
Design patterns for HPC:
an introduction

Paolo Ciancarini – paolo.ciancarini@unibo.it
Department of Informatics – University of Bologna

Motivation and Concept

•  Software designers should exploit
reusable design knowledge promoting
– Abstraction and elegance
– Flexibility and modularity
– Uncoupling and cohesion

•  Problem: capturing, communicating, and
reuse design knowledge

Patterns for HPC
Which technologies improve the productivity of HPC
software development?
•  Parallel programming languages and libraries,
•  Object Oriented scientific programming, and
•  parallel run-time systems and tools

The success of these activities requires some
understanding of common patterns used in the
development of HPC software:
•  patterns used for the coding of parallel algorithms,
•  their mapping to various architectures, and
•  performance tuning activities

4

A discipline of design
•  Christopher Alexander’s approach to (civil)

architecture:
–  A design pattern “describes a problem which

occurs over and over, and then describes the
core of the solution to that problem, in such a way
that you can use this solution a million times over,
without ever doing it the same way twice.“ A
Pattern Language, Christopher Alexander

•  A pattern language is an organized way of
tackling an architectural problem using
patterns

•  Gamma used patterns to bring order to the
chaos of object oriented design.

•  The book turned object oriented design
from “an art” to a systematic design
discipline

What is a design pattern?

A design pattern
–  Is a reusable solution to a common problem in

software design
– Abstracts a recurring design structure
–  Includes class or object

•  dependencies
•  structures
•  interactions

– Names and specifies the design structure explicitly
– Distils design experience

What is a design pattern?
A design pattern is a description of a reusable design:

1.  Name
2.  Problem
3.  Solution
4.  Consequences and trade-offs of application

•  Language- and implementation-independent
•  A “micro-architecture”
•  Adjunct to existing methods (eg. UML, C++, etc.)
•  No mechanical application

–  The solution needs to be translated by the developer
into concrete terms in the application context

7

Getting started with parallel algorithms

•  Concurrency is a general concept
– … multiple activities that can occur and make

progress at the same time.
•  A parallel algorithm is any algorithm that uses

concurrency to solve a problem of a given size in
less time

•  Scientific programmers have been working with
parallelism since the early 80’s
–  Hence we have almost 30 years of experience to

draw on to help us understand patterns for parallel
algorithms.

8

Basic approach
•  Identify the concurrency in your problem:

–  Find the tasks, data dependencies and any other constraints.

•  Develop a strategy to exploit the concurrency:
–  Which elements of the design will be used to organize your

approach to exploiting concurrency.

•  Identify and use the right pattern to turn your strategy into
the design of a specific parallel algorithm

•  Choose the supporting patterns to move your design into
source code.
–  This step is heavily influenced by the target platform

9

Original Problem Tasks, shared and local
data

Find
Concurrency

Supporting
patterns

Corresponding source
code

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int N = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N,DATA);
 for (int I= 0; I<N;I=I+Num){
 tmp = func(I);
 Res.accumulate(tmp);
 }
}

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int N = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N,DATA);
 for (int I= 0; I<N;I=I+Num){
 tmp = func(I);
 Res.accumulate(tmp);
 }
}

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int N = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N,DATA);
 for (int I= 0; I<N;I=I+Num){
 tmp = func(I);
 Res.accumulate(tmp);
 }
}

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int Num = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N, Data);
 for (int I= ID; I<N;I=I+Num){
 tmp = func(I, Data);
 Res.accumulate(tmp);
 }
}

Units of execution + new shared
data for extracted dependencies

Concurrency in parallel software

10

Exploiting concurrency: the big picture

Exploiting concurrency “always” involves
the following 3 steps:

1.  Identify the concurrent tasks
–  A task is a logically related sequence of

operations.
2.  Decompose the problem’s data to minimize

overhead of sharing or data-movement
between tasks

3.  Describe dependencies between tasks: both
ordering constraints and data that is shared
between tasks.

11

Exploiting concurrency
Start with a specification that solves the original problem -- finish
with the problem decomposed into parallel tasks, shared data,
and a partial ordering.

Design Evaluation

Start

DependencyAnalysis

DecompositionAnalysis
DataDecomposition

TaskDecomposition
OrderGroups

GroupTasks

DataSharing

12

Example: File search
•  You have a collection of thousands of data-files

–  Input: A string
–  Output: The number of times the input string appears

in the collection of files.
•  Finding concurrency

–  Task decomposition: The search of each file defines a
distinct task.

–  Data decomposition: Assign each file to a task
–  Dependencies:

•  A single group of tasks that can execute in any order … hence
no partial orders to enforce

•  Data Dependencies: A single global counter for the number of
times the string is found

13

Decompositions

•  The fundamental insight to remember is
that ALL parallel algorithms require a task
decomposition AND a data decomposition.
– Even so-called “strictly data parallel”

algorithms are based on implicitly defined
tasks.

14

Strategies for exploiting concurrency

•  Given the results from your “concurrency” analysis,
there are many different ways to turn them into a
parallel algorithm.

•  In most cases, one of three strategies are used
–  Agenda parallelism: The collection of tasks that are to be

computed.
–  Result parallelism: Updates to the data.
–  Specialist parallelism: The flow of data between a fixed

set of tasks.

Ref: N. Carriero and D. Gelernter, How to Write Parallel Programs: A First Course, 1990.

Example: building a house

•  we can decompose the intended final
layout (result), building most component
separately and then putting together them

•  we can assign a special task to each
worker, aiming at exploiting each specialist
in parallel

•  given the list of building phases, we can
try to parallelize the list (agenda)

16

Agenda parallelism
•  For agenda parallelism, the parallel algorithm is obtained

by the actions to be carried out by the program: the
“agenda”
–  Each “action” defines the task and this is the natural way to think

about the concurrency.

•  These tasks may be:
–  Statically defined up front.
–  Dynamically generated as the computation proceeds.
–  Spawned as a recursive data structure is traversed.

•  Algorithms based on agenda parallelism focus on how the
tasks are created, managing their execution to balance the
load among all processing elements, and correct (and
scalable) combination of results into the final answer

17

Result parallelism

•  In result parallelism, the algorithm is designed
around what you will be computing, i.e., the data
decomposition guides the design of the
algorithm.

•  These problems revolve around a central data
structure that hopefully presents a natural
decomposition strategy.

•  For these algorithms, the resulting programs
focus on breaking up the central data structure
and launching threads or processes to update
them concurrently.

18

Specialist parallelism

•  Specialist parallelism occurs when the problem can be
defined in terms of data flowing through a fixed set of
tasks

•  This strategy works best when there are a modest
number of compute intensive tasks. When there are
large numbers of finely grained tasks, its usually better to
think in terms of the agenda parallelism strategy.

•  A common example of specialist parallelism is the linear
pipeline of tasks

•  algorithms with feedback loops and more complex
branching structure fit this strategy as well

19

The algorithm design patterns

Result
Parallelism

Geometric
Decomposition Task

Parallelism

Divide and
Conquer Recursive

Data

Specialist
Parallelism

Pipeline Event Based
Coordination

Agenda
Parallelism

Data
Parallelism Embarrassingly

Parallel

Separable
Dependencie

s

Start with a basic concurrency decomposition
•  A problem decomposed into a set of tasks
•  A data decomposition aligned with the set of tasks … designed to minimize

interactions between tasks and make concurrent updates to data safe.
•  Dependencies and ordering constraints between groups of tasks.

20

Specialist parallelism: algorithm patterns

Specialists: a fixed set of tasks that data flows through.
•  Pipeline:

–  A collection of tasks or pipeline stages are defined
and connected in terms of a fixed communication
pattern. Data flows between stages as computations
complete; the parallelism comes from the stages
executing at the same time once the pipeline is full.
The pipeline stages can include branches or feedback
loops.

•  Event-based coordination:
–  This pattern defines a set of tasks that run

concurrently in response to events that arrive on a
queue.

21

Agenda parallelism: algorithm patterns
These patterns naturally focus on the tasks exposed by the problem

–  Task parallel:
•  The set of tasks are defined statically or through iterative control structures. The

crux of this pattern is to schedule the tasks so the computational load is evenly
spread between the threads or processes and to manage the data
dependencies between tasks.

–  Embarrassingly parallel:
•  This is a very important instance of the task parallel pattern in which there are

no dependencies between the tasks. The challenge with this pattern is to
distribute the tasks so the load is evenly balanced among the processing
elements of the parallel system.

–  Separable dependencies:
•  A sub-pattern of the task parallel pattern in which the dependencies between

tasks are managed by replicating key data structures on each thread or process
and then accumulating results into these local structures. The tasks then
execute according to the embarrassingly parallel pattern and the local replicated
data structures are combined into the final global result.

–  Recursive algorithms:
•  Tasks are generated by recursively splitting a problem into smaller sub-

problems. These sub-problems are themselves split until at some point the
generated sub-problems are small enough to solve directly. In a divide and
conquer algorithm, the splitting is reversed to combine the solutions from the
sub-problems into a single solution for the original problem.

22

Result parallelism: algorithm patterns

•  The core idea is to define the algorithm in terms of the
data structures within the problem and how they are
decomposed.
–  Data parallelism:

•  A broadly applicable pattern in which the parallelism is expressed as
streams of instructions applied concurrently to the elements of a
data structure (e.g., arrays).

–  Geometric decomposition:
•  A data parallel pattern where the data structures at the center of the

problem are broken into sub-regions or tiles that are distributed
about the threads or processes involved in the computation. The
algorithm consists of updates to local or interior points, exchange of
boundary regions, and update of the edges.

–  Recursive data:
•  A data parallel pattern used with recursively defined data structures.

Extra work (relative to the serial version of the algorithm) is
expended to traverse the data structure and define the concurrent
tasks, but this is compensated for by the potential for parallel
speedup.

23

Supporting Patterns •  Fork-join
–  A computation begins as a single thread of control. Additional threads are created as needed

(forked) to execute functions and then when complete terminate (join). The computation
continues as a single thread until a later time when more threads might be useful.

•  SPMD
–  Multiple copies of a single program are launched typically with their own view of the data. The

path through the program is determined in part base don a unique ID (a rank). This is by far the
most commonly used pattern with message passing APIs such as MPI.

•  Loop parallelism
–  Parallelism is expressed in terms of loops that execute concurrently.

•  Master-worker
–  A process or thread (the master) sets up a task queue and manages other threads (the workers)

as they grab a task from the queue, carry out the computation, and then return for their next
task. This continues until the master detects that a termination condition has been met, at which
point the master ends the computation.

•  SIMD
–  The computation is a single stream of instructions applied to the individual components of a data

structure (such as an array).
•  Functional parallelism

–  Concurrency is expressed as a distinct set of functions that execute concurrently. This pattern
may be used with an imperative semantics in which case the way the functions execute are
defined in the source code (e.g., event based coordination). Alternatively, this pattern can be
used with declarative semantics, such as within a functional language, where the functions are
defined but how (or when) they execute is dictated by the interaction of the data with the
language model.

24

The Implementation Mechanisms
The basic building blocks of parallel computing.

Process
control

Thread control

Management Synchronization

Memory sync/fences
barriers
Mutual Exclusion

Collective
Comm

Message
Passing

Other Comm

Communications

25

Example: A parallel game engine

•  Computer games represent an important yet
difficult class of problems for parallel programers

•  A computer game is:
–  An HPC problem: physics simulations, AI, complex

graphics, etc.
–  Real time programming: latencies must be less than

50 milliseconds and ideally much lower to match the
frame update rate for satisfactory graphics

•  The computational core of a computer game is
the game-engine.

26

The “Game Engine”

Input
Sim

data/state
Audio

Data/state

Render

Data/state

assets Media
(disk,
optical
media)

Front End

Data

network
Animation

game state in its internally managed data structures.
Source: Conversations with developers at various game companies

27

The “Game Engine”

Input
Sim

data/state
Audio

Data/state

Render

Data/state

assets Media
(disk,
optical
media)

Front End

Data

network
Animation

game state in its internally managed data structures.

Physics Particle
System

AI Collision
Detection

Time
Loop

Sim is the integrator
and integrates from
one time step to the
next; calling update

methods for the
other modules inside
a central time loop.

Sim

28

Combine modules into groups, assign one group to a thread.

Asynchronous execution … interact through events.

Coarse grained parallelism dominated by flow of data between
groups … Specialist parallelism strategy.

Finding concurrency: Specialist parallelism

Input
Sim

data/state
Audio

Data/state

Render

Data/state

assets Media
(disk,
optical
media)

Front End

Data

network
Animation

29

The Finding Concurrency Analysis
Start with a specification that solves the original problem -- finish
with the problem decomposed into tasks, shared data, and a
partial ordering.

Design Evaluation

Start

DependencyAnalysis
DecompositionAnalysis

DataDecomposition

TaskDecomposition

OrderGroups
GroupTasks

DataSharing

Many cores needs many concurrent tasks
… In this case, specialist parallelism does

not expose enough concurrency.
We need to go back and rethink the design.

30

More	
 sophis*cated	
 paralleliza*on	
 strategy	

Input
Sim

data/state
Audio

Data/state

Render

Data/state

assets Media
(disk,
optical
media)

Front End

Data

network
Animation

Use agenda parallelism strategy to decompose
computation into a pool of tasks – finer granularity
exposes more concurrency.

31

The	
 Algorithm	
 Design	
 Pa9erns	

Result
Parallelism

Geometric
Decomposition Task

Parallelism

Divide and
Conquer Recursive

Data

Specialist
Parallelism

Pipeline Event Based
Coordination

Agenda
Parallelism

Data
Parallelism Embarrassingly

Parallel

Separable
Dependencies

Start with a basic concurrency decomposition
•  A problem decomposed into a set of tasks
•  A data decomposition aligned with the set of tasks … designed to minimize

interactions between tasks and make concurrent updates to data safe.
•  Dependencies and ordering constraints between groups of tasks.

32

Suppor*ng	
 Pa9erns	
 •  Fork-­‐join	

–  A	
 computa*on	
 begins	
 as	
 a	
 single	
 thread	
 of	
 control.	
 Addi*onal	
 threads	
 are	
 created	
 as	
 needed	
 (forked)	
 to	

execute	
 func*ons	
 and	
 then	
 when	
 complete	
 terminate	
 (join).	
 The	
 computa*on	
 con*nues	
 as	
 a	
 single	

thread	
 un*l	
 a	
 later	
 *me	
 when	
 more	
 threads	
 might	
 be	
 useful.	
 	
 	

•  SPMD	

–  Mul*ple	
 copies	
 of	
 a	
 single	
 program	
 are	
 launched	
 typically	
 with	
 their	
 own	
 view	
 of	
 the	
 data.	
 	
 The	
 path	

through	
 the	
 program	
 is	
 determined	
 in	
 part	
 base	
 don	
 a	
 unique	
 ID	
 (a	
 rank).	
 	
 This	
 is	
 by	
 far	
 the	
 most	

commonly	
 used	
 pa9ern	
 with	
 message	
 passing	
 APIs	
 such	
 as	
 MPI.	

•  Loop	
 parallelism	

–  Parallelism	
 is	
 expressed	
 in	
 terms	
 of	
 loops	
 that	
 execute	
 concurrently.	
 	

•  Master-­‐worker	

–  A	
 process	
 or	
 thread	
 (the	
 master)	
 sets	
 up	
 a	
 task	
 queue	
 and	
 manages	
 other	
 threads	
 (the	
 workers)	
 as	
 they	

grab	
 a	
 task	
 from	
 the	
 queue,	
 carry	
 out	
 the	
 computa*on,	
 and	
 then	
 return	
 for	
 their	
 next	
 task.	
 This	

con*nues	
 un*l	
 the	
 master	
 detects	
 that	
 a	
 termina*on	
 condi*on	
 has	
 been	
 met,	
 at	
 which	
 point	
 the	
 master	

ends	
 the	
 computa*on.	
 	

•  SIMD	

–  The	
 computa*on	
 is	
 a	
 single	
 stream	
 of	
 instruc*ons	
 applied	
 to	
 the	
 individual	
 components	
 of	
 a	
 data	

structure	
 (such	
 as	
 an	
 array).	
 	
 	

•  Func*onal	
 parallelism	

–  Concurrency	
 is	
 expressed	
 as	
 a	
 dis*nct	
 set	
 of	
 func*ons	
 that	
 execute	
 concurrently.	
 This	
 pa9ern	
 may	
 be	

used	
 with	
 an	
 impera*ve	
 seman*cs	
 in	
 which	
 case	
 the	
 way	
 the	
 func*ons	
 execute	
 are	
 defined	
 in	
 the	
 source	

code	
 (e.g.,	
 event	
 based	
 coordina*on).	
 Alterna*vely,	
 this	
 pa9ern	
 can	
 be	
 used	
 with	
 declara*ve	
 seman*cs,	

such	
 as	
 within	
 a	
 func*onal	
 language,	
 where	
 the	
 func*ons	
 are	
 defined	
 but	
 how	
 (or	
 when)	
 they	
 execute	
 is	

dictated	
 by	
 the	
 interac*on	
 of	
 the	
 data	
 with	
 the	
 language	
 model.	

Tasks vary widely so you need a supporting pattern
that helps with dynamic load balancing.

MapReduce

Big-data
•  Data mining huge amounts of data collected

in a wide range of domains from astronomy
to healthcare has become essential for
planning and performance

•  We are in a knowledge economy
– Data is an important asset to any organization
– Discovery of knowledge; enabling discovery;

annotation of data
•  We are looking at newer

–  programming models, and
– Supporting algorithms and data structures

What is MapReduce?
•  MapReduce is an architectural style for

parallel programming
– Google has used successfully in processing its
“big-data” sets (~ 20000 peta bytes per day)

•  Users specify the computation in terms of a
map and a reduce function
– Underlying runtime system automatically

parallelizes the computation across large-scale
clusters of machines, and

– Underlying system also handles machine failures,
efficient communications, and performance
issues

Towards MapReduce

•  Consider a large data collection:
–  {web, weed, green, sun, moon, land, part,

web, green, …}
– Problem: Count the occurrences of the

different words in the collection

Word Counter and Result Table

Data
collection

web	
 2	

weed	
 1	

green	
 2	

sun	
 1	

moon	
 1	

land	
 1	

part	
 1	

R es ultTable

Main

D ataC ollec tion

WordC ounter

pars e(
)
c ount(
)

{web, weed, green, sun, moon, land, part,
web, green,…}

Mul*ple	
 Instances	
 of	
 Word	
 Counter	

web	
 2	

weed	
 1	

green	
 2	

sun	
 1	

moon	
 1	

land	
 1	

part	
 1	

Thread

D ataC ollec tion R es ultTable

WordC ounter

pars e(6)
c ount(6)

Main

1..*1..*

Data	

collec*on	

Observe:	
 	

Mul*-­‐thread	

Lock	
 on	
 shared	
 data	

Improve	
 Word	
 Counter	
 for	

Performance	
 	

B.Ramamurthy	
 &	
 K.Madurai	

Data	

collec*on	

	
 	

WordL is t

Thread

Main

1..*

1..*

D ataC ollec tion

P ars er
1..*

C ounter

1..*

R es ultTable

KEY	
 web	
 weed	
 green	
 sun	
 moon	
 land	
 part	
 web	
 green	
 …….	

VALUE	

web	
 2	

weed	
 1	

green	
 2	

sun	
 1	

moon	
 1	

land	
 1	

part	
 1	

N
o	
 	

No	
 need	
 for	
 lock	

Separate	
 counters	

Addressing	
 the	
 Scale	
 Issue	

•  Single	
 machine	
 cannot	
 serve	
 all	
 the	
 data:	
 you	

need	
 a	
 distributed	
 special	
 (file)	
 system	

•  Failure	
 is	
 norm	
 and	
 not	
 an	
 excep*on	

–  File	
 system	
 has	
 to	
 be	
 fault-­‐tolerant:	
 replica*on,	

checksum	

–  Data	
 transfer	
 bandwidth	
 is	
 cri*cal	
 (loca*on	
 of	

data)	

•  Cri*cal	
 aspects:	
 fault	
 tolerance	
 +	
 replica*on	
 +	

load	
 balancing,	
 monitoring	

•  Exploit	
 parallelism	
 afforded	
 by	
 spliYng	
 parsing	

and	
 coun*ng	

Peta	
 Scale	
 Data	
 is	
 Commonly	

Distributed	
 	

B.Ramamurthy	
 &	
 K.Madurai	

Data	

collec*on	

	
 	

WordL is t

Thread

Main

1..*

1..*

D ataC ollec tion

P ars er
1..*

C ounter

1..*

R es ultTable

KEY	
 web	
 weed	
 green	
 sun	
 moon	
 land	
 part	
 web	
 green	
 …….	

VALUE	

web	
 2	

weed	
 1	

green	
 2	

sun	
 1	

moon	
 1	

land	
 1	

part	
 1	

Data	

collec*on	

Data	

collec*on	

Data	

collec*on	

Data	

collec*on	
 Issue:	
 managing	
 the	

large	
 scale	
 data	

Write	
 Once	
 Read	
 Many	

(WORM)	
 data	

B.Ramamurthy	
 &	
 K.Madurai	

Data	

collec*on	

	
 	

WordL is t

Thread

Main

1..*

1..*

D ataC ollec tion

P ars er
1..*

C ounter

1..*

R es ultTable

KEY	
 web	
 weed	
 green	
 sun	
 moon	
 land	
 part	
 web	
 green	
 …….	

VALUE	

web	
 2	

weed	
 1	

green	
 2	

sun	
 1	

moon	
 1	

land	
 1	

part	
 1	

Data	

collec*on	

Data	

collec*on	

Data	

collec*on	

Data	

collec*on	

WORM	
 Data	
 is	
 Amenable	
 to	

Parallelism	

•  Data	
 with	
 WORM	
 characteris*cs	
 :	
 yields	
 to	
 parallel	
 processing	

•  Data	
 without	
 dependencies:	
 yields	
 to	
 out	
 of	
 order	
 processing	

Data	

collec*on	

WordL is t

Thread

Main

1..*

1..*

D ataC ollec tion

P ars er
1..*

C ounter

1..*

R es ultTable

Data	

collec*on	

Data	

collec*on	

Data	

collec*on	

Data	

collec*on	

Divide	
 and	
 Conquer:	
 Provision	

Compu*ng	
 at	
 Data	
 Loca*on	

•  Our	
 parse	
 is	
 a	
 mapping	
 opera*on:	

•  MAP:	
 input	
 à	
 <key,	
 value>	
 pairs	

•  Our	
 count	
 is	
 a	
 reduceopera*on:	

•  REDUCE:	
 <key,	
 value>	
 pairs	

reduced	

•  Map/Reduce	
 originated	
 from	
 Lisp	

•  But	
 have	
 different	
 meaning	
 here	

–  Run*me	
 adds	
 distribu*on	
 +	
 fault	

tolerance	
 +	
 replica*on	
 +	

monitoring	
 +	
 load	
 balancing	
 to	

your	
 base	
 applica*on!	

WordL is t

Thread

Main

1..*

1..*

D ataC ollec tion

P ars er
1..*

C ounter

1..*

R es ultTable

Data	

collec*on	

WordL is t

Thread

Main

1..*

1..*

D ataC ollec tion

P ars er
1..*

C ounter

1..*

R es ultTable

Data	

collec*on	

Data	

collec*on	

WordL is t

Thread

Main

1..*

1..*

D ataC ollec tion

P ars er
1..*

C ounter

1..*

R es ultTable

WordL is t

Thread

Main

1..*

1..*

D ataC ollec tion

P ars er
1..*

C ounter

1..*

R es ultTable

Data	

collec*on	

One	
 node	

Mapper	
 and	
 Reducer	

MapReduceTask

YourMapper
YourReducer Parser

Counter

Mapper Reducer

Map	
 Opera*on	

MAP:	
 Input	
 data	
 è	
 <key,	
 value>	
 pair	

Data	

Collec*on:	
 split1	

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

Split	
 the	
 data	
 to	

Supply	
 mul*ple	

processors	

	
 	

Data	

Collec*on:	
 split	
 2	

Data	

Collec*on:	
 split	
 n	

	
 	

	

Map	

…
…
	

Map	

web	
 1	

weed	
 1	

green	
 1	

sun	
 1	

moon	
 1	

land	
 1	

part	
 1	

web	
 1	

green	
 1	

…	
 1	

KEY	
 VALUE	

web	
 1	

weed	
 1	

green	
 1	

sun	
 1	

moon	
 1	

land	
 1	

part	
 1	

web	
 1	

green	
 1	

…	
 1	

KEY	
 VALUE	

web	
 1	

weed	
 1	

green	
 1	

sun	
 1	

moon	
 1	

land	
 1	

part	
 1	

web	
 1	

green	
 1	

…	
 1	

KEY	
 VALUE	

web	
 1	

weed	
 1	

green	
 1	

sun	
 1	

moon	
 1	

land	
 1	

part	
 1	

web	
 1	

green	
 1	

…	
 1	

KEY	
 VALUE	

…
	

Reduce

Reduce

Reduce

Reduce Operation
MAP: Input data è <key, value> pair
REDUCE: <key, value> pair è <result>

Data
Collection: split1 Split the data to

supply multiple
processors

Data
Collection: split 2

Data
Collection: split n Map

Map

…
…

 Map

…

Count	

Count	

Count	

Large	
 scale	
 data	
 splits	

Parse-­‐hash	

Parse-­‐hash	

Parse-­‐hash	

Parse-­‐hash	

Map	
 <key,	
 1>	
 Reducers	
 (say,	
 Count)	

P-­‐0000	
 	
 	

P-­‐0001	
 	

P-­‐0002	
 	
 	

,	
 count1	

	
 ,	
 count2	

,count3

48	

Cat

Bat

Dog

Other
Words
(size:
TByte)

map

map

map

map

split

split

split

split

combine

combine

combine

reduce

reduce

reduce

part0

part1

part2

Example

MapReduce style
•  Determine if the problem is parallelizable and solvable

using MapReduce
•  Design and implement solution as Mapper classes and

Reducer classes
•  Compile the source code with hadoop core
•  Package the code as jar executable
•  Configure the application (job) as to the number of

mappers and reducers (tasks), input and output
streams

•  Load the data (or use it on previously available data)
•  Launch the job and monitor
•  Study the result

MapReduce Characteristics
•  Very large scale data: peta, exa bytes
•  Write once and read many data: allows for parallelism without

mutexes
•  Map and Reduce are the main operations: simple code
•  All the map should be completed before reduce operation

starts
•  Map and reduce operations are typically performed by the

same physical processor
•  Number of map tasks and reduce tasks are configurable
•  Operations are provisioned near the data
•  Commodity hardware and storage
•  Runtime takes care of splitting and moving data for operations

“map reducible” problems
•  Google uses it for wordcount, adwords, pagerank,

indexing data
•  Simple algorithms such as grep, text-indexing,

reverse indexing
•  Bayesian classification: data mining
•  Facebook uses it for various operations:

demographics
•  Financial services use it for analytics
•  Astronomy: Gaussian analysis for locating extra-

terrestrial objects
•  Expected to play a critical role in semantic web

Hadoop

•  At Google MapReduce operation are run on a
special file system called Google File System
(GFS) that is highly optimized for this purpose

•  GFS is not open source
•  Doug Cutting and Yahoo! reverse engineered

the GFS and called it Hadoop Distributed File
System (HDFS)

•  The software framework that supports HDFS,
MapReduce and other related entities is called
the project Hadoop or simply Hadoop

•  This is open source and distributed by Apache

Basic Features: HDFS

•  Highly fault-tolerant
•  High throughput
•  Suitable for applications with large data

sets
•  Streaming access to file system data
•  Can be built out of commodity hardware

Credits

•  Gamma, et al. Design Patterns, Addison-
Wesley, 1995

•  Mattson et al., Patterns for parallel
programming, Addison-Wesley, 2013

•  OrtegaArjona, Patterns for parallel
software design, Wiley 2010

Questions?

paolo.ciancarini@unibo.it

