: Highly parallel (threaded and vectorized)
throughout.

I Potential Bottleneck: Serial/scalar code
I Offload with LEO

I Target Code: Mostly serial, but with expensive parallel regions
I Potential Bottleneck: Data transfers.

I Symmetric with MPI
I Target Code: Highly parallel and performs well on both

platforms.
I Potential Bottleneck: Load imbalance.

Programming models

I MPI
I Used for "native" and "symmetric" execution.
I Can launch ranks across processors and coprocessors.

I OpenMP
I Used for "native", "offload" and "symmetric" execution.
I Newest standard (4.0) supports "target" syntax for offloading.

I Many real-life HPC codes use a native MPI/OpenMP hybrid
I Balance task granularity by tuning combination of ranks/threads.

(e.g.16 MPI ranks x 15 OpenMP threads)

Native mode

PRO
I it is a cross-compiling mode
I just add -mmic, login and execute
I use well known OpenMP and MPI

CONS
I very slow I/O
I poor single thread performance
I only suitable for highly parallel codes (cfr Amdahl)
I CPU unused

Native mode

Native model may be appropriate if app:
I Contains very little serial processing
I Has a modest memory footprint
I Has a very complex code structure and/or
I does not have well-identified hot kernels than can be offloaded

without substantial data transfer overhead
I Does not perform extensive Input Output

What is offloading

I Code is instrumented with directives
I Compiler creates a CPU binary and a MIC binary for offloaded

code block.
I Loader places both binaries in a single file
I During CPU execution of the application an encountered

offload code block is executed on a coprocessor (through
runtime), subject to the constraints of the target specifier...

I When the coprocessor is finished, the CPU resumes executing
the CPU part of the code.

The Offload Mechanism

The basic operations of an offload rely on interaction with the
runtime to:

I Detect a target phi coprocessor
I Allocate memory space on the coprocessor
I Transfer data from the host to the coprocessor
I Execute offload binary on coprocessor
I Transfer data from the coprocessor back to the host
I Deallocate space on coprocessor

Offload model

Offload model may be appropriate because:
I Better serial processing
I More memory
I Better file access
I Makes greater use of available resources

1. Try offloading compute-intensive section
If it isn’t threaded, make it threaded

2. Optimize data transfers
3. Split calculation & use asynchronous mechanisms

Offload model

Offload model may be appropriate because:
I Better serial processing
I More memory
I Better file access
I Makes greater use of available resources

1. Try offloading compute-intensive section
If it isn’t threaded, make it threaded

2. Optimize data transfers
3. Split calculation & use asynchronous mechanisms

Offload model

I Intel Xeon Phi supports two offload models:
I Explicit:

Data transfers from host to/from coprocessor are initiated by
programmer

I Implicit:
Data is (virtually) shared (VSHM) between host and
coprocessor

I Also called LEO (Language Extensions for Offload)

Offload model

via Explicit Data via Implicit data
Meaning ... Emulate shared data by copying Maintain coherence in a range of

back and forth at point of offload virtual addresses on host and
Phi, automatically in software

Languaga Support Fortran, C, C++ C, C++
Syntax Pragmas /Directives: Keywords:

!dir$ [omp] offload in Fortran _Cilk_shared and
#pragma offload in C C++ _Cilk_offload

Used for ... Offloads that transfer contiguous blocks of data Offloads that transfer all or parts of complex
data structures, or many small pieces of data

Directives

I Directives can be inserted before code blocks and functions to
run the code on the Xeon Phi Coprocessor (the "MIC").

I No recoding required. (Optimization may require some
changes.)

I Directives are simple, but more "details" (specifiers) can be
used for optimal performance.

I Data must be moved to the MIC
I For large amounts of data:

I Amortize with large amounts of work.
I Keep data resident ("persistent").
I Move data asynchronously.

LEO: pragmas
Offload pragma/directive for data marshalling

I #pragma offload <clauses> in C/C++
Offloads the following OpenMP block or Intel Cilk Plus
construct or function call or compound statement

I !dir$ offload <clauses> in Fortran
Offloads the following OpenMP block or subroutine/function call

I !dir$ offload <clauses>..
!dir$ end offload to offload other block of code

I Offloaded data must be scalars, arrays, bit-wise copyable
structs (C/C++) or derived types (Fortran)

I no embedded pointers or allocatable arrays
I Excludes all but simplest C++ classes
I Excludes most Fortran 2003 object-oriented constructs
I All data types can be used within the target code
I Data copy is explicit

Explicit Offload

Explicit offloading requires user to manage data persistence:
I Data/Functions marked as...

I C C++
#pragma offload_attribute(push, target(mic))

...
#pragma offload_attribute(pop))
_attribute__((target(mic)))

I Fortran:
!DIR$ OPTIONS /OFFLOAD_ATTRIBUTE_TARGET=mic
!DIR$ ATTRIBUTES OFFLOAD:mic :: <subroutine>
Will exist on both the host and target systems and copied
between host and target when referenced.

I Named targets
I target(mic): target(mic)
I target(mic:n): explicitly name the logical card number n

Example: C

__attribute__ ((target(mic)))
void foo(){
printf("Hello MIC\n");
}

int main(){
#pragma offload target(mic)
foo();
return 0;
}

Example: Fortran

!dir$ attributes &
!dir$ offload:mic ::hello
subroutine hello
write(*,*)"Hello MIC"
end subroutine

program main
!dir$ attributes &
!dir$ offload:mic :: hello
!dir$ offload begin target (mic)
call hello()
!dir$ end offload
end program

Compiler Usage

1. Insert Offload Directive
2. Compile with Intel Compiler

I How to turn off offloading: use -no-offload option
I Activate reporting -opt-report-phase:offload
I -offload-attribute-target=mic flag all global

variables and functions for offload
I For offload models, pass options via -offload-option

Example
icc test.c -O2 -offload-option,mic,compiler,"-O3 -vec-report3"

Offload Performance

I By default when a program performs the first
#pragma offload all MIC devices assigned to the program
are initialized

I Initialization consists of loading the MIC program on to each
device, setting up a data transfer pipeline between CPU and
the device and creating a MIC thread to handle offload
requests from the CPU thread

I These activities take time
I Do not place the first offload within a timing measurement
I Exclude this one-time overhead by performing a dummy offload

to the device
I Alternatively, use the OFFLOAD_INIT=on_start

environment variable setting to pre-initialize all available MIC
devices before starting the main program

Data Transfer

I Automatically detected and transferred as INOUT
I Named arrays in static scope
I Scalars in static scope

I User can override automatic transfer with explicit
IN/OUT/INOUT clauses

I Not automatically transferred
I Memory pointed to by pointers (This also needs a length

parameter)
I Global variables used in functions called within the offloaded

construct
I User must specify IN/OUT/INOUT clauses

https://software.intel.com/en-us/articles/
effective-use-of-the-intel-compilers-offload-features

Explicit Offload

I Pure data transfer:
I #pragma offload_transfer target(mic0)
I !DIR$ offload_transfer target(mic0)
I Asynchronous transfers:

Clauses signal(<id>) & wait(<id>)
I Offloading code:

I #pragma offload target(mic0) <code_scope>
I !DIR$ offload target(mic0) <code_scope>

Data Transfer

I Programmer clauses for explicit copy:
in, out, inout, nocopy

I Data transfer with offload region:
C/C++ #pragma offload target(mic)...
...in(data:length(size))
Fortran !dir$ offload target (mic)...
...in(data:length(size))

I Data transfer without offload region:
C/C++ #pragma offload_transfer target(mic) ...
...in(data:length(size))
Fortran !dir$ offload_transfer target(mic)...
...in(data:length(size))

Data Transfer:example

C C++
#pragma offload target (mic) out(a:length(n)) \
in(b:length(n))
for (i=0; i<n; i++){
a[i] = b[i]+c*d

Fortran
!dir$ offload begin target(mic) out(a) in(b)
do i=1,n
a(i)=b(i)+c*d
end do
!dir$ end offload

Offload Model:memory

I Memory allocation
I CPU is managed as usual
I on coprocessor is defined by in,out,inout,nocopy clauses

I Input/Output pointers
I by default on coprocessor "new" allocation is performed for each

pointer
I by default de-allocation is performed after offload region
I defaults can be modified with alloc_if and free_if

qualifiers
I With into(...) clause you can specify data to be moved to

other variables/memory

Data Transfer

in The variables are strictly an input to the target region.
Its value is not copied back after the region completes.

out The variables are strictly an output of the target region.
The host CPU does not copy the variable to the target.

inout The variable is both copied from the CPU to the target
and back from the target to the CPU.

nocopy A variable whose value is reused from a previous target
execution or one that is used entirely within the offloaded
code section may be named in a nocopy clause
to avoid any copying.

Data Transfer

When are alloc_if and free_if clauses needed?
I Needed for pointers or allocatable arrays

I Default is to always allocate and free memory for pointers that
are within the lexical scope of the offload, not otherwise

I use free_if(0) if you want to memory and data to persist
until next offload

I Need alloc_if(1) for globals that are not lexically visible
and are NOCOPY

I Or use alloc_if(expression) to make dependent on
runtime data

Data Transfer

When are alloc_if and free_if clauses needed?
I Not needed for statically allocated data

I These are statically allocated and persistent on the
coprocessor, even for arrays that are not lexically visible or have
a NOCOPY clause.

I Syntax:
#pragma offload nocopy(myptr:length(n):...
...alloc_if(expression))
!DIR$ OFFLOAD IN(FPTR:length(n):...
...free_if(.false.))

Data Transfer:suggestion
For Readability define macros

I #define ALLOC alloc_if(1)
I #define FREE free_if(1)
I #define RETAIN free_if(0)
I #define REUSE alloc_if(0)

#pragma offload target(mic) in(p:length(l))
I Allocate and do not free
#pragma offload target(mic) in (p:length(l)...
...ALLOC RETAIN)

I Reuse memory allocated above and do not free
#pragma offload target(mic) in (p:length(l)...
... REUSE RETAIN)

I Reuse memory allocated above and free
#pragma offload target(mic) in (p:length(l)...
... REUSE FREE)

Data Transfer:suggestion
For Readability define macros

I #define ALLOC alloc_if(1)
I #define FREE free_if(1)
I #define RETAIN free_if(0)
I #define REUSE alloc_if(0)
#pragma offload target(mic) in(p:length(l))

I Allocate and do not free
#pragma offload target(mic) in (p:length(l)...
...ALLOC RETAIN)

I Reuse memory allocated above and do not free
#pragma offload target(mic) in (p:length(l)...
... REUSE RETAIN)

I Reuse memory allocated above and free
#pragma offload target(mic) in (p:length(l)...
... REUSE FREE)

Preprocessor Macros
__INTEL_OFFLOAD

I Set automatically unless disabled by -no-offload (or
-mmic)

I Set for the host compilation but not the target (coprocessor)
compilation

I Use to protect code on the host that is specific for offload e.g.
omp_num_set_threads_target() family of APIs but must
remember to set -no-offload for host only builds
__MIC__

I NOT set for host compilation in an offload build
I Set automatically for target (coprocessor) compilation in offload

build
I Also set automatically when building native coprocessor

application
I Use to protect code that is compiled & executed only on

coprocessor e.g. _mm512 intrinsics

Specific environment variables

MIC Env Variable Default Value Description
MIC_ENV_PREFIX none Environment variables (except those below)

are stripped of this prefix and underscore sent
to coprocessor. Often set to "MIC".

MIC_<card #>_ENV none List of environment variables to set on card #
MIC_LD_LIBRARY_PATH set by compiler vars script Search paths for coprocessor shared libraries
MIC_USE_2MB_BUFFERS Don’t use Use 2MB pages for pointer data where

(size > MIC_USE_2M_BUFFERS)
MIC_STACKSIZE 12M Main thread stack size limit for pthreads
OFFLOAD_REPORT none Report about Offload activity (0,1,2,3)

Preprocessor Macros:example

#ifdef __INTEL_OFFLOAD
#include <offload.h>
#endif
...
#ifdef __INTEL_OFFLOAD
printf("%d MICS available\n",_Offload_number_of_devices());
#endif
...
int main(){
#pragma offload target(mic)
{
#ifdef __MIC__
printf("Hello MIC number %d\n", _Offload_get_device_number());
#else
printf("Hello HOST\n");
#endif
}
}

Asynchronous Offload
New synchronization clauses SIGNAL(&x) and WAIT(&x)

I Argument is a unique address
(usually of the data being transferred)
Data:

I #pragma offload_transfer target(mic:n) ...
...IN(....) signal(&s1)

I Standalone data offload
I #pragma offload_wait target(mic:n) wait(&s1)

I Standalone synchronization, host waits for transfer completion
(blocking)

Computation:
I #pragma offload target(mic:n) wait(&s1)...
...signal(&s2)

I Offload computation when data transfer has completed
I Computation on host then continues in parallel

I #pragma offload_wait target(mic:n) wait(&s2)
I Host waits for signal that offload computation completed

There is also a non-blocking API to test signal value

Asynchronous Offload

float *T;
int N_OFFLOAD = 2*NTOT/3;
#pragma offload target(mic:0) in(T:length(N_OFFLOAD)) ...
...out(Result:length(N_OFFLOAD)) \
signal (&T)
{
#pragma omp parallel for
for(int opt = 0; opt < N_OFFLOAD; opt++) {
... // do first 2/3 of work on coprocessor
}
}
#pragma omp parallel for
for(int opt = N_OFFLOAD; opt < NTOT; opt++) {
... // do remainder of work on host
}
{
// synchronization before continuing on host using results of offload
#pragma offload_wait target(mic:0) wait (&T)
// easily extended to offload work to multiple coprocessors, using different signals

Offload region:OpenMP

The code section to be executed on accelerators are marked by
a target construct.

I A target region is executed by a single thread, called the initial
device thread

I Parallelism on accelerator is specified by traditional and
extended Openmp-parallel constructs

I The task that encounters the target construct waits at the end
of the construct until execution of the region completes

I If a target device does not exist or is not supported by the
implementation, the target region is executed by the host
device

Offload region:OpenMP

C
#pragma offload target (mic)
#pragma omp parallel for
for (i=0; i<n; i++){
a[i]=b[i]*c+d;
}

Fortran
!dir$ omp offload target (mic)
!$omp parallel do
do i=1,n
A(i)=B(i)*C+D
end do
!$omp end parallel

Offload region:OpenMP

I The basics work just like on the host CPU
I For both native and offload models
I Need to specify -openmp

I There are 4 hardware thread contexts per core
I Need at least 2 x ncore threads for good performance
I For all except the most memory-bound workloads
I Often, 3x or 4x (number of available cores) is best
I Very different from hyperthreading on the host!
I -opt-threads-per-core=n advises compiler how many

threads to optimize for
I If you don’t saturate all available threads, be sure to set
KMP_AFFINITY to control thread distribution

OpenMP defaults

I $OMP_NUM_THREADS defaults to
I 1 x ncore for host (or 2x if hyperthreading enabled)
I 4 x ncore for native coprocessor applications
I 4 x (ncore-1) for offload applications
I one core is reserved for offload daemons and OS

I Defaults may be changed via environment variables or via API
calls on either the host or the coprocessor

Setting up the environment:
OMP_NUM_THREAD = 16
MIC_ENV_PREFIX = MIC
MIC_OMP_NUM_THREADS = 120

Thread Affinity Interface

Allows OpenMP threads to be bound to physical or logical
cores

I Helps optimize access to memory or cache
I Particularly important if all available h/w threads not used
I else some physical cores may be idle while others run multiple

threads

Thread Affinity
export environment variable KMP_AFFINITY=

I compact assign threads to consecutive h/w contexts on same
physical core (eg to benefit from shared cache)

I scatter assign consecutive threads to different physical
cores (eg to maximize access to memory)

I balanced blend of compact & scatter (currently only available
for Intel MIC Architecture)

Support for Multiple Coprocessors
#pragma offload target(mic [:coprocessor #])...
coprocessor # = <expr> % NumberOfDevices Code must run
on coprocessor #, aborts if not available (counts from 0) If -1 ,
runtime chooses coprocessor, aborts if not available If not
present, runtime chooses coprocessor or runs on host if none
available

I APIs: #include offload.h (C C++)
USE MIC_LIB (Fortran)
int _Offload_number_of_devices() (C C++)
result = OFFLOAD_NUMBER_OF_DEVICES(), (Fortran)

I Returns # of coprocessors installed, or 0 if none
int _Offload_get_device_number() (C C++)
result = OFFLOAD_GET_DEVICE_NUMBER() (Fortran)

I Returns coprocessor number where executed, (-1 for CPU)
I Can use to share work explicitly by coprocessor number

OFFLOAD_REPORT

Possible values: 1, 2, 3

1. Prints the offload computation time, in seconds.

2. In addition to the information produced with value 1, adds the amount of data transferred between the CPU and the
coprocessor, in bytes.

3. In addition to the information produced at value 2, gives additional details on offload activity, including device
initialization, and individual variable transfers.

Line Marker Descrption
[State] Activity being performed as part of the offload.
[Var] The name of a variable transferred and the direction(s) of transfer.
[CPU Time] The total time measured for that offload

directive on the host.
[MIC Time] The total time measured for executing

the offload on the target. This excludes the data
transfer time between the host and the target,
and counts only the execution time on the target.

[CPU->MIC Data] The number of bytes of data transferred
from the host to the target.

[MIC->CPU Data] The number of bytes of data transferred
from the target to the host.

OFFLOAD_REPORT:Example
...
[Offload] [MIC 0] [Line] 176
[Offload] [MIC 0] [Tag] Tag 300
[Offload] [HOST] [Tag 300] [State] Start Offload
[Offload] [HOST] [Tag 300] [State] Initialize function __offload_entry_compute_forces_
[Offload] [HOST] [Tag 300] [State] Create buffer from Host memory
[Offload] [HOST] [Tag 300] [State] Create buffer from MIC memory
[Offload] [HOST] [Tag 300] [State] Create buffer from Host memory
[Offload] [HOST] [Tag 300] [State] Create buffer from MIC memory
...
[Offload] [MIC 0] [Tag 300] [Var] gammaval NOCOPY
[Offload] [MIC 0] [Tag 300] [Var] alphaval NOCOPY
[Offload] [MIC 0] [Tag 300] [Var] phase_ispec_inner NOCOPY
[Offload] [MIC 0] [Tag 300] [Var] phase_ispec_inner NOCOPY
[Offload] [MIC 0] [Tag 300] [Var] var$456_dv_template_V$378 NOCOPY
[Offload] [MIC 0] [Tag 300] [Var] var$456_dv_template_V$378 NOCOPY
[Offload] [MIC 0] [Tag 300] [Var] var$191_dv_template_V$162 INOUT
[Offload] [MIC 0] [Tag 300] [Var] var$191_dv_template_V$162 INOUT
[Offload] [MIC 0] [Tag 300] [State] Scatter copyin data
Code running on MIC

[Offload] [MIC 1] [Tag 300] [State] Gather copyout data
[Offload] [MIC 1] [Tag 300] [State] MIC->CPU copyout data 0
[Offload] [MIC 0] [Tag 300] [State] Gather copyout data
[Offload] [MIC 0] [Tag 300] [State] MIC->CPU copyout data 0
[Offload] [HOST] [Tag 300] [State] Scatter copyout data
[Offload] [HOST] [Tag 300] [CPU Time] 0.128716(seconds)
[Offload] [MIC 1] [Tag 300] [CPU->MIC Data] 17885096 (bytes)
[Offload] [MIC 1] [Tag 300] [MIC Time] 0.031128(seconds)
[Offload] [MIC 1] [Tag 300] [MIC->CPU Data] 29148044 (bytes)

Implicit offloading

I Implicit Offloading: Virtual Shared Memory
I User code declares data objects to be shared:

I Data allocated at same address on host and target
I Modified data is copied at synchronization points
I Allows sharing of complex data structures
I No data marshaling necessary

Implicit offloading:example

#define N 20000.0
_Cilk_shared float FindArea(float r) \\ Explicitly shared function:
{
For both host & target
float x, y, area;
unsigned int seed = __cilkrts_get_worker_number();
cilk::reducer_opadd<int> inside(0);
cilk_for(int i = 0; i < N; i++) {
x = (float)rand_r(&seed)/RAND_MAX;
y = (float)rand_r(&seed)/RAND_MAX;
x = 2.0 * x - 1.0;
y = 2.0 * y - 1.0;
if (x * x + y * y < r * r) inside++;
}
area = 4.0 * inside.get_value() / N;
return area;
}

Implicit offloading:example

int main(int argc, char **argv)
{
// Get r1 & r2 from user...
Offload to target (big area)
Area1 = cilk_spawn _Cilk_offload FindArea(r1);
\\While target runs, compute other area on host (small area)
Area2 = FindArea(r2);
\\ Wait for host & target to complete
cilk_sync;
float Donut = Area1 - Area2;
float PI = 3.14159265;
float AreaR = PI * (r2 * r2 - r1 * r1);
float Accuracy = 100 * (1 - fabs(Donut - AreaR)/AreaR);
printf("Area1=%lf, Area2=%lf\n", Area1, Area2);
printf("Donut =%lf, Accuracy = %lf\n", Donut, Accuracy);
}

Symmetric mode

I Using MPI you can make work together the executable running
on the host and the one running on the device (compiled with
-mmic)

I Load balancing can be an issue
I Tuning of MPI and OpenMP on both host and device is crucial
I Dependent on the cluster implementation (physical network,

MPI implementation, job scheduler..)

Symmetric mode

Compile the program for the host
mpiicc -openmp -o test test.c

Compile the program for the coprocessor
mpiicc -mmic -openmp -o test.mic test.c

Set the environment
export I_MPI_MIC=enable
export I_MPI_MIC_POSTFIX=’.mic’

I I_MPI_MIC enable the Intel Xeon Phi coprocessor recognition
I I_MPI_MIC_POSTFIX specify a string as the postfix of an Intel

Xeon Phi coprocessor file name. The default value is an empty
string

Symmetric mode

Run
mpirun -machinefile hostfile ./test

Where hostfile is(for example):
node142-mic0:4
node142-mic1:4
node142:8

MKL Libraries

I Intel released a version for Xeon Phi of the MKL mathematical
libraries

I MKL have three different usage models
I Automatic offload (AO)
I Compiler assisted offload (CAO)
I Native execution

MKL Libraries
I Offload is automatic and transparent
I The library decides when to offload and how much to offload

(workdivision)
I Users can control parameters through environment variables or

API
I You can enable automatic offload with

MKL_MIC_ENABLE=1

or
mkl_mic_enable()

I Not all the MKL functions are enabled to AO. Level 3 BLAS:
xGEMM, xTRSM, xTRMM
LAPACK xGETRF, xPOTRF, xGEQRF

I Always check the documentation for updates

MKL Libraries
I MKL functions can be offloaded as other "ordinary" functions

using the LEO pragmas
I All MKL functions can take advantage of the CAO
I It’s a more flexible option in terms of data management (you

can use data persistence or mechanisms to hide the latency...)

C C++
#pragma offload target (mic) \
in (transa, transb, N, alpha, beta) \
in (A:length(matrix_elements)) in (B:length(matrix_elements)) \
inout (C:length(matrix_elements))
{
sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N, &beta, C, &N);
}

Fortran
!dir$ attributes offload : mic : sgemm
!dir$ offload target(mic) &
!dir$ in (transa, transb, m, n, k, alpha, beta, lda, ldb, ldc), &
!dir$ in (a:length(ncola*lda)), in (b:length(ncolb*ldb)) &
!dir$ inout (c:length(n*ldc))
CALL sgemm (transa, transb,m,n,k,alpha,a,lda,b,ldb,beta,c,ldc)

MKL Libraries

I MKL libraries are also available when using the native mode.
I Use all the 240 threads:

MIC_OMP_NUM_THREADS=240

I Set the thread affinity:

MIC_KMP_AFFINITY = ...

Outline

Architectures

Optimization

Vectorization

Performance and parallelism

Programmming Models

Profiling and Debugging

Loop Profiler (no parallel version code)
Identify Time Consuming Loops/Functions

I Compiler switch
I -profile-functions

I Insert instrumentation calls on function entry and exit points to
collect the cycles spent within the function.

I -profile-loops= <inner|outer|all>
I Insert instrumentation calls for function entry and exit points as

well as the instrumentation before and after instrument able loops
of the type listed as the option’s argument.

I You can read the results from the .dump text file
I GUI-based data viewer utility

I Input is generated XML output file, named
loop_prof_<timestamp>.xml

loopprofileviewer.sh <datafile>

Loop Profiler:dump file

time(abs) time(%) self(abs) self(%) call_count exit_count loop_ticks(%) function file:line
8432294327 100.00 70546995207 67.66 1 1 0.00 MAIN__ fem.F:1
2607725174 30.93 134933586349 16.00 715 715 0.00 s_par_ s_par.F:3
2579776614 14.92 25797766140 14.92 5728 5728 0.00 sol_ sol.F:4
541913956 0.64 4499167955 0.53 1 1 0.00 cost_ costr.F:1
320566224 0.38 3205662248 0.38 1 1 0.00 pres_ presol.F:2
164528333 0.20 1645283337 0.20 715 715 0.00 funz_ funz.F:1
122051340 0.14 1220513408 0.14 1 1 0.00 prel_ fem.F:3301
...

Loop Profiler:xml file

Auto-Parallelizer

I The Intel compiler has an auto-parallelizer that can
automatically add parallelism to loops.

I By default, the auto-parallelizer is disabled, but you can enable
it with the -parallel option.

I Use this feature to give hints on where best to parallelize their
code.

Auto-Parallelizer

I Finds loops that could be candidates for making parallel
I Decides if there is a sufficient amount of work done to justify

parallelization
I Checks that no loop dependencies exist
I Appropriately partitions any data between the parallelized code
I The auto-parallelizer (at the time of writing) uses OpenMP.

Profiling Steps

1. Compile the sources with the -parallel option. To get
superior results, it’s always best to enable interprocedural
optimization (-ipo). The option -par-report2 instructs the
compiler to generate a parallelization report, listing which loops
were made parallel.

2. Look at the results from the compiler and make a note of any
lines that were successfully parallelized.

3. Add your own parallel constructs to the identified loops. If you
add OpenMP directives to have more control, the option
-openmp-report instructs the compiler to generate a
OpenMP parallelization report.

4. Rebuild the application without the -parallel option.

Report:example

presolutore_parallelo.F(34): (col. 2) remark:
DISTRIBUTED LOOP WAS AUTO-PARALLELIZED
..
solutore_parallelo.F(43): (col. 10) remark: loop was not parallelized:
existence of parallel dependence
solutore_parallelo.F(43): (col. 10) remark: loop was not parallelized:
insufficient computational work
...
solutore_parallelo.F(40): (col. 7) remark:
OpenMP DEFINED REGION WAS PARALLELIZED
...
solutore_parallelo.F(67): (col. 7) remark: OpenMP DEFINED LOOP WAS PARALLELIZED
solutore_parallelo.F(84): (col. 7) remark: OpenMP multithreaded code
generation for SINGLE was successful

VTune

I The Intel VTuneTM Performance Analyzer is a powerful
software-profiling tool available on both Microsoft Windows and
Linux OS.

I VTuneTM helps you understand the performance
characteristics of your software at all levels: system,
application and microarchitecture.

I The main features of VTuneTM are sampling, call graph and
counter monitor.

I For details on all features and how to use the tool, see the
VTuneTM documentation

https://software.intel.com/sites/products/documentation/
doclib/iss/2013/amplifier/lin/ug_docs/

VTune

I Hot Spot Analysis (Statistical Call Graph)
Where is the application spending time and how did it get
there?

I Hardware Event-based Sampling (EBS)
Where are the tuning opportunities? (e.g., cache misses)

I Pre-defined tuning experiments
I Thread Profiling

Where is my concurrency poor and why?
I Thread timeline visualizes thread activity and lock transitions

I Integrated EBS data tells you exactly what’s happening and
when

VTune

I Timeline correlates thread and event data
I See what active threads are doing
I Filter profile results by selecting a region in the timeline

I Advanced Source / Assembler View
I See event data graphed on the source / assembler
I View and analyze assembly as basic blocks

I Collect System Wide Data & Attach to Running Processes
I EBS collects system wide data, filter it to find what you need
I Hot Spot and Concurrency Analyses can attach to a running

process
I GUI & Command Line

I Stand-alone GUI, Command Line
I GUI makes setup and analysis easy
I Command line for regression analysis and collection on remote

systems

VTune
Set the environment
source /cineca/prod/compilers/intel/cs-xe-2013/binary/vtune_amplifier_xe_2013/amplxe-vars.sh

Display a list of available analysis types and preset
configuration levels
amplxe-cl -collect-list

Run Hot Spot analysis on target myApp and store result in
r001hs directory
mpirun -np 2 amplxe-cl -collect hotspots -r r001hs myApp

Analyze the result in directory r001par
amplxe-cl -report summary -r <path_r001hs>

Run the standalone graphical interface
amplxe-gui

VTune:EBS

To known supported memory load events in your platform
amplxe-runss -event-list

To run the application monitoring the events.
amplxe-cl -collect-with runsa-knc -knob event-config="CPU_CLK_UNHALTED,
INSTRUCTIONS_EXECUTED" -r hs0001 mpirun -np 2 my_application

Description of the events for Intel paltform named Knights
Corner
http://www.hpc.ut.ee/dokumendid/ips_xe_2015/vtune_amplifier_xe/documentation/en/help/reference/knc/

CPI
Cycles Per Instruction (CPI), a standard measure, has some
special kinks

I Threads on each Intel XeonTM Phi core share a clock
I If all 4 HW threads are active, each gets 1/4 total cycles
I Multi-stage instruction decode requires two threads to utilize

the whole core - one thread only gets half
I With two ops/per cycle (U-V-pipe dual issue):

Threads Minimum Best CPI Minimum Best CPI
per Core per Core per Thread
1 X 1.0 =1.0
2 X 0.5 =1.0
3 X 0.5 =1.5
4 X 0.5 =2.0

I To get thread CPI, multiply by the active threads

Efficiency Metric

I Changes in CPI absent major code changes can indicate
general latency gains/losses

Metric Formula Investigate if
CPI CPU_CLK_UNHALTED/ > 4 or increasing
per Thread INSTRUCTIONS_EXECUTED
CPI (CPI per Thread) / Number of > 1 or increasing
per Core hardware threads used

I Note the effect on CPI from applied optimizations
I Reduce high CPI through optimizations that target latency

I Better prefetch
I Increase data reuse through better blocking

Efficiency Metric

Compute to Data Access Ratio
I Measures an application’s computational density, and

suitability for Intel Xeon PhiTM coprocessors
Metric Formula Investigate if
Vectorization VPU_ELEMENTS_ACTIVE /
Intensity VPU_INSTRUCTIONS_EXECUTED
L1 Compute VPU_ELEMENTS_ACTIVE / <Vectorization
Data Access DATA_READ_OR_WRITE Intensity
L2 Compute VPU_ELEMENTS_ACTIVE / < 100x L1 Compute to
Data Access DATA_READ_MISS_OR_WRITE_MISS Data Access Ratio

I Increase computational density through vectorization and
reducing data access (see cache issues, also, DATA
ALIGNMENT!)

L1 Cache Usage

I Significantly affects data access latency and therefore
application performance

Metric Formula Investigate if
L1 DATA_READ_MISS_OR_WRITE_MISS +
Misses L1_DATA_HIT_INFLIGHT_PF1
L1 Hit (DATA_READ_OR_WRITE - L1 Misses) / < 95 %
Rate DATA_READ_OR_WRITE

I Tuning Suggestions:
I Software prefetching
I Tile/block data access for cache size
I Use streaming stores
I If using 4K access stride, may be experiencing conflict misses
I Examine Compiler prefetching (Compiler-generated L1

prefetches should not miss)

Data Access Latency

Metric Formula Investigate if
Estimated (CPU_CLK_UNHALTED > 145
Latency - EXEC_STAGE_CYCLES
Impact - DATA_READ_OR_WRITE)

/ DATA_READ_OR_WRITE_MISS

I Tuning Suggestions:
I Software prefetching
I Tile/block data access for cache size
I Use streaming stores
I Check cache locality - turn off prefetching and use

CACHE_FILL events - reduce sharing if needed/possible
I If using 64K access stride, may be experiencing conflict misses

TLB Usage

I Also affects data access latency and therefore application
performance

Metric Formula Investigate if
L1 TLB miss ratio DATA_PAGE_WALK/DATA_READ_OR_WRITE > 1 %
L2 TLB miss ratio LONG_DATA_PAGE_WALK > .1 %

LONG_DATA_PAGE_WALK
L1 TLB misses per DATA_PAGE_WALK / > 100x
L2 TLB miss LONG_DATA_PAGE_WALK

I Tuning Suggestions:
I Improve cache usage & data access latency
I If L1 TLB miss/L2 TLB miss is high, try using large pages
I For loops with multiple streams, try splitting into multiple loops
I If data access stride is a large power of 2, consider padding

between arrays by one 4 KB page

VPU Usage

I Indicates whether an application is vectorized successfully and
efficiently

Metric Formula Investigate if
Vectorization VPU_ELEMENTS_ACTIVE / <8 (DP), <16(SP)
Intensity VPU_INSTRUCTIONS_EXECUTED

I Tuning Suggestions:
I Use the Compiler vectorization report!
I For data dependencies preventing vectorization, try using Intel

CilkTM Plus #pragma SIMD (if safe!)
I Align data and tell the Compiler!
I Restructure code if possible: Array notations, AOS->SOA

Memory Bandwidth

I Can increase data latency in the system or become a
performance bottleneck

Memory Formula Investigate if
Bandwidth (UNC_F_CH0_NORMAL_READ + < 80GB/sec

UNC_F_CH0_NORMAL_WRITE+ (practical peak
UNC_F_CH1_NORMAL_READ + 140GB/sec)
UNC_F_CH1_NORMAL_READ + (with 8 memory
UNC_F_CH1_NORMAL_WRITE) X controllers)
64/time

I Tuning Suggestions:
I Improve locality in caches
I Use streaming stores
I Improve software prefetching

Bibliography
I Optimizing HPC Applications with Intel Cluster Tools

A. Supalov.A Semin, M. Klemm and C. Dahnken
Apress open 2014.

I High-Performance Computing on the Intel Xeon Phi
E. Wang, Q. Zhang, B. Shen, G.Zhang, X. Lu, Q. Wu and Y. Wang
Springer 2012.

I High Performance Parallelism Pearls
J. Reinders and J. Jeffers
Springer 2012.

I Intel Xeon Phi Coprocessor Architecture and Tools. The Guide for Application
Developers
R. Rahman
Apress open 2013.

I Intel Xeon Phi Coprocessor High Performance Programmming
J. Jeffers and J. Reinders
Morgan Kaufmann 2013.

I Parallel Programming with Intel Parallel Studio XE
S. Blair-Chappell and A. Stokes
John Wiley and Sons, Inc 2012.

I https://software.intel.com

	Architectures
	Optimization
	Vectorization
	Performance and parallelism
	Programmming Models
	Profiling and Debugging

