Summer
School on

cmscn.\

l ~— PARALLEL
COMPUTING

Introduction to
MPI+OpenMP hybrid
programming

Fabio Affinito- faffinito@cineca.it
SuperComputing Applications and Innovation Department

Summer
School on

"
Architectural trend -\\" COMPUTING

FATNMCIMITESESC TN — Sy STaEIITiS S i

e [(1]

Shar

200 2000 2005 2010 2012

- Single Processor Consteillations I_ S

I cluster B e P sirac

TTddd
CINECA

$1313

Summer
School on

"
Architectural trend -\\" COMPUTING

Cores per Socket - Systemnms Share

Shate

008 2005 2008 ZOo10 ZO0L1L2

- - = Bl - Bl =
TTe:dd
CINECA

$1313

Summer
School on

COMPUTING

* |n a nutshell:

- memory per core decreases

- memory bandwidth per core decreases
- number of cores per socket increases
- single core clock frequency decreases

* Programming model should follow the new kind of architectures available
on the market: what is the most suitable model for this kind of machines?

CINECA

CINECA

Summer
School on

COMPUTING

Distributed parallel computers rely on MPI
- strong

- consolidated

- standard

- enforce the scalability (depending on the algorithm) up to a very large
number of tasks

but... is it enough when memory is such small amount on each node?

Example: Bluegene/Q has 16GB per node and 16 cores. Can you imagine
to put there more than 16MPI (tasks), i.e. less than 1GB per core?

CINECA

Summer
School on

COMPUTING

On the other side, OpenMP is a standard for all the shared memory
systems

OpenMP is robust, clear and sufficiently easy to implement but

- depending on the implementation, typically the scaling on the number of
threads is much less effective than the scaling on number of MPI tasks

Putting together MPI with OpenMP could permit to exploit the features of
the new architectures, mixing these paradigms

Summer
School on

COMPUTING

* |In a single node you can exploit a shared memory parallelism using
OpenMP
* Across the nodes you can use MPI to scale up

Example: on a Bluegene/Q machine you can put 1 MPI task on each node
and 16 OpenMP threads. If the scalability on threads is good enough, you
can use all the node memory.

SMP Node O SMP Node 1 SMP Node 2

MPI O MPI 1 MPI 2

e B o e (B (B (B (o (oo

CPU O CPU A1 CPU 2 CPU O CPU 1 CPU 2 CPU O CPU 1 CPU 2

CINE

MPI vs OpenMP

“ Pure MPI Pro:
<*High scalability
“*High portability
“*No false sharing
“*Scalability out-of-node

“ Pure MPI Con:
“*Hard to develop and debug.
< Explicit communications
<*Coarse granularity
“*Hard to ensure load balancing

cmsca.\

—~—

Summer
School on
PARALLEL
COMPUTING

Summer
School on

PARALLEL
COMPUTING

MPI vs OpenMP

“ Pure MPI Pro:
“*High scalability
“*High portability
“*No false sharing
“*Scalability out-of-node

< Pure MPI Con:

“*Hard to develop and debug.
< Explicit communications
<*Coarse granularity

“*Hard to ensure load balancing

CINECA\

Pure OpenMP Pro:
Easy to deploy (often)
Low latency
Implicit communications
Coarse and fine granularity
Dynamic Load balancing

Pure OpenMP Con:
Only on shared memory machines
Intranode scalability
Possible data placement problem
Undefined thread ordering

Summer
School on

COMPUTING

* Conceptually simple and elegant
* Suitable for multicore/multinodes architectures
* Two-level hierarchical parallelism

* In principle, you can alleviate problems related to the scalability of MPI,
reducing the number of tasks and network flooding

CINECA

Summer
School on

COMPUTING

* OpenMP introduces fine granularity parallelism

* Loop-based parallelism

* Task construct (OpenMP 3.0): powerful and flexible
* Load balancing can be dynamic or scheduled

* All the work is in charge to the compiler

* No explicit data movement

CINECA

CINECA

Summer
School on

COMPUTING

Using a hybrid approach means to balance the hierarchy between MPI tasks and
thread.

MPI in most cases (but not always) occupy the upper level respect to OpenMP
- usually you assign n threads per MPI task, not m MPI tasks per thread

The choice about the number of threads per MPI task strongly depends on the kind
of application, algorithm or kernel. (this number can change inside the application)

There's no a golden rule. More often this decision is taken a-posteriori after
benchmarks on a given machine/architecture

Summer
School on

COMPUTING

* Using a hybrid approach MP1+OpenMP can lower the number of MPI tasks
used by the application.

* Memory footprint can be alleviated by a reduction of replicated data on MPI
level

e Speed-up limited due algorithmic issues can be solved (because you're
reducing the amount of communication)

CINECA

Summer
School on

COMPUTING

* Inreal practise, mixing MPI and OpenMP, sometimes, can make your code
slower

- If you exceed with the number of OpenMP threads you can encounter
problems with locking of resources

- Sometimes threads can stay in a idle state (spin) for a long time
- Problems with cache coherency and false sharing

- Difficulties in the management of variables scope

CINECA

CINECA

Summer
School on

COMPUTING

It is a side effects of the cache-line granularity of cache coherence
implemented in shared memory systems.

The cache coherency implementation keep track of the status of cache
lines by appending state bits to indicate whether data on cache line is still
valid or outdated.

Once the cache line is modified, cache coherence notifies other caches
holding a copy of the same line that its line is invalid.

If data from that line is needed, a new updated copy must to be fetched.

False sharing

#pragma omp parallel for
shared(a) schedule(static,1)
for (int i=0; i<n; i++)

afi] =1i;

CINECA \

\

Summer
School on

COMPUTING

Thread 0

CPUO

Thread 1

CPU1

Cache Line

Cache

h

r

A Cache

Cache Line

Memory

CINECA

Summer
School on

COMPUTING

The most simple recipe is:
- start from a serial code and make it a MPI-parallel code
- Implement for each of the MPI task a OpenMP-based parallelization

Nothing prevents to implement a MPI parallelization inside a OpenMP
parallel region

- In this case, you should take care of the thread-safety

To start, we will assume that only the master thread is allowed to
communicate with others MPI tasks

CINECA

call MPL_INIT (ierr)
call MPI_COMM_RANK (...)
call MPI_COMM_SIZE (...)
... Ssome computation and MPI communication
call OMP_SET _NUM_THREADS(4)
ISOMP PARALLEL
ISOMP DO
doi=1,n
... computation
enddo
ISOMP END DO
ISOMP END PARALLEL
... some computation and MPI communication
call MP1_FINALIZE (ierr)

Summer
School on

COMPUTING

Summer
School on

COMPUTING

Advantages:
* Simplest hybrid parallelization (easy to understand and to manage)
* No message passing inside a SMP node

Disadvantages:
* All other threads are sleeping during MPI communications
* Thread-safe MPI is required

CINECA

Summer
School on

COMPUTING

* MPIL_INIT_THREAD (required, provided, ierr)
- IN: required, desired level of thread support (integer).
- OUT: provided, provided level (integer).
provided may be less than required.

* Four levels are supported:
- MPI_THREAD _SINGLE: Only one thread will runs. Equals to MPI_INIT.

- MPI_ THREAD FUNNELED: processes may be multithreaded, but only the
main thread can make MPI calls (MPI calls are delegated to main thread)

- MPI_THREAD_SERIALIZED: processes could be multithreaded. More than
one thread can make MPI calls, but only one at a time.

- MPI_THREAD_ MULTIPLE: multiple threads can make MPI calls, with no
restrictions.

CINECA

CINECA

Summer
School on

COMPUTING

The various implementations differs in levels of thread-safety

If your application allow multiple threads to make MPI calls
simultaneously, whitout MPI_ THREAD_ MULTIPLE, is not thread-
safe

Using OpenMPI, you have to use -enable-mpi-threads at configure
time to activate all levels.

Higher level corresponds higher thread-safety. Use the required
safety needs.

* Itis fully equivalent to the master-only approach

ISOMP PARALLEL DO
do i=1,10000
a(i)=b(i)+*d(i)
enddo
ISOMP END PARALLEL DO
call MP1_Xxx(...)
ISOMP PARALLEL DO
do i=1,10000
x(D)=a(i)+f*b(i)
enddo
ISOMP END PARALLEL DO

CINECA

#pragma omp parallel for
for (i=0; i<10000; i++)
{ a[i]=b[i]+*d[i];
}

/* end omp parallel for */
MPI_Xxx(...);

#pragma omp parallel for
for (i=0; i<10000; i++)
{ x[i]=ali]+f*blI];
}

[* end omp parallel for */

Summer
School on

COMPUTING

Summer
School on

MPI_THREAD_FUNNELED N_ " COMRUTING

* |t adds the possibility to make MPI calls inside a parallel region, but only the
master thread is allowed to do so

et MPI Send & Recvs
&
User Thread MPI_Send/Recv/ Wait/ etc.
q—
MP/! Init thread MPI Finalize
Other User threads Threads cannot make MPI calls

—_—
—_— e Time

CINECA \

Summer
School on

COMPUTING

* MPI function calls can be: outside a parallel region or in a parallel region,
enclosed in “omp master” clause

* There's no synchronization at the end of a “omp master” region, so a barrier
IS needed before and after to ensure that data buffers are available
before/after the MPl communication

I$OMP BARRIER #pragma omp barrier

I$OMP MASTER #pragma omp master
call MPI_Xxx(...) MPI_Xxx(...);

I$OMP END MASTER #pragma omp barrier

ISOMP BARRIER

CINECA

Summer
School on
PARALLEL

COMPUTING

MPI_THREAD_SERIALIZED N\ _ =

* MPI calls are mad concurrently by two or more different threads. All the MPI
communications are serialized.

‘1"' _'1"',
USEF mfﬁ'ﬂd MPLSé.;Tdf“J MP.I' Sem{‘r.""
pr—— — _b-
MBI it _thread) o
A

User Thread MPI_Recv(..) i
User Thread MP| Recv(..)

—

» Time

CINECA\

Summer
School on

COMPUTING

* MPI calls can be outside parallel regions, or inside, but enclosed in a “omp
single” region (it enforces the serialization)

* Again, a barrier should ensure data consistency

ISOMP BARRIER #pragma omp barrier
ISOMP SINGLE #pragma omp single
call MP1_Xxx(...) MPI_Xxx(...);

ISOMP END SINGLE

CINECA

Summer
School on

MPI_THREAD_MULTIPLE N compurine

* Itis the most flexible mode, but also the most complicate one

* Any thread is allowed to perform MPI communications, without any
restrictions.

£
*
¥

User Thread MPLSé'f;df--J MPI Send{..)’

MPI_Init_thread

E.,"i .‘*‘1-
User Thread MPI_Recv(..) mPfRecv(..)

e ————elp | [T E

CINECA \

CINECA

Summer
School on

COMPUTING

Funneled/serialized
All threads but the master are sleeping during MPI communications
Only one threads may not be able to lead up to max inter-node bandwith

Pure MPI
Each CPU can lead up max inter-node bandwidth

Hints: overlap as much as possible communications and computations

Summer
School on

COMPUTING

* In order to overlap communications with computations, you require at least
the MPI_THREAD FUNNELED mode
* While the master thread is exchanging data, the other threads performs

computation
* ltis difficult to separate code that can run before or after the data

exchanged are available

I$SOMP PARALLEL
If (thread_id==0) then
call MP1_xxx(...)
else
do some computation
endif
ISOMP END PARALLEL

CINECA

CINECA

MPI collectives are highly
optimized

Several point-to-point
communication in one operations
They can hide from the
programmer a huge volume of
transfer (MPI_Alltoall generates
almost 1 million point-to-point
messages using 1024 cores)

There is no non-blocking (no
longer the case in MPI 3.0)

e
(T

\;ﬁmﬂ%ﬁﬁ%gﬂ
X%l
4

XX

o
3
i &
AN
N/

—— __‘-.L
A

Summer
School on

COMPUTING

‘W

j; I\.}.‘H.

MPI collective hybridization

* Better scalability by a
reduction of both the number
of MPI messages and the
number of process. Tipically:

*for all-to-all communications,
the number of transfers
decrease by a factor
#threads” 2

*the length of messages
increases by a factor #threads

* Allow to overlap
communication and
computation.

CINECA \

Summer
School on
DADAILL &1

COMPUTING

Summer
School on

MPI collective hybridization

Restrictions:

*l[n MPI_ THREAD_MULTIPLE mode is
forbidden at any given time two
threads each do a collective call on
the same communicator
(MPI_COMM_WORLD)

*2 threads calling each a
MPI_Allreduce may produce wrong
results

*Use different communicators for
each collective call

*Do collective calls onlyon 1
thread per process
(MP1_THREAD_ SERIALIZED mode
should be fine)

cmscn.\

l ~— PARALLEL
COMPUTING

CINECA

Summer
School on

COMPUTING

Introduction of OpenMP into existing MPI codes includes OpenMP
drawbacks (synchronization, overhead, quality of compiler and
runtime...)

A good choice (whenever possible) is to include into the MPI code
a multithreaded, optimized library suitable for the
application.

BLAS, LAPACK, MKL (Intel), FFTW are well known
multithreaded libraries available in the HPC ecosystem.

MPI THREAD FUNNELED (almost) must be supported.

Summer
School on

‘E!F*’
Multithreaded FFT (QE) \w COMPUTING

begin OpenMP region
do i =1, nsl in parallel

call 1D-FFT along z (f[offset])

DDDD DDHH Ty

send/recy - call fw_scatter(...)
m m m m m m m rw # begin OpenMP regiomn
do i =1, nzl in parallel
SMP NODE SMP NODE do j =1, Nx

if (dofft[j]) then
call 1D-FFT along y |(f[offset]|)

Only the master
thread can do MPI end do

communications end“;‘ ID-FFT along x (f[offset]) Ny-times

(PseUdo QE COdE) # end OpenMP region
CINECA

Summer
School on

Multithreaded FFT (QE)

CIETEIET) PIPIEIE

SMP NODE SMP NODE

TO

Funneled: master
thread do MPI
communications
within parallel
region (Pseudo QE

CINECA \ code)

l ~— PARALLEL
COMPUTING

begin DpenMP region
do i = 1, nsl in parallel
call 1D-FFT along z (f|offset])
end do

begin of OpenMP MASTER section
call fw_scatter(...)
end of OpenMP MASTER section

force synchronization with OpenMP barrier

do i =1, nszl in parallel
do j = 1, Nx
if { dofft[j]) then
call 1D-FFT along y (f[offset])
end do
call 1D-FFT along x (f[offset]) Ny-times
end do
end OpenMP region

CINECA

Summer
School on

COMPUTING

Starting point is a well known MPI parallel code that solve
Helmoltz Partial Differential Equation on a square domain.

Standard domain decomposition (into slices for simplicity).
No huge I/O
The benchmark collect the timing of the main computational

routine (Jacobi), GFLOPS rate, the number of iterations to reach
fixed error and the error with respect to known analytical solution

Summer
School on

COMPUTING

* |n the MPI basic implementation, each process has to exchange ghost-

cells at every iteration (also on the same node)

reqcnt =0
if (me .ne. 0) then
! receive stripe mlo from left neighbour blocking
reqcnt =reqcnt + 1
call MPI_IRECV(uold(1,mlo), n, MPI_DOUBLE_PRECISION, me,1, 11,
MPI_COMM_WORLD,reqgary(reqcnt),ierr)
end if
if (me .ne. np-1) then
! receive stripe mhi from right neighbour blocking
regcnt =reqcnt + 1

if (me .ne. 0) then
! send stripe mlo+1 to left neighbour async
reqcnt =reqent + 1
call MPI_ISEND (u(1,mlo+1), n, MPI_DOUBLE_PRECISION,
me-1, 12, MPI_COMM_WORLD,reqgary(reqcnt),ierr)
end if

do j=mlo+1,mhi-1
doi=1,n
uold(i,j) = u(i,))
enddo
enddo

call MPI_WAITALL (reqcnt, reqary, reqstat, ierr)

CINECA

do j = mlo+1,mhi-1
doi=2,n-1
I Evaluate residual
resid = (ax*(uold(i-1,j) + uold(i+1,j)) +...
& + b * uold(i,)) - f(i,j))/b
u(i,j) = uold(i,j) - omega * resid
I Accumulate residual error
error = error + resid*resid
end do
enddo
error_local = error
call MPI_ALLREDUCE (error_local,....,error,...)

Summer
School on

COMPUTING

Summer
School on

COMPUTING

* The hybrid approach allows you to share the memory area
where ghost-cells are stored

* |In the master-only approach, each thread has not to do MPI
communication within the node, since it already has
available data (via shared memory).

e Communication decreases as the number of MPI process,
but increases MPI message size for Jacobi routine.

CINECA

Summer
School on

COMPUTING

Advantages:

* No message passing inside SMP nodes

* Simplest hybrid parallelization (easy to implement)
Major problems:

* All other threads are sleeping while master thread communicate

I$Somp parallel
I$Somp do
do j=mlo+1,mhi-1
doi=1,n
uold(i,j) = u(i,j)
enddo
enddo
I$Somp end do
I$omp end parallel

call MPI_WAITALL (regcnt, regary, regstat, ierr)

CINECA

Only the master
thread can do
MPI
commuhnications.

The other threads
are sleeping as
in the previous
case

CINECA

Summer
School on

COMPUTING

ISomp parallel default(shared)
I$Somp master
error = 0.0

if (me .ne. 0) then
! receive stripe mlo from left neighbour blocking
reqcnt =reqcnt + 1
call MPI_IRECV(uold(1,mlo), n, MPI_DOUBLE_PRECISION, &
& me-1, 11, MPI_COMM_WORLD,reqary(reqcnt),ierr)
end if

I$Somp end master
ISomp do
do j=mlo+1,mhi-1
doi=1,n
uold(i,j) = u(i,j)
enddo
enddo
I$Somp end do

The barrier is
needed after
omp master
directive in
order to ensure
correctness of
results.

CINECA

Summer
School on

COMPUTING

ISomp master

call MPI_WAITALL (reqcnt, reqary, regstat, ierr)
I$Somp end master
I$Somp barrier
I Compute stencil, residual, & update
I$Somp do private(resid) reduction(+:error)

do j = mlo+1,mhi-1

doi=2,n-1

error = error + resid*resid
end do
enddo
I$Somp end do
ISomp master

call MPI_ALLREDUCE (error_local, error,1, &
& MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,ierr)
I$Somp end master
I$Somp end parallel

omp _single
guarantee
serialized
threads access.
Note that no
barrier is needed
because

omp _single
guarantee
synchronization
at the end

CINECA

Summer
School on

COMPUTING

I$Somp parallel default(shared)
I$Somp single
error = 0.0
reqcnt=0
if (me .ne. 0) then
! receive stripe mlo from left neighbour blocking
reqcnt =reqent + 1
call MPI_IRECV(uold(1,mlo), n, MPI_DOUBLE_PRECISION, &
& me-1, 11, MPI_COMM_WORLD,reqary(reqcnt),ierr)
end if
I$Somp end single
I$Somp single
if (me .ne. np-1) then
! receive stripe mhi from right neighbour blocking
reqcnt =reqent + 1
call MPI_IRECV(uold(1,mhi), n, MPI_DOUBLE_PRECISION, &
& me+1, 12, MPI_COMM_WORLD,reqary(reqcnt),ierr)
end if
I$Somp end single

omp_single
guarantee only
one threads
access to the
MPI_Allreduce
collective.

CINECA

Summer
School on

COMPUTING

I$Somp do private(resid) reduction(+:error)
do j = mlo+1,mhi-1
doi=2,n-1
I Evaluate residual
resid = (ax*(uold(i-1,j) + uold(i+1,))) &
& + ay*(uold(i,j-1) + uold(i,j+1)) &
& + b * uold(i,j) - f(i,j))/b
I Update solution
u(i,J) = uold(,j) - omega * resid
I' Accumulate residual error
error = error + resid*resid
end do
enddo
ISomp end do
I$Somp single
error_local = error
call MPI_ALLREDUCE (error_local, error,1, ...)
I$Somp end single
ISomp end parallel

Summer
School on

COMPUTING

Each thread can make communications at any times (in
principle)
Some little change in the Jacobi routine

* Use of omp sections construct (it ensures that each
thread is allowed a different MPI call at the same time)

* Use of omp single for MPI_Waitall and collectives

CINECA

Summer
School on

leftr,
rightr,lefts and
rights must to
be private to
ensure correct
MPI calls.

CINECA \

\ COMPUTING

I$omp parallel default(shared) private(leftr,rightr,lefts,rights)
error = 0.0
I$Somp sections
I$omp section
if (me .ne. 0) then
! receive stripe mlo from left neighbour blocking
leftr=me-1
else
leftr=MPI_PROC_NULL
endif
call MPI_IRECV(uold(1,mlo), n, MPI_DOUBLE_PRECISION, &
& leftr, 11, MPI_COMM_WORLD,reqary(1),ierr)
I$Somp section

I$Somp end sections
ISomp do
do j=mlo+1,mhi-1
doi=1,n
uold(i,j) = u(i,j)
enddo
enddo
I$omp end do

omp single is
used both for
MPI _Waitall
call that for
MPI _Allreduce
collective.

CINECA

ISomp single
call MPI_WAITALL (4, regary, regstat, ierr)
ISomp end single
I Compute stencil, residual, & update
I$Somp do private(resid) reduction(+:error)
do j = mlo+1,mhi-1

I Evaluate residual
resid = (ax*(uold(i-1,j) + uold(i+1,))) ...

I Update solution

u(i,j) = uold(i,j) - omega * resid
I Accumulate residual error

error = error + resid*resid

I$Somp end do
ISomp single

call MPI_ALLREDUCE (error_local, error,1,...)
error = sqrt(error)/dble(n*m)

ISomp end single

I$Somp end parallel

Summer
School on

FAOARADI ITTINIC

Summer
School on

"
PARALLEL
BGQ benchmarks '\\J COMPUTING

MPI+OpenMP
Number of (TOT= 64 MPI, MPI ONLY

threads / A, (TOT= 1024 MPI,
processes MPI_THREAD_MULTIPLE version 16,32,64 ppn)

Elapsed time (sec.)

Elapsed time (sec.)

Huge simulation,| 1 78.84 N.A
0000x30000 4 19.89 N A
oints. Stopped
after 100 8 10.33 N.A

iterations only 16 565 5 08

urposes. 32 3.39 7.12
64 2.70 12.07

CINECA

CINECA

Summer
School on

COMPUTING

Better scalability by a reduction of both the number of MPI messages
and the number of processes involved in collective communications
and by a better load balancing.

Better adeguacy to the architecture of modern supercomputers while
MPI is only a flat approach.

Optimization of the total memory consumption (through the OpenMP
shared-memory approach, savings in replicated data in the MPI
processes and in the used memory by the MPI library itself).

Reduction of the footprint memory when the size of some data
structures depends directly on the number of MPI processes.

It can remove algorithmic limitations (maximum decomposition in one
direction for example).

CINECA

Summer
School on

COMPUTING

Applications that can benefit from hybrid approach:

Codes having limited MPI scalability (through the use of MPI_Alltoall
for example).

Codes requiring dynamic load balancing

Codes limited by memory size and having many replicated data
between MPI processes or having data structures that depends on
the number of processes.

Inefficient MPI implementation library for intra-node communication.

Codes working on problems of fine-grained parallelism or on a
mixture of fine and coarse-grain parallelism.

Codes limited by the scalability of their algorithms.

CINECA

Summer
School on

COMPUTING

Hybrid programming is complex and requires high level of
expertise.

Both MPlI and OpenMP performances are needed (Amdhal’s law
apply separately to the two approaches).

Savings in performances are not guaranteed (extra additional
costs).

Summer
School on

"
Backup slides \\" COMPUTING

TTddd
CINECA

$1313

Advanced

~Case-Study:Matrix Multiplication T~ _FaracLel

COMPUTING
do i1 = ioff, iend
do j = joff, jend
do | = loff, lend
c(hLj)=c(Lj)+a(il)*b(lj)
end do
end do
end do
[] >

CINECA

Advanced

OpenMP-parallelization f~ _PARALLEL

COMPUTING

I$Somp parallel do default(none) &

ISomp shared(a,b,c,ioff,joff,loff,iend,jend,lend) &
ii)o:ﬂn:pioﬁ’ ier?(;wate(l’J’l) Not really efficient
do j = joff, jend
do | = loff, lend
c(i,j)=c(i,j)+a(i,1)*b(l,j)
end do
end do
end do

ISomp end parallel do

CINECA

—=

Advanced
School on
PARALLEL
COMPUTING

Cache blocking

A *

mh

-+i

Cmn

m, K, n: matrixes sizes

mh, kh, nh: block sizes, “Free” parameters

mb, kb, nb: number of blocks

CINECA \

kh

Amk

kh

—=

Advanced
School on
PARALLEL
COMPUTING

nh

Bkn

Advanced

' i i < By
Cache blocking algorithm e G
do ib = 0, mb-1
ioff = 1 + ib * mh
iend = MIN(m, ioff+mh-1)
do jb = 0, nb-1

joff = 1 + jb * nh

jend = MIN(n, joff+nh-1)

do 1lb = 0, kb-1
loff = 1 + 1b * kh
lend = MIN(k, loff+kh-1)

! Cij = Aik * Bkj
do i = ioff, iend
do j = joff, jend
do 1 = loff, lend
c(i, 3) =c(i, 3) +a(i, 1) *b(1l, 3)
end do
end do

end do

end do

end do

CINECA

end do

Cache-friendly-OpenMP

r

do ib = 0, mb-1
ioff = 1 + ib * mh
iend = MIN(m, ioff+mh-1)
do jb = 0, nb-1
joff = 1 + jb * nh
jend MIN(n, joff+nh-1)
do 1b = 0, kb-1
loff 1 + 1b * kh
lend MIN(k, loff+kh-1)
! Cij = Aik * BKkj
do i = ioff, iend
do j = joff, jend
do 1 = loff, lend

end do
end do
end do
end do
end do
end do
CINECA !Somp end parallel do

c(i, J) =c(i, J)+ta(i, 1) *Db(1,

i)

!Somp parallel do default(none) &
! Somp shared(a,b,c,mb,nb,kb,m,n,k,mh,nh,kh) &
! Somp private(ib, jb,1b,i,j,1l,ioff,joff,loff,iend, jend, lend)

Advanced
School on
PARALLEL

COMPUTING

r

Using blas library ~—t

CINECA

I$Somp parallel default(none) &
I$Somp private(mytid, ntids, ntids_row, ntids_col, myrow, mycol, mb, nb, m_off, n_off) &
I$omp shared(m, n, k, Ida, Idb, Idc, a, b, c)

mytid = omp_get_thread_num() ! get the thread ID
ntids = omp_get_num_threads() ! get the number of threads

I define a grid of threads as square as possible
CALL gridsetup(ntids, ntids_row, ntids_col)

I Find row and column thread id (row mayour order)
myrow = MOD(mytid, ntids_row)
mycol = mytid / ntids_row

I find my block size

mb = Idim_block(m, ntids_row, myrow)

nb = Idim_block(n, ntids_col, mycol)

I find the offset

m_off = gind_block(1, m, ntids_row, myrow)

n_off = gind_block(1, n, ntids_col, mycol)

CALL dgemm('N','N', mb, nb, k, 1.0d0, a(m_off,1), Ida, b(1,n_off), Idb, 0.0d0, c(m_off,n_off), Idc)

I$omp end parallel

Advanced
School on
PARALLEL
COMPUTING

Advanced
School on
PARALLEL

COMPUTING

Advanced
School on
PARALLEL
COMPUTING

Advanced

f School on

g PARALLEL
hic COMPUTING

INTEGER FUNCTION gind block(lind, n, np, me)

This function computes the global index of a distributed array element
pointed to by the local index lind of the process indicated by me.

!
!
! 1lind local index of the distributed matrix entry.
! N is the size of the global array.
! me The coordinate of the process whose local array row or
! column is to be determined.
! np The total number processes over which the distributed
! matrix is distributed.
INTEGER, INTENT(IN) :: lind, n, me, np

INTEGER :: r, g

q = INT(n/np)

r = MOD(n,np)

IF(me < r) THEN
gind block = (Q+1)*me + lind

ELSE
gind block = Q*me + R + lind

END IF

RETURN

END FUNCTION gind block

Advanced

“MPI paralitelization o oARAuE

COMPUTING

Matrix connot be stored in single node memory.

Multiplication takes too long.
(Matrix multiplication scale as cubic power of matrix linear dimension)

CINECA

P School on
.) S— PARALLEL
Blocks again!

COMPUTING

Assign blocks to tasks

——— kh nh
. . .

— =
I

Amk Bkn

Cmn

m, k, n: matrixes sizes

mh, kh, nh: block sizes, “Free” parameters

mb, kb, nb: number of blocks

CINECA \

| need to minimize communications

Advanced

U il School on

~—? PARALLEL
\ COMPUTING

Consider 3x3 processor grid

Block C11

Processor (0,0)

+ i * - + s * - =

A12 A13

B12 B13

A22 A23

Already on Already on

Amk Bkn
Proc (0,0) Proc (0,0)

CINECA \

Advanced

e . U il School on
al | ' FITI N ~— PARALLEL
@ o «11010 COMPUTING

Consider 3x3 processor grid
Block C11

Processor (0,0)

+ i * - + s * - =

A12 A13

B12 B13

A22 A23

Already on Already on

Amk Bkn
Proc (0,0) Proc (0,0)

CINECA \

SUBROUTINE shift block(blk, dir, 1n, Advanced
IMPLICIT NONE 4
REAL(DP) :: blk(:, :) School on
CHARACTER (LEN=1), INTENT(IN) :: di ! shift direction T ——. A A
INTEGER, INTENT(IN) :: ! shift length SUBROUTINE GRID2D RANK(order, nprow, npcol, row, col, rank)
INTEGER, INTENT(IN) :: ! communication tag !
! ! this subroutine compute the processor MPI task id "rank" of the processor
INTEGER :: icdst, irdst, icsrc, irsrc, idest, isour ! whose cartesian coordinate are "row" and "col".
! ! Note that the subroutine assume cyclic indexing (0 + nprow = 0)
IF(dir == 'W') THEN !
irdst = rowid IMPLICIT NONE
irsrc = rowid CHARACTER, INTENT(IN) :: order
icdst = MOD(colid - 1n INTEGER, INTENT(OUT) :: rank ! process index starting from 0
icsrc = MOD(colid + 1n INTEGER, INTENT(IN) :: nprow, npcol ! dimensions of the processor grid
ELSE IF(dir == 'E') THEN INTEGER, INTENT(IN) :: row, col
irdst = rowid
irsrc = rowid IF(order == 'C' .OR. order == 'c') THEN
icdst = MOD(colid + 1n ! grid in COLUMN MAJOR ORDER
icsrc = MOD(colid - 1n rank = MOD(row + nprow, nprow) + MOD(col + npcol, npcol) * nprow
ELSE IF(dir == 'N') THEN ELSE
irdst = MOD(rowid - 1n ! grid in ROW MAJOR ORDER
irsrc = MOD(rowid + 1n rank = MOD(col + npcol, npcol) + MOD(row + nprow, nprow) * npcol
icdst = colid END IF
icsrc = colid :
ELSE IF(dir == 'S') THEN RETURN
irdst = MOD(rowid + 1n END SUBROUTINE
irsrc = MOD(rowid - 1n
icdst = colid
icsrc = colid
ELSE
CALL errore(' sqgr_mm cannon ', ' unknown shift direction ', 1)
END IF
!
CALL GRID2D RANK('R', np, np, irdst, icdst, idest)
CALL GRID2D RANK('R', np, np, irsrc, icsrc, isour)
1
CALL MPI_SENDRECV_REPLACE (blk, nb*nb, MPI DOUBLE_PRECISION, &
idest, tag, isour, tag, comm, istatus, ierr)

RETURN
END SUBROUTINE shift block

Hybrid Parallel Matrix Multiplication Algorithm

CINECA

allocate(ablk(nb, nb))

DO j = 1, nc
DO i =1, nr
ablk(i, j) = a(i, j)
END DO
END DO
1
allocate(bblk(nb, nb))
DO j = 1, nc
DO i =1, nr
bblk(i, j) = b(i, J)

END DO
END DO
CALL shift block(ablk, 'W', rowid+l, 1) ! Shift A rowid+l places to the west
CALL shift block(bblk, 'N', colid+l, np+l) ! sShift B colid+l places to the north
CALL “serial or multithread - Matrix Multiplication” ! Set C
!
DO iter = 2, np

!

CALL shift block(ablk, 'E', 1, iter) ! Shift A 1 places to the east

CALL shift block(bblk, 'S', 1, nptiter) ! Shift B 1 places to the south

CALL “serial or multithread - Matrix Multiplication”
1

END DO

deallocate(ablk, bblk)

Accumulate on C

Advanced
School on
PARALLEL
COMPUTING

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Case-Study: Matrix Multiplication
	OpenMP parallelization
	Cache blocking
	Compute blocks
	Cache blocking algorithm
	Cache friendly OpenMP
	Using blas library
	Slide 60
	Computing grid and blocks sizes
	Slide 62
	MPI parallelization
	Blocks again!
	Cannon’s algorithm
	Slide 66
	Slide 67
	Slide 68

