

Code Parallelization
a guided walk-through

m.cestari@cineca.it

f.salvadore@cineca.it

Summer School ed. 2015

Code Parallelization

two stages to write a parallel code

– problem domain
➔ algorithm

– program domain
➔ implementation

Code Parallelization

two stages to write a parallel code

– problem domain
➔ algorithm

– program domain
➔ implementation

Problem domain
● Naive iterative solver of Laplace equation for a variable T

– Start with a Gaussian field

– Iterate replacing each value with the mean value of the four
neighboring points

– Stop when either the maximum amount of iterations or the
convergence is reached

Problem domain

– Analyze the algorithm. In principle (let us skip for the
Laplace example):

● Is the serial algorithm suitable for a a distribute parallel
MPI implementation?

● Is the serial algorithm still the best wrt performances for
an MPI version of the code?

– Identify the most computationally demanding parts of
the problem

● But remember that an MPI parallelization is difficult to
develop incrementally

Concurrency

Find concurrency:

– similar operations that can be applied to different
parts of the data structure

– domain decomposition: divide data into chunks
that can be operated concurrently

➔ a task works only its chunk of data
➔ map local to global variables

Dependencies

Handle dependencies among tasks:

– Tasks needs access to some portion of another
task local data (data sharing)

– Understand the kind and the amount of
communications among processes required to
make anything consistent

iXX

iY

0 1 n n+1

1

n

n+1

Computational Domain

● The shape of
the matrixes
include ghost
(or halo) points
to handle (the
neighbour of)
boundary points

iXX

iY

0 1 n n+1

1

n

n+1

Domain decomposition

● Use a Cartesian
communicator to
manage the processes
and easily map them to
rectangular
subdomains

● Subdomains need
ghost points too

● Some of them are
the original ghost
points

● In addition there are
ghost points among
inter-process
boundaries

0

0

3

1

2

Program domain

2 different stages to parallelize a serial code

– problem domain
➔ algorithm

– program domain
➔ Implementation (the fun part)

The serial code: Laplace equation
program laplace

 [… variable declarations …]

 [… input parameters ...]

 [… allocate variables …]

 [… initialize field …]

 [… print initial output …]

 [… computational core …]

 [… print final output …]

 [… deallocate variables …]

end program laplace

do while (var > tol .and. iter <= maxIter)

 iter = iter + 1

 var = 0.d0

 do j = 1, n

 do i = 1, n

 Tnew(i,j) = 0.25d0 * (T(i-1,j)+T(i+1,j)+T(i,j-1)+T(i,j+1))

 var = max(var, abs(Tnew(i,j) - T(i,j)))

 end do

 end do

 Tmp =>T; T =>Tnew; Tnew => Tmp;

 if(mod(iter,100) == 0) &

 write(*,"(a,i8,e12.4)") ' iter, variation:', iter, var

 end do

The exercises

● (1) Develop an MPI parallel version of the
laplace.f90/laplace.c serial codes (init and save
functions are in init_save.f90/c files)

● (a) Start with a MPI blocking implementation
● (b) Try to enhance the solution using MPI non blocking calls

● (2) Add the OMP parallelization to the blocking MPI
version to finally develop an hybrid MPI-OMP
implementation of the code

● Explore the different thread support levels

1.(a) Hints
● First create the Cartesian communicator

– And find the ranks of the neighboring processes

● Define the sizes of the domain for each rank
– Also define the offsets of the sub-domains with respect to the global domain

– If possible try to handle the remainders, otherwise force a constraint

● After that, init_field is easy to parallelize: ind2pos (the function
which maps the index to the position in the grid) remains unchanged
provided that the global indexes are passed to it

● The print function (save_gnuplot) parallelization can be postponed:
use the error at each time step to know if the results are correct
– To parallelize it, let the rank=0 collect all the fields (just for didactic purposes,

MPI I/O is the right way)

● At each iteration update the ghost points with the boundary points of
the neighboring processes
– MPI_Sendrecv may be a good choice

– Declare, allocate and use buffers to perform the communications

1.(b) Hints
● In spite of MPI_Sendrecv non blocking MPI calls can

be employed
– MPI_Isend, MPI_Irecv, …

● But, how to make them useful to enhance the
scalability?
– Since the MPI communications are needed only for ghost

nodes some operations can be performed simultaneously

– Which operations? The operations which do not involve
the ghost points...

● As always, man is your friend:

man MPI_Init

2. Hints
● To mix MPI and OpenMP the simplest way is to open the OMP parallel region just

around the computational core (the iteration loop)
– MPI_THREAD_SINGLE (i.e., MPI_Init) version

● But the parallel region may be enlarged to include the MPI communications
– If the communications are performed by the master thread MPI_THREAD_FUNNELED is

enough

– The communications may overlap with the computations if a technique like the MPI non
blocking one is adopted

– What about OMP schedule?

● The parallel region may be enlarged more including the entire while loop
– Now MPI_THREAD_SINGLE could be employed to overlap pointer exchange and the MPI

reduction for the error

– Beware of the OMP barriers!

● And what about having different threads performing the different communications?
– MPI_THREAD_MULTIPLE is needed

● Beware: use (and check) an MPI implementation supporting threads, e.g.
– module load profile/advanced autoload intelmpi/5.0.1—binary

– to compile, activate the thread enabled MPI library: mpif90 -mt_mpi

Misura delle performance / 1

Misura delle performance / 2

More hints... / 1
● Initialize MPI:

– MPI_Init / MPI_Comm_rank / MPI_Comm_size

● Input
– Make only rank=0 read from input

– MPI_Bcast the 3 input numbers to all the processes

● Cartesian topology for processes
– MPI_Dims_create – decompose the number of processes in a rectangular way

cart_dims(:)

– MPI_Cart_create – create the Cartesian communicator

– MPI_Cart_coords – find the coordinates of my process cart_coord(:)

– MPI_Cart_shift (in x and y) – find the ranks of neighboring processes

● Associate the cartesian topology to the computational grid
– Find for each process the sub-domain size and the start indexes wrt to the global domain

(in x and y): mysize_y, mysize_y, mystart_x, mystart_y
● mysize_x = n/cart_dims(1)
● mystart_x = mysize_x *cart_coord(1)

– Handle the remainders or force to be multiple (...)

● Allocate T, Tnew, and the buffers (4 send and 4 receive buffers), including the
ghost points (size=mysize_x+2)

More hints... / 2
● Parallelize init_fields

– Pass mystart_x,mystart_y,mysize_x,mysize_y as
arguments

– Modify the loop bounds from 0 to mysize_x/y+1

– Modify the call to ind2pos (pass ix+mystart_x instead of
ix)

● While loop:
– Modify the loops bounds (from 1 to mysize_x/y)

– MPI_Allreduce to the error variable (max among all the
processes)

– You are ready to check the results, just print the error
variable after one step: serial and parallel codes must
give the same results

More hints... / 3
● Communications

– Just before the main update loop

– 4 MPI_Sendrecv are enough: send to left + recv from right, send to right + recv from
left, send to top + recv from bottom, send to bottom + recv from top

● Send to left + recv from right
– Copy left boundary to a buffer

– buffer_s_rl(1:mymsize_y) = T(1,1:mymsize_y)

– Send to left and receive from right

– MPI_Sendrecv(buffer_s_rl, mymsize_y, MPI_DOUBLE_PRECISION, dest_rl, tag,

 buffer_r_rl, mymsize_y, MPI_DOUBLE_PRECISION, source_rl, tag,

 cartesianComm, status, ierr)

– Copy the received buffer

– if(source_rl >= 0) T(mymsize_x+1,1:mymsize_y) = buffer_r_rl(1:mymsize_y)

– Why is the if required? Because MPI_Cart_shift return MPI_PROC_NULL when a
neighboring process does not exist

– MPI_Sendrecv can correctly handle it (no send or receive is performed in that case)

– But the copy back from buffer to T must be avoided (otherwise T would be filled with
unexpected values)

