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Motivation and Concept 

•  Software designers should exploit 
reusable design knowledge promoting 
– Abstraction and elegance 
– Flexibility and modularity 
– Uncoupling and cohesion 

•  Problem: capturing, communicating, and 
reuse design knowledge 



Patterns for HPC 
Which technologies improve the productivity of HPC 
software development?  
•  Parallel programming languages and libraries,  
•  Object Oriented scientific programming, and  
•  parallel run-time systems and tools  

The success of these activities requires some 
understanding of common patterns used in the 
development of HPC software:  
•  patterns used for the coding of parallel algorithms,  
•  their mapping to various architectures, and  
•  performance tuning activities 
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A discipline of design 
•  Christopher Alexander’s approach to (civil) 

architecture: 
–  A design pattern “describes a problem which 

occurs over and over, and then describes the 
core of the solution to that problem, in such a way 
that you can use this solution a million times over, 
without ever doing it the same way twice.“ A 
Pattern Language, Christopher Alexander 

•  A pattern language is an organized  way of 
tackling an architectural problem using 
patterns 

•  Gamma used patterns to bring order to the 
chaos of object oriented design. 

•  The book turned object oriented design 
from “an art” to a systematic design 
discipline 



What is a design pattern? 

A design pattern 
–  Is a reusable solution to a common problem in 

software design 
– Abstracts a recurring design structure 
–  Includes class or object 

•  dependencies 
•  structures 
•  interactions 

– Names and specifies the design structure explicitly 
– Distils design experience 



What is a design pattern? 
A design pattern is a description of a reusable design: 

1.  Name 
2.  Problem 
3.  Solution 
4.  Consequences and trade-offs of application 

•  Language- and implementation-independent 
•  A “micro-architecture” 
•  Adjunct to existing methods (eg. UML, C++, etc.) 
•  No mechanical application 

–  The solution needs to be translated by the developer 
into concrete terms in the application context 
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Getting started with parallel algorithms 

•  Concurrency is a general concept  
– … multiple activities that can occur and make 

progress at the same time. 
•  A parallel algorithm is any algorithm that uses 

concurrency to solve a problem of a given size in 
less time 

•  Scientific programmers have been working with 
parallelism since the early 80’s 
–  Hence we have almost 30 years of experience to 

draw on to help us understand patterns for parallel 
algorithms. 
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Basic approach 
•  Identify the concurrency in your problem: 

–  Find the tasks, data dependencies and any other constraints. 

•  Develop a strategy to exploit the concurrency: 
–  Which elements of the design will be used to organize your 

approach to exploiting concurrency. 

•  Identify and use the right pattern to turn your strategy into 
the design of a specific parallel algorithm 

•  Choose the supporting patterns to move your design into 
source code. 
–  This step is heavily influenced by the target platform 
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Original Problem Tasks, shared and local 
data 

Find 
Concurrency 

Supporting 
patterns  

Corresponding source 
code 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int N = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N,DATA); 
   for (int I= 0; I<N;I=I+Num){ 
        tmp = func(I); 
        Res.accumulate( tmp); 
   } 
} 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int N = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N,DATA); 
   for (int I= 0; I<N;I=I+Num){ 
        tmp = func(I); 
        Res.accumulate( tmp); 
   } 
} 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int N = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N,DATA); 
   for (int I= 0; I<N;I=I+Num){ 
        tmp = func(I); 
        Res.accumulate( tmp); 
   } 
} 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int Num = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N, Data); 
   for (int I= ID; I<N;I=I+Num){ 
        tmp = func(I, Data); 
        Res.accumulate( tmp); 
   } 
} 

Units of execution + new shared 
data for extracted dependencies 

Concurrency in parallel software 
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Exploiting concurrency: the big picture 

Exploiting concurrency “always” involves 
the following 3 steps: 

1.  Identify the concurrent tasks 
–  A task is a logically related sequence of 

operations. 
2.  Decompose the problem’s data to minimize 

overhead of sharing or data-movement 
between tasks 

3.  Describe dependencies between tasks: both 
ordering constraints and data that is shared 
between tasks. 
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Exploiting concurrency 
Start with a specification that solves the original problem -- finish 
with the  problem decomposed into parallel tasks, shared data, 
and a partial ordering. 

Design Evaluation 

Start 

DependencyAnalysis 

DecompositionAnalysis 
DataDecomposition 

TaskDecomposition 
OrderGroups 

GroupTasks 

DataSharing 
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Example: File search 
•  You have a collection of thousands of data-files 

–  Input: A string  
–  Output: The number of times the input string appears 

in the collection of files.  
•  Finding concurrency 

–  Task decomposition: The search of each file defines a 
distinct task. 

–  Data decomposition: Assign each file to a task 
–  Dependencies: 

•  A single group of tasks that can execute in any order … hence 
no partial orders to enforce 

•  Data Dependencies:  A single global counter for the number of 
times the string is found 
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Decompositions 

•  The fundamental insight to remember is 
that ALL parallel algorithms require a task 
decomposition AND a data decomposition.  
– Even so-called “strictly data parallel” 

algorithms are based on implicitly defined 
tasks.  
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Strategies for exploiting concurrency 

•  Given the results from your “concurrency” analysis, 
there are many different ways to turn them into a 
parallel algorithm. 

•  In most cases, one of three strategies are used 
–  Agenda parallelism: The collection of tasks that are to be 

computed. 
–  Result parallelism: Updates to the data. 
–  Specialist parallelism: The flow of data between a fixed 

set of tasks. 

Ref: N. Carriero and D. Gelernter, How to Write Parallel Programs: A First Course, 1990. 



Example: building a house 

•  we can decompose the intended final 
layout (result), building most component 
separately and then putting together them  

•  we can assign a special task to each 
worker, aiming at exploiting each specialist 
in parallel 

•  given the list of building phases, we can 
try to parallelize the list (agenda) 
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Agenda parallelism 
•  For agenda parallelism, the parallel algorithm is obtained 

by the actions to be carried out by the program: the 
“agenda” 
–  Each “action” defines the task and this is the natural way to think 

about the concurrency. 

•  These tasks may be: 
–  Statically defined up front. 
–  Dynamically generated as the computation proceeds. 
–  Spawned as a recursive data structure is traversed. 

•  Algorithms based on agenda parallelism focus on how the 
tasks are created, managing their execution to balance the 
load among all processing elements, and correct (and 
scalable) combination of results into the final answer 
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Result parallelism 

•  In result parallelism, the algorithm is designed 
around what you will be computing, i.e., the data 
decomposition guides the design of the 
algorithm.  

•  These problems revolve around a central data 
structure that hopefully presents a natural 
decomposition strategy.  

•  For these algorithms, the resulting programs 
focus on breaking up the central data structure 
and launching threads or processes to update 
them concurrently. 
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Specialist parallelism 

•  Specialist parallelism occurs when the problem can be 
defined in terms of data flowing through a fixed set of 
tasks 

•  This strategy works best when there are a modest 
number of compute intensive tasks. When there are 
large numbers of finely grained tasks, its usually better to 
think in terms of the agenda parallelism strategy.  

•  A common example of specialist parallelism is the linear 
pipeline of tasks 

•  algorithms with feedback loops and more complex 
branching structure fit this strategy as well 
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The algorithm design patterns 

Result 
Parallelism 

Geometric 
Decomposition Task 

Parallelism 

Divide and 
Conquer Recursive 

Data 

Specialist 
Parallelism 

Pipeline Event Based 
Coordination 

Agenda 
Parallelism 

Data 
Parallelism Embarrassingly 

Parallel 

Separable 
Dependencie

s 

Start with a basic concurrency decomposition 
•  A problem decomposed into a set of tasks 
•  A data decomposition aligned with the set of tasks … designed to minimize 

interactions between tasks and make concurrent updates to data safe. 
•  Dependencies and ordering constraints between groups of tasks. 
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Specialist parallelism: algorithm patterns 

Specialists: a fixed set of tasks that data flows through.  
•  Pipeline:  

–  A collection of tasks or pipeline stages are defined 
and connected in terms of a fixed communication 
pattern. Data flows between stages as computations 
complete; the parallelism comes from the stages 
executing at the same time once the pipeline is full. 
The pipeline stages can include branches or feedback 
loops. 

•  Event-based coordination:  
–  This pattern defines a set of tasks that run 

concurrently in response to events that arrive on a 
queue.   
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Agenda parallelism: algorithm patterns 
These patterns naturally focus on the tasks exposed by the problem  

–  Task parallel:  
•  The set of tasks are defined statically or through iterative control structures. The 

crux of this pattern is to schedule the tasks so the computational load is evenly 
spread between the threads or processes and to manage the data 
dependencies between tasks. 

–   Embarrassingly parallel:  
•  This is a very important instance of the task parallel pattern in which there are 

no dependencies between the tasks. The challenge with this pattern is to 
distribute the tasks so the load is evenly balanced among the processing 
elements of the parallel system. 

–   Separable dependencies:  
•  A sub-pattern of the task parallel pattern in which the dependencies between 

tasks are managed by replicating key data structures on each thread or process 
and then accumulating results into these local structures. The tasks then 
execute according to the embarrassingly parallel pattern and the local replicated 
data structures are combined into the final global result. 

–  Recursive algorithms:  
•  Tasks are generated by recursively splitting a problem into smaller sub-

problems. These sub-problems are themselves split until at some point the 
generated sub-problems are small enough to solve directly. In a divide and 
conquer algorithm, the splitting is reversed to combine the solutions from the 
sub-problems into a single solution for the original problem. 
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Result parallelism: algorithm patterns 

•  The core idea is to define the algorithm in terms of the 
data structures within the problem and how they are 
decomposed. 
–  Data parallelism:  

•  A broadly applicable pattern in which the parallelism is expressed as 
streams of instructions applied concurrently to the elements of a 
data structure (e.g., arrays). 

–  Geometric decomposition:  
•  A data parallel pattern where the data structures at the center of the 

problem are broken into sub-regions or tiles that are distributed 
about the threads or processes involved in the computation. The 
algorithm consists of updates to local or interior points, exchange of 
boundary regions, and update of the edges. 

–  Recursive data:  
•  A data parallel pattern used with recursively defined data structures. 

Extra work (relative to the serial version of the algorithm) is 
expended to traverse the data structure and define the concurrent 
tasks, but this is compensated for by the potential for parallel 
speedup. 
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Supporting Patterns •  Fork-join 
–  A computation begins as a single thread of control. Additional threads are created as needed 

(forked) to execute functions and then when complete terminate (join). The computation 
continues as a single thread until a later time when more threads might be useful.   

•  SPMD 
–  Multiple copies of a single program are launched typically with their own view of the data.  The 

path through the program is determined in part base don a unique ID (a rank).  This is by far the 
most commonly used pattern with message passing APIs such as MPI. 

•  Loop parallelism 
–  Parallelism is expressed in terms of loops that execute concurrently.  

•  Master-worker 
–  A process or thread (the master) sets up a task queue and manages other threads (the workers) 

as they grab a task from the queue, carry out the computation, and then return for their next 
task. This continues until the master detects that a termination condition has been met, at which 
point the master ends the computation.  

•  SIMD 
–  The computation is a single stream of instructions applied to the individual components of a data 

structure (such as an array).   
•  Functional parallelism 

–  Concurrency is expressed as a distinct set of functions that execute concurrently. This pattern 
may be used with an imperative semantics in which case the way the functions execute are 
defined in the source code (e.g., event based coordination). Alternatively, this pattern can be 
used with declarative semantics, such as within a functional language, where the functions are 
defined but how (or when) they execute is dictated by the interaction of the data with the 
language model. 
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The Implementation Mechanisms 
The basic building blocks of parallel computing.  

Process 
control 

Thread control 

Management Synchronization 

Memory sync/fences 
barriers 
Mutual Exclusion 

Collective 
Comm 

Message 
Passing 

Other Comm 

Communications 
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Example: A parallel game engine 

•  Computer games represent an important yet 
difficult class of problems for parallel programers 

•  A computer game is: 
–  An HPC problem: physics simulations, AI, complex 

graphics, etc. 
–  Real time programming: latencies must be less than 

50 milliseconds and ideally much lower to match the 
frame update rate for satisfactory graphics 

•  The computational core of a computer game is 
the game-engine.  
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The “Game Engine” 

Input 
Sim 

data/state 
Audio 

Data/state 

Render 

Data/state 

assets Media 
(disk, 
optical 
media) 

Front End 

Data 

network 
Animation 

game state in its internally managed data structures.   
Source: Conversations with developers at various game companies 
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The “Game Engine” 

Input 
Sim 

data/state 
Audio 

Data/state 

Render 

Data/state 

assets Media 
(disk, 
optical 
media) 

Front End 

Data 

network 
Animation 

game state in its internally managed data structures.   

Physics Particle 
System 

AI Collision 
Detection 

Time 
Loop 

Sim is the integrator 
and integrates from 
one time step to the 
next; calling update 

methods for the 
other modules inside 
a central time loop. 

Sim 
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Combine modules into groups, assign one group to a thread. 

Asynchronous execution … interact through events. 

Coarse grained parallelism dominated by flow of data between 
groups …  Specialist parallelism strategy. 

Finding concurrency: Specialist parallelism 

Input 
Sim 

data/state 
Audio 

Data/state 

Render 

Data/state 

assets Media 
(disk, 
optical 
media) 

Front End 

Data 

network 
Animation 
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The Finding Concurrency Analysis 
Start with a specification that solves the original problem -- finish 
with the  problem decomposed into tasks, shared data, and a 
partial ordering. 

Design Evaluation 

Start 

DependencyAnalysis 
DecompositionAnalysis 

DataDecomposition 

TaskDecomposition 

OrderGroups 
GroupTasks 

DataSharing 

Many cores needs many concurrent tasks 
… In this case, specialist parallelism does 

not expose enough concurrency.   
We need to go back and rethink the design. 
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More	  sophis*cated	  paralleliza*on	  strategy	  

Input 
Sim 

data/state 
Audio 

Data/state 

Render 

Data/state 

assets Media 
(disk, 
optical 
media) 

Front End 

Data 

network 
Animation 

Use agenda parallelism strategy to decompose 
computation into a pool of tasks – finer granularity 
exposes more concurrency. 
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The	  Algorithm	  Design	  Pa9erns	  

Result 
Parallelism 

Geometric 
Decomposition Task 

Parallelism 

Divide and 
Conquer Recursive 

Data 

Specialist 
Parallelism 

Pipeline Event Based 
Coordination 

Agenda 
Parallelism 

Data 
Parallelism Embarrassingly 

Parallel 

Separable 
Dependencies 

Start with a basic concurrency decomposition 
•  A problem decomposed into a set of tasks 
•  A data decomposition aligned with the set of tasks … designed to minimize 

interactions between tasks and make concurrent updates to data safe. 
•  Dependencies and ordering constraints between groups of tasks. 
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Suppor*ng	  Pa9erns	  •  Fork-‐join	  
–  A	  computa*on	  begins	  as	  a	  single	  thread	  of	  control.	  Addi*onal	  threads	  are	  created	  as	  needed	  (forked)	  to	  

execute	  func*ons	  and	  then	  when	  complete	  terminate	  (join).	  The	  computa*on	  con*nues	  as	  a	  single	  
thread	  un*l	  a	  later	  *me	  when	  more	  threads	  might	  be	  useful.	  	  	  

•  SPMD	  
–  Mul*ple	  copies	  of	  a	  single	  program	  are	  launched	  typically	  with	  their	  own	  view	  of	  the	  data.	  	  The	  path	  

through	  the	  program	  is	  determined	  in	  part	  base	  don	  a	  unique	  ID	  (a	  rank).	  	  This	  is	  by	  far	  the	  most	  
commonly	  used	  pa9ern	  with	  message	  passing	  APIs	  such	  as	  MPI.	  

•  Loop	  parallelism	  
–  Parallelism	  is	  expressed	  in	  terms	  of	  loops	  that	  execute	  concurrently.	  	  

•  Master-‐worker	  
–  A	  process	  or	  thread	  (the	  master)	  sets	  up	  a	  task	  queue	  and	  manages	  other	  threads	  (the	  workers)	  as	  they	  

grab	  a	  task	  from	  the	  queue,	  carry	  out	  the	  computa*on,	  and	  then	  return	  for	  their	  next	  task.	  This	  
con*nues	  un*l	  the	  master	  detects	  that	  a	  termina*on	  condi*on	  has	  been	  met,	  at	  which	  point	  the	  master	  
ends	  the	  computa*on.	  	  

•  SIMD	  
–  The	  computa*on	  is	  a	  single	  stream	  of	  instruc*ons	  applied	  to	  the	  individual	  components	  of	  a	  data	  

structure	  (such	  as	  an	  array).	  	  	  
•  Func*onal	  parallelism	  

–  Concurrency	  is	  expressed	  as	  a	  dis*nct	  set	  of	  func*ons	  that	  execute	  concurrently.	  This	  pa9ern	  may	  be	  
used	  with	  an	  impera*ve	  seman*cs	  in	  which	  case	  the	  way	  the	  func*ons	  execute	  are	  defined	  in	  the	  source	  
code	  (e.g.,	  event	  based	  coordina*on).	  Alterna*vely,	  this	  pa9ern	  can	  be	  used	  with	  declara*ve	  seman*cs,	  
such	  as	  within	  a	  func*onal	  language,	  where	  the	  func*ons	  are	  defined	  but	  how	  (or	  when)	  they	  execute	  is	  
dictated	  by	  the	  interac*on	  of	  the	  data	  with	  the	  language	  model.	  

Tasks vary widely so you need a supporting pattern 
that helps with dynamic load balancing. 



MapReduce 



Big-data 
•  Data mining huge amounts of data collected 

in a wide range of domains from astronomy 
to healthcare has become essential for 
planning and performance 

•  We are in a knowledge economy 
– Data is an important asset to any organization 
– Discovery of knowledge; enabling discovery; 

annotation of data 
•  We are looking at newer  

–  programming models, and 
– Supporting algorithms and data structures 



What is MapReduce? 
•  MapReduce is an architectural style for 

parallel programming 
– Google has used successfully in processing its 
“big-data” sets (~ 20000 peta bytes per day) 

•  Users specify the computation in terms of a 
map and a reduce function 
– Underlying runtime system automatically 

parallelizes the computation across large-scale 
clusters of machines, and 

– Underlying system also handles machine failures, 
efficient communications, and performance 
issues 



Towards MapReduce 

•  Consider a large data collection:  
–  {web, weed, green, sun, moon, land, part, 

web, green, …} 
– Problem: Count the occurrences of the 

different words in the collection 



Word Counter and Result Table 

Data 
collection 

web	   2	  

weed	   1	  

green	   2	  

sun	   1	  

moon	   1	  

land	   1	  

part	   1	  

R es ultTable

Main

D ataC ollec tion

WordC ounter

pars e(	   )
c ount(	   )

{web, weed, green, sun, moon, land, part, 
web, green,…} 



Mul*ple	  Instances	  of	  Word	  Counter	  
web	   2	  

weed	   1	  

green	   2	  

sun	   1	  

moon	   1	  

land	   1	  

part	   1	  

Thread

D ataC ollec tion R es ultTable

WordC ounter

pars e(6 )
c ount(6 )

Main

1..*1..*

Data	  
collec*on	  

Observe:	  	  
Mul*-‐thread	  
Lock	  on	  shared	  data	  



Improve	  Word	  Counter	  for	  
Performance	  	  

B.Ramamurthy	  &	  K.Madurai	  

Data	  
collec*on	  

	  	  

WordL is t

Thread

Main

1..*

1..*

D ataC ollec tion

P ars er
1..*

C ounter

1..*

R es ultTable

KEY	   web	   weed	   green	   sun	   moon	   land	   part	   web	   green	   …….	  

VALUE	  

web	   2	  

weed	   1	  

green	   2	  

sun	   1	  

moon	   1	  

land	   1	  

part	   1	  

N
o	  	  

No	  need	  for	  lock	  

Separate	  counters	  



Addressing	  the	  Scale	  Issue	  
•  Single	  machine	  cannot	  serve	  all	  the	  data:	  you	  
need	  a	  distributed	  special	  (file)	  system	  

•  Failure	  is	  norm	  and	  not	  an	  excep*on	  
–  File	  system	  has	  to	  be	  fault-‐tolerant:	  replica*on,	  
checksum	  

–  Data	  transfer	  bandwidth	  is	  cri*cal	  (loca*on	  of	  
data)	  

•  Cri*cal	  aspects:	  fault	  tolerance	  +	  replica*on	  +	  
load	  balancing,	  monitoring	  

•  Exploit	  parallelism	  afforded	  by	  spliYng	  parsing	  
and	  coun*ng	  



Peta	  Scale	  Data	  is	  Commonly	  
Distributed	  	  

B.Ramamurthy	  &	  K.Madurai	  

Data	  
collec*on	  

	  	  

WordL is t

Thread

Main

1..*

1..*

D ataC ollec tion

P ars er
1..*

C ounter

1..*

R es ultTable

KEY	   web	   weed	   green	   sun	   moon	   land	   part	   web	   green	   …….	  

VALUE	  

web	   2	  

weed	   1	  

green	   2	  

sun	   1	  

moon	   1	  

land	   1	  

part	   1	  

Data	  
collec*on	  

Data	  
collec*on	  

Data	  
collec*on	  

Data	  
collec*on	   Issue:	  managing	  the	  

large	  scale	  data	  



Write	  Once	  Read	  Many	  
(WORM)	  data	  

B.Ramamurthy	  &	  K.Madurai	  

Data	  
collec*on	  

	  	  

WordL is t

Thread

Main

1..*

1..*

D ataC ollec tion

P ars er
1..*

C ounter

1..*

R es ultTable

KEY	   web	   weed	   green	   sun	   moon	   land	   part	   web	   green	   …….	  

VALUE	  

web	   2	  

weed	   1	  

green	   2	  

sun	   1	  

moon	   1	  

land	   1	  

part	   1	  

Data	  
collec*on	  

Data	  
collec*on	  

Data	  
collec*on	  

Data	  
collec*on	  



WORM	  Data	  is	  Amenable	  to	  
Parallelism	  

•  Data	  with	  WORM	  characteris*cs	  :	  yields	  to	  parallel	  processing	  
•  Data	  without	  dependencies:	  yields	  to	  out	  of	  order	  processing	  

  

Data	  
collec*on	  

WordL is t

Thread

Main

1..*

1..*

D ataC ollec tion

P ars er
1..*

C ounter

1..*

R es ultTable

Data	  
collec*on	  

Data	  
collec*on	  

Data	  
collec*on	  

Data	  
collec*on	  



Divide	  and	  Conquer:	  Provision	  
Compu*ng	  at	  Data	  Loca*on	  

•  Our	  parse	  is	  a	  mapping	  opera*on:	  
•  MAP:	  input	  à	  <key,	  value>	  pairs	  

•  Our	  count	  is	  a	  reduceopera*on:	  
•  REDUCE:	  <key,	  value>	  pairs	  

reduced	  

•  Map/Reduce	  originated	  from	  Lisp	  
•  But	  have	  different	  meaning	  here	  

–  Run*me	  adds	  distribu*on	  +	  fault	  
tolerance	  +	  replica*on	  +	  
monitoring	  +	  load	  balancing	  to	  
your	  base	  applica*on!	  
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One	  node	  



Mapper	  and	  Reducer	  

MapReduceTask 

YourMapper 
YourReducer Parser 

Counter 

Mapper Reducer 



Map	  Opera*on	  
MAP:	  Input	  data	  è	  <key,	  value>	  pair	  

Data	  
Collec*on:	  split1	  

web 1 

weed 1 

green 1 

sun 1 

moon 1 

land 1 

part 1 

web 1 

green 1 

… 1 

KEY VALUE 

Split	  the	  data	  to	  
Supply	  mul*ple	  
processors	  

	  	  

Data	  
Collec*on:	  split	  2	  

Data	  
Collec*on:	  split	  n	  

	  	  
	  

Map	  

…
…
	  

Map	  

web	   1	  

weed	   1	  

green	   1	  

sun	   1	  

moon	   1	  

land	   1	  

part	   1	  

web	   1	  

green	   1	  

…	   1	  

KEY	   VALUE	  

web	   1	  

weed	   1	  

green	   1	  

sun	   1	  

moon	   1	  

land	   1	  

part	   1	  

web	   1	  

green	   1	  

…	   1	  

KEY	   VALUE	  

web	   1	  

weed	   1	  

green	   1	  

sun	   1	  

moon	   1	  

land	   1	  

part	   1	  

web	   1	  

green	   1	  

…	   1	  

KEY	   VALUE	  

web	   1	  

weed	   1	  

green	   1	  

sun	   1	  

moon	   1	  

land	   1	  

part	   1	  

web	   1	  

green	   1	  

…	   1	  

KEY	   VALUE	  

…
	  



Reduce 

Reduce 

Reduce 

Reduce Operation 
MAP: Input data è <key, value> pair 
REDUCE: <key, value> pair è <result> 

Data 
Collection: split1 Split the data to 

supply multiple 
processors 

  

Data 
Collection: split 2 

Data 
Collection: split n Map 

  
 

Map 

…
…

 Map 

…



Count	  
Count	  

Count	  

Large	  scale	  data	  splits	  

Parse-‐hash	  

Parse-‐hash	  

Parse-‐hash	  

Parse-‐hash	  

Map	  <key,	  1>	   Reducers	  (say,	  Count)	  

P-‐0000	  	  	  

P-‐0001	  	  

P-‐0002	  	  	  

,	  count1	  

	  ,	  count2	  

,count3 

48	  



Cat 
 
 
 
 

Bat 
 
 

Dog 
 
 

Other  
Words 
(size: 
TByte) 

map 

map 

map 

map 

split 

split 

split 

split 

combine 

combine 

combine 

reduce 

reduce 

reduce 

part0 

part1 

part2 

Example 



MapReduce style 
•  Determine if the problem is parallelizable and solvable 

using MapReduce 
•  Design and implement solution as Mapper classes and 

Reducer classes 
•  Compile the source code with hadoop core 
•  Package the code as jar executable 
•  Configure the application (job) as to the number of 

mappers and reducers (tasks), input and output 
streams 

•  Load the data (or use it on previously available data) 
•  Launch the job and monitor 
•  Study the result 



MapReduce Characteristics 
•  Very large scale data: peta, exa bytes 
•  Write once and read many data: allows for parallelism without 

mutexes 
•  Map and Reduce are the main operations: simple code 
•  All the map should be completed before reduce operation 

starts 
•  Map and reduce operations are typically performed by the 

same physical processor 
•  Number of map tasks and reduce tasks are configurable 
•  Operations are provisioned near the data 
•  Commodity hardware and storage 
•  Runtime takes care of splitting and moving data for operations 



“map reducible” problems 
•  Google uses it for wordcount, adwords, pagerank, 

indexing data  
•  Simple algorithms such as grep, text-indexing, 

reverse indexing 
•  Bayesian classification: data mining 
•  Facebook uses it for various operations: 

demographics 
•  Financial services use it for analytics 
•  Astronomy: Gaussian analysis for locating extra-

terrestrial objects 
•  Expected to play a critical role in semantic web  



Hadoop 

•  At Google MapReduce operation are run on a 
special file system called Google File System 
(GFS) that is highly optimized for this purpose 

•  GFS is not open source 
•  Doug Cutting and Yahoo! reverse engineered 

the GFS and called it Hadoop Distributed File 
System (HDFS) 

•  The software framework that supports HDFS, 
MapReduce and other related entities is called  
the project Hadoop or simply Hadoop 

•  This is open source and distributed by Apache 



Basic Features: HDFS 

•  Highly fault-tolerant 
•  High throughput 
•  Suitable for applications with large data 

sets 
•  Streaming access to file system data 
•  Can be built out of commodity hardware  



Credits 

•  Gamma, et al. Design Patterns, Addison-
Wesley, 1995 

•  Mattson et al., Patterns for parallel 
programming, Addison-Wesley, 2013 

•  OrtegaArjona, Patterns for parallel 
software design, Wiley 2010 



Questions? 

paolo.ciancarini@unibo.it 


