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Motivation and Concept 

•  Software designers should exploit 
reusable design knowledge promoting 
– Abstraction and elegance 
– Flexibility and modularity 
– Uncoupling and cohesion 

•  Problem: capturing, communicating, and 
reuse design knowledge 



Patterns for HPC 
Which technologies improve the productivity of HPC 
software development?  
•  Parallel programming languages and libraries,  
•  Object Oriented scientific programming, and  
•  parallel run-time systems and tools  

The success of these activities requires some 
understanding of common patterns used in the 
development of HPC software:  
•  patterns used for the coding of parallel algorithms,  
•  their mapping to various architectures, and  
•  performance tuning activities 
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A discipline of design 
•  Christopher Alexander’s approach to (civil) 

architecture: 
–  A design pattern “describes a problem which 

occurs over and over, and then describes the 
core of the solution to that problem, in such a way 
that you can use this solution a million times over, 
without ever doing it the same way twice.“ A 
Pattern Language, Christopher Alexander 

•  A pattern language is an organized  way of 
tackling an architectural problem using 
patterns 

•  Gamma used patterns to bring order to the 
chaos of object oriented design. 

•  The book turned object oriented design 
from “an art” to a systematic design 
discipline 



What is a design pattern? 

A design pattern 
–  Is a reusable solution to a common problem in 

software design 
– Abstracts a recurring design structure 
–  Includes class or object 

•  dependencies 
•  structures 
•  interactions 

– Names and specifies the design structure explicitly 
– Distils design experience 



What is a design pattern? 
A design pattern is a description of a reusable design: 

1.  Name 
2.  Problem 
3.  Solution 
4.  Consequences and trade-offs of application 

•  Language- and implementation-independent 
•  A “micro-architecture” 
•  Adjunct to existing methods (eg. UML, C++, etc.) 
•  No mechanical application 

–  The solution needs to be translated by the developer 
into concrete terms in the application context 
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Getting started with parallel algorithms 

•  Concurrency is a general concept  
– … multiple activities that can occur and make 

progress at the same time. 
•  A parallel algorithm is any algorithm that uses 

concurrency to solve a problem of a given size in 
less time 

•  Scientific programmers have been working with 
parallelism since the early 80’s 
–  Hence we have almost 30 years of experience to 

draw on to help us understand patterns for parallel 
algorithms. 
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Basic approach 
•  Identify the concurrency in your problem: 

–  Find the tasks, data dependencies and any other constraints. 

•  Develop a strategy to exploit the concurrency: 
–  Which elements of the design will be used to organize your 

approach to exploiting concurrency. 

•  Identify and use the right pattern to turn your strategy into 
the design of a specific parallel algorithm 

•  Choose the supporting patterns to move your design into 
source code. 
–  This step is heavily influenced by the target platform 
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Original Problem Tasks, shared and local 
data 

Find 
Concurrency 

Supporting 
patterns  

Corresponding source 
code 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int N = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N,DATA); 
   for (int I= 0; I<N;I=I+Num){ 
        tmp = func(I); 
        Res.accumulate( tmp); 
   } 
} 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int N = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N,DATA); 
   for (int I= 0; I<N;I=I+Num){ 
        tmp = func(I); 
        Res.accumulate( tmp); 
   } 
} 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int N = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N,DATA); 
   for (int I= 0; I<N;I=I+Num){ 
        tmp = func(I); 
        Res.accumulate( tmp); 
   } 
} 

Program SPMD_Emb_Par () 
{ 
   TYPE *tmp, *func(); 
   global_array Data(TYPE); 
   global_array Res(TYPE); 
   int Num = get_num_procs();  
   int id = get_proc_id(); 
   if (id==0) setup_problem(N, Data); 
   for (int I= ID; I<N;I=I+Num){ 
        tmp = func(I, Data); 
        Res.accumulate( tmp); 
   } 
} 

Units of execution + new shared 
data for extracted dependencies 

Concurrency in parallel software 
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Exploiting concurrency: the big picture 

Exploiting concurrency “always” involves 
the following 3 steps: 

1.  Identify the concurrent tasks 
–  A task is a logically related sequence of 

operations. 
2.  Decompose the problem’s data to minimize 

overhead of sharing or data-movement 
between tasks 

3.  Describe dependencies between tasks: both 
ordering constraints and data that is shared 
between tasks. 
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Exploiting concurrency 
Start with a specification that solves the original problem -- finish 
with the  problem decomposed into parallel tasks, shared data, 
and a partial ordering. 

Design Evaluation 

Start 

DependencyAnalysis 

DecompositionAnalysis 
DataDecomposition 

TaskDecomposition 
OrderGroups 

GroupTasks 

DataSharing 
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Example: File search 
•  You have a collection of thousands of data-files 

–  Input: A string  
–  Output: The number of times the input string appears 

in the collection of files.  
•  Finding concurrency 

–  Task decomposition: The search of each file defines a 
distinct task. 

–  Data decomposition: Assign each file to a task 
–  Dependencies: 

•  A single group of tasks that can execute in any order … hence 
no partial orders to enforce 

•  Data Dependencies:  A single global counter for the number of 
times the string is found 
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Decompositions 

•  The fundamental insight to remember is 
that ALL parallel algorithms require a task 
decomposition AND a data decomposition.  
– Even so-called “strictly data parallel” 

algorithms are based on implicitly defined 
tasks.  



14 

Strategies for exploiting concurrency 

•  Given the results from your “concurrency” analysis, 
there are many different ways to turn them into a 
parallel algorithm. 

•  In most cases, one of three strategies are used 
–  Agenda parallelism: The collection of tasks that are to be 

computed. 
–  Result parallelism: Updates to the data. 
–  Specialist parallelism: The flow of data between a fixed 

set of tasks. 

Ref: N. Carriero and D. Gelernter, How to Write Parallel Programs: A First Course, 1990. 



Example: building a house 

•  we can decompose the intended final 
layout (result), building most component 
separately and then putting together them  

•  we can assign a special task to each 
worker, aiming at exploiting each specialist 
in parallel 

•  given the list of building phases, we can 
try to parallelize the list (agenda) 
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Agenda parallelism 
•  For agenda parallelism, the parallel algorithm is obtained 

by the actions to be carried out by the program: the 
“agenda” 
–  Each “action” defines the task and this is the natural way to think 

about the concurrency. 

•  These tasks may be: 
–  Statically defined up front. 
–  Dynamically generated as the computation proceeds. 
–  Spawned as a recursive data structure is traversed. 

•  Algorithms based on agenda parallelism focus on how the 
tasks are created, managing their execution to balance the 
load among all processing elements, and correct (and 
scalable) combination of results into the final answer 
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Result parallelism 

•  In result parallelism, the algorithm is designed 
around what you will be computing, i.e., the data 
decomposition guides the design of the 
algorithm.  

•  These problems revolve around a central data 
structure that hopefully presents a natural 
decomposition strategy.  

•  For these algorithms, the resulting programs 
focus on breaking up the central data structure 
and launching threads or processes to update 
them concurrently. 
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Specialist parallelism 

•  Specialist parallelism occurs when the problem can be 
defined in terms of data flowing through a fixed set of 
tasks 

•  This strategy works best when there are a modest 
number of compute intensive tasks. When there are 
large numbers of finely grained tasks, its usually better to 
think in terms of the agenda parallelism strategy.  

•  A common example of specialist parallelism is the linear 
pipeline of tasks 

•  algorithms with feedback loops and more complex 
branching structure fit this strategy as well 
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The algorithm design patterns 

Result 
Parallelism 

Geometric 
Decomposition Task 

Parallelism 

Divide and 
Conquer Recursive 

Data 

Specialist 
Parallelism 

Pipeline Event Based 
Coordination 

Agenda 
Parallelism 

Data 
Parallelism Embarrassingly 

Parallel 

Separable 
Dependencie

s 

Start with a basic concurrency decomposition 
•  A problem decomposed into a set of tasks 
•  A data decomposition aligned with the set of tasks … designed to minimize 

interactions between tasks and make concurrent updates to data safe. 
•  Dependencies and ordering constraints between groups of tasks. 
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Specialist parallelism: algorithm patterns 

Specialists: a fixed set of tasks that data flows through.  
•  Pipeline:  

–  A collection of tasks or pipeline stages are defined 
and connected in terms of a fixed communication 
pattern. Data flows between stages as computations 
complete; the parallelism comes from the stages 
executing at the same time once the pipeline is full. 
The pipeline stages can include branches or feedback 
loops. 

•  Event-based coordination:  
–  This pattern defines a set of tasks that run 

concurrently in response to events that arrive on a 
queue.   
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Agenda parallelism: algorithm patterns 
These patterns naturally focus on the tasks exposed by the problem  

–  Task parallel:  
•  The set of tasks are defined statically or through iterative control structures. The 

crux of this pattern is to schedule the tasks so the computational load is evenly 
spread between the threads or processes and to manage the data 
dependencies between tasks. 

–   Embarrassingly parallel:  
•  This is a very important instance of the task parallel pattern in which there are 

no dependencies between the tasks. The challenge with this pattern is to 
distribute the tasks so the load is evenly balanced among the processing 
elements of the parallel system. 

–   Separable dependencies:  
•  A sub-pattern of the task parallel pattern in which the dependencies between 

tasks are managed by replicating key data structures on each thread or process 
and then accumulating results into these local structures. The tasks then 
execute according to the embarrassingly parallel pattern and the local replicated 
data structures are combined into the final global result. 

–  Recursive algorithms:  
•  Tasks are generated by recursively splitting a problem into smaller sub-

problems. These sub-problems are themselves split until at some point the 
generated sub-problems are small enough to solve directly. In a divide and 
conquer algorithm, the splitting is reversed to combine the solutions from the 
sub-problems into a single solution for the original problem. 
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Result parallelism: algorithm patterns 

•  The core idea is to define the algorithm in terms of the 
data structures within the problem and how they are 
decomposed. 
–  Data parallelism:  

•  A broadly applicable pattern in which the parallelism is expressed as 
streams of instructions applied concurrently to the elements of a 
data structure (e.g., arrays). 

–  Geometric decomposition:  
•  A data parallel pattern where the data structures at the center of the 

problem are broken into sub-regions or tiles that are distributed 
about the threads or processes involved in the computation. The 
algorithm consists of updates to local or interior points, exchange of 
boundary regions, and update of the edges. 

–  Recursive data:  
•  A data parallel pattern used with recursively defined data structures. 

Extra work (relative to the serial version of the algorithm) is 
expended to traverse the data structure and define the concurrent 
tasks, but this is compensated for by the potential for parallel 
speedup. 
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Supporting Patterns •  Fork-join 
–  A computation begins as a single thread of control. Additional threads are created as needed 

(forked) to execute functions and then when complete terminate (join). The computation 
continues as a single thread until a later time when more threads might be useful.   

•  SPMD 
–  Multiple copies of a single program are launched typically with their own view of the data.  The 

path through the program is determined in part base don a unique ID (a rank).  This is by far the 
most commonly used pattern with message passing APIs such as MPI. 

•  Loop parallelism 
–  Parallelism is expressed in terms of loops that execute concurrently.  

•  Master-worker 
–  A process or thread (the master) sets up a task queue and manages other threads (the workers) 

as they grab a task from the queue, carry out the computation, and then return for their next 
task. This continues until the master detects that a termination condition has been met, at which 
point the master ends the computation.  

•  SIMD 
–  The computation is a single stream of instructions applied to the individual components of a data 

structure (such as an array).   
•  Functional parallelism 

–  Concurrency is expressed as a distinct set of functions that execute concurrently. This pattern 
may be used with an imperative semantics in which case the way the functions execute are 
defined in the source code (e.g., event based coordination). Alternatively, this pattern can be 
used with declarative semantics, such as within a functional language, where the functions are 
defined but how (or when) they execute is dictated by the interaction of the data with the 
language model. 
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The Implementation Mechanisms 
The basic building blocks of parallel computing.  

Process 
control 

Thread control 

Management Synchronization 

Memory sync/fences 
barriers 
Mutual Exclusion 

Collective 
Comm 

Message 
Passing 

Other Comm 

Communications 
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Example: A parallel game engine 

•  Computer games represent an important yet 
difficult class of problems for parallel programers 

•  A computer game is: 
–  An HPC problem: physics simulations, AI, complex 

graphics, etc. 
–  Real time programming: latencies must be less than 

50 milliseconds and ideally much lower to match the 
frame update rate for satisfactory graphics 

•  The computational core of a computer game is 
the game-engine.  
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The “Game Engine” 

Input 
Sim 

data/state 
Audio 

Data/state 

Render 

Data/state 

assets Media 
(disk, 
optical 
media) 

Front End 

Data 

network 
Animation 

game state in its internally managed data structures.   
Source: Conversations with developers at various game companies 
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The “Game Engine” 

Input 
Sim 

data/state 
Audio 

Data/state 

Render 

Data/state 

assets Media 
(disk, 
optical 
media) 

Front End 

Data 

network 
Animation 

game state in its internally managed data structures.   

Physics Particle 
System 

AI Collision 
Detection 

Time 
Loop 

Sim is the integrator 
and integrates from 
one time step to the 
next; calling update 

methods for the 
other modules inside 
a central time loop. 

Sim 
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Combine modules into groups, assign one group to a thread. 

Asynchronous execution … interact through events. 

Coarse grained parallelism dominated by flow of data between 
groups …  Specialist parallelism strategy. 

Finding concurrency: Specialist parallelism 

Input 
Sim 

data/state 
Audio 

Data/state 

Render 

Data/state 

assets Media 
(disk, 
optical 
media) 

Front End 

Data 

network 
Animation 
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The Finding Concurrency Analysis 
Start with a specification that solves the original problem -- finish 
with the  problem decomposed into tasks, shared data, and a 
partial ordering. 

Design Evaluation 

Start 

DependencyAnalysis 
DecompositionAnalysis 

DataDecomposition 

TaskDecomposition 

OrderGroups 
GroupTasks 

DataSharing 

Many cores needs many concurrent tasks 
… In this case, specialist parallelism does 

not expose enough concurrency.   
We need to go back and rethink the design. 
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More	
  sophis*cated	
  paralleliza*on	
  strategy	
  

Input 
Sim 

data/state 
Audio 

Data/state 

Render 

Data/state 

assets Media 
(disk, 
optical 
media) 

Front End 

Data 

network 
Animation 

Use agenda parallelism strategy to decompose 
computation into a pool of tasks – finer granularity 
exposes more concurrency. 
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The	
  Algorithm	
  Design	
  Pa9erns	
  

Result 
Parallelism 

Geometric 
Decomposition Task 

Parallelism 

Divide and 
Conquer Recursive 

Data 

Specialist 
Parallelism 

Pipeline Event Based 
Coordination 

Agenda 
Parallelism 

Data 
Parallelism Embarrassingly 

Parallel 

Separable 
Dependencies 

Start with a basic concurrency decomposition 
•  A problem decomposed into a set of tasks 
•  A data decomposition aligned with the set of tasks … designed to minimize 

interactions between tasks and make concurrent updates to data safe. 
•  Dependencies and ordering constraints between groups of tasks. 
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Suppor*ng	
  Pa9erns	
  •  Fork-­‐join	
  
–  A	
  computa*on	
  begins	
  as	
  a	
  single	
  thread	
  of	
  control.	
  Addi*onal	
  threads	
  are	
  created	
  as	
  needed	
  (forked)	
  to	
  

execute	
  func*ons	
  and	
  then	
  when	
  complete	
  terminate	
  (join).	
  The	
  computa*on	
  con*nues	
  as	
  a	
  single	
  
thread	
  un*l	
  a	
  later	
  *me	
  when	
  more	
  threads	
  might	
  be	
  useful.	
  	
  	
  

•  SPMD	
  
–  Mul*ple	
  copies	
  of	
  a	
  single	
  program	
  are	
  launched	
  typically	
  with	
  their	
  own	
  view	
  of	
  the	
  data.	
  	
  The	
  path	
  

through	
  the	
  program	
  is	
  determined	
  in	
  part	
  base	
  don	
  a	
  unique	
  ID	
  (a	
  rank).	
  	
  This	
  is	
  by	
  far	
  the	
  most	
  
commonly	
  used	
  pa9ern	
  with	
  message	
  passing	
  APIs	
  such	
  as	
  MPI.	
  

•  Loop	
  parallelism	
  
–  Parallelism	
  is	
  expressed	
  in	
  terms	
  of	
  loops	
  that	
  execute	
  concurrently.	
  	
  

•  Master-­‐worker	
  
–  A	
  process	
  or	
  thread	
  (the	
  master)	
  sets	
  up	
  a	
  task	
  queue	
  and	
  manages	
  other	
  threads	
  (the	
  workers)	
  as	
  they	
  

grab	
  a	
  task	
  from	
  the	
  queue,	
  carry	
  out	
  the	
  computa*on,	
  and	
  then	
  return	
  for	
  their	
  next	
  task.	
  This	
  
con*nues	
  un*l	
  the	
  master	
  detects	
  that	
  a	
  termina*on	
  condi*on	
  has	
  been	
  met,	
  at	
  which	
  point	
  the	
  master	
  
ends	
  the	
  computa*on.	
  	
  

•  SIMD	
  
–  The	
  computa*on	
  is	
  a	
  single	
  stream	
  of	
  instruc*ons	
  applied	
  to	
  the	
  individual	
  components	
  of	
  a	
  data	
  

structure	
  (such	
  as	
  an	
  array).	
  	
  	
  
•  Func*onal	
  parallelism	
  

–  Concurrency	
  is	
  expressed	
  as	
  a	
  dis*nct	
  set	
  of	
  func*ons	
  that	
  execute	
  concurrently.	
  This	
  pa9ern	
  may	
  be	
  
used	
  with	
  an	
  impera*ve	
  seman*cs	
  in	
  which	
  case	
  the	
  way	
  the	
  func*ons	
  execute	
  are	
  defined	
  in	
  the	
  source	
  
code	
  (e.g.,	
  event	
  based	
  coordina*on).	
  Alterna*vely,	
  this	
  pa9ern	
  can	
  be	
  used	
  with	
  declara*ve	
  seman*cs,	
  
such	
  as	
  within	
  a	
  func*onal	
  language,	
  where	
  the	
  func*ons	
  are	
  defined	
  but	
  how	
  (or	
  when)	
  they	
  execute	
  is	
  
dictated	
  by	
  the	
  interac*on	
  of	
  the	
  data	
  with	
  the	
  language	
  model.	
  

Tasks vary widely so you need a supporting pattern 
that helps with dynamic load balancing. 



MapReduce 



Big-data 
•  Data mining huge amounts of data collected 

in a wide range of domains from astronomy 
to healthcare has become essential for 
planning and performance 

•  We are in a knowledge economy 
– Data is an important asset to any organization 
– Discovery of knowledge; enabling discovery; 

annotation of data 
•  We are looking at newer  

–  programming models, and 
– Supporting algorithms and data structures 



What is MapReduce? 
•  MapReduce is an architectural style for 

parallel programming 
– Google has used successfully in processing its 
“big-data” sets (~ 20000 peta bytes per day) 

•  Users specify the computation in terms of a 
map and a reduce function 
– Underlying runtime system automatically 

parallelizes the computation across large-scale 
clusters of machines, and 

– Underlying system also handles machine failures, 
efficient communications, and performance 
issues 



Towards MapReduce 

•  Consider a large data collection:  
–  {web, weed, green, sun, moon, land, part, 

web, green, …} 
– Problem: Count the occurrences of the 

different words in the collection 



Word Counter and Result Table 

Data 
collection 

web	
   2	
  

weed	
   1	
  

green	
   2	
  

sun	
   1	
  

moon	
   1	
  

land	
   1	
  

part	
   1	
  

R es ultTable

Main

D ataC ollec tion

WordC ounter

pars e(	
   )
c ount(	
   )

{web, weed, green, sun, moon, land, part, 
web, green,…} 



Mul*ple	
  Instances	
  of	
  Word	
  Counter	
  
web	
   2	
  

weed	
   1	
  

green	
   2	
  

sun	
   1	
  

moon	
   1	
  

land	
   1	
  

part	
   1	
  

Thread

D ataC ollec tion R es ultTable

WordC ounter

pars e(6 )
c ount(6 )

Main

1..*1..*

Data	
  
collec*on	
  

Observe:	
  	
  
Mul*-­‐thread	
  
Lock	
  on	
  shared	
  data	
  



Improve	
  Word	
  Counter	
  for	
  
Performance	
  	
  

B.Ramamurthy	
  &	
  K.Madurai	
  

Data	
  
collec*on	
  

	
  	
  

WordL is t

Thread

Main

1..*

1..*

D ataC ollec tion

P ars er
1..*

C ounter

1..*

R es ultTable

KEY	
   web	
   weed	
   green	
   sun	
   moon	
   land	
   part	
   web	
   green	
   …….	
  

VALUE	
  

web	
   2	
  

weed	
   1	
  

green	
   2	
  

sun	
   1	
  

moon	
   1	
  

land	
   1	
  

part	
   1	
  

N
o	
  	
  

No	
  need	
  for	
  lock	
  

Separate	
  counters	
  



Addressing	
  the	
  Scale	
  Issue	
  
•  Single	
  machine	
  cannot	
  serve	
  all	
  the	
  data:	
  you	
  
need	
  a	
  distributed	
  special	
  (file)	
  system	
  

•  Failure	
  is	
  norm	
  and	
  not	
  an	
  excep*on	
  
–  File	
  system	
  has	
  to	
  be	
  fault-­‐tolerant:	
  replica*on,	
  
checksum	
  

–  Data	
  transfer	
  bandwidth	
  is	
  cri*cal	
  (loca*on	
  of	
  
data)	
  

•  Cri*cal	
  aspects:	
  fault	
  tolerance	
  +	
  replica*on	
  +	
  
load	
  balancing,	
  monitoring	
  

•  Exploit	
  parallelism	
  afforded	
  by	
  spliYng	
  parsing	
  
and	
  coun*ng	
  



Peta	
  Scale	
  Data	
  is	
  Commonly	
  
Distributed	
  	
  

B.Ramamurthy	
  &	
  K.Madurai	
  

Data	
  
collec*on	
  

	
  	
  

WordL is t

Thread

Main

1..*

1..*

D ataC ollec tion

P ars er
1..*

C ounter

1..*

R es ultTable

KEY	
   web	
   weed	
   green	
   sun	
   moon	
   land	
   part	
   web	
   green	
   …….	
  

VALUE	
  

web	
   2	
  

weed	
   1	
  

green	
   2	
  

sun	
   1	
  

moon	
   1	
  

land	
   1	
  

part	
   1	
  

Data	
  
collec*on	
  

Data	
  
collec*on	
  

Data	
  
collec*on	
  

Data	
  
collec*on	
   Issue:	
  managing	
  the	
  

large	
  scale	
  data	
  



Write	
  Once	
  Read	
  Many	
  
(WORM)	
  data	
  

B.Ramamurthy	
  &	
  K.Madurai	
  

Data	
  
collec*on	
  

	
  	
  

WordL is t

Thread

Main

1..*

1..*

D ataC ollec tion

P ars er
1..*

C ounter

1..*

R es ultTable

KEY	
   web	
   weed	
   green	
   sun	
   moon	
   land	
   part	
   web	
   green	
   …….	
  

VALUE	
  

web	
   2	
  

weed	
   1	
  

green	
   2	
  

sun	
   1	
  

moon	
   1	
  

land	
   1	
  

part	
   1	
  

Data	
  
collec*on	
  

Data	
  
collec*on	
  

Data	
  
collec*on	
  

Data	
  
collec*on	
  



WORM	
  Data	
  is	
  Amenable	
  to	
  
Parallelism	
  

•  Data	
  with	
  WORM	
  characteris*cs	
  :	
  yields	
  to	
  parallel	
  processing	
  
•  Data	
  without	
  dependencies:	
  yields	
  to	
  out	
  of	
  order	
  processing	
  

  

Data	
  
collec*on	
  

WordL is t

Thread

Main

1..*
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Divide	
  and	
  Conquer:	
  Provision	
  
Compu*ng	
  at	
  Data	
  Loca*on	
  

•  Our	
  parse	
  is	
  a	
  mapping	
  opera*on:	
  
•  MAP:	
  input	
  à	
  <key,	
  value>	
  pairs	
  

•  Our	
  count	
  is	
  a	
  reduceopera*on:	
  
•  REDUCE:	
  <key,	
  value>	
  pairs	
  

reduced	
  

•  Map/Reduce	
  originated	
  from	
  Lisp	
  
•  But	
  have	
  different	
  meaning	
  here	
  

–  Run*me	
  adds	
  distribu*on	
  +	
  fault	
  
tolerance	
  +	
  replica*on	
  +	
  
monitoring	
  +	
  load	
  balancing	
  to	
  
your	
  base	
  applica*on!	
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Mapper	
  and	
  Reducer	
  

MapReduceTask 

YourMapper 
YourReducer Parser 

Counter 

Mapper Reducer 



Map	
  Opera*on	
  
MAP:	
  Input	
  data	
  è	
  <key,	
  value>	
  pair	
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Reduce 

Reduce 

Reduce 

Reduce Operation 
MAP: Input data è <key, value> pair 
REDUCE: <key, value> pair è <result> 

Data 
Collection: split1 Split the data to 

supply multiple 
processors 

  

Data 
Collection: split 2 

Data 
Collection: split n Map 

  
 

Map 

…
…

 Map 

…



Count	
  
Count	
  

Count	
  

Large	
  scale	
  data	
  splits	
  

Parse-­‐hash	
  

Parse-­‐hash	
  

Parse-­‐hash	
  

Parse-­‐hash	
  

Map	
  <key,	
  1>	
   Reducers	
  (say,	
  Count)	
  

P-­‐0000	
  	
  	
  

P-­‐0001	
  	
  

P-­‐0002	
  	
  	
  

,	
  count1	
  

	
  ,	
  count2	
  

,count3 

48	
  



Cat 
 
 
 
 

Bat 
 
 

Dog 
 
 

Other  
Words 
(size: 
TByte) 

map 

map 

map 

map 

split 

split 

split 

split 

combine 

combine 

combine 

reduce 

reduce 

reduce 

part0 

part1 

part2 

Example 



MapReduce style 
•  Determine if the problem is parallelizable and solvable 

using MapReduce 
•  Design and implement solution as Mapper classes and 

Reducer classes 
•  Compile the source code with hadoop core 
•  Package the code as jar executable 
•  Configure the application (job) as to the number of 

mappers and reducers (tasks), input and output 
streams 

•  Load the data (or use it on previously available data) 
•  Launch the job and monitor 
•  Study the result 



MapReduce Characteristics 
•  Very large scale data: peta, exa bytes 
•  Write once and read many data: allows for parallelism without 

mutexes 
•  Map and Reduce are the main operations: simple code 
•  All the map should be completed before reduce operation 

starts 
•  Map and reduce operations are typically performed by the 

same physical processor 
•  Number of map tasks and reduce tasks are configurable 
•  Operations are provisioned near the data 
•  Commodity hardware and storage 
•  Runtime takes care of splitting and moving data for operations 



“map reducible” problems 
•  Google uses it for wordcount, adwords, pagerank, 

indexing data  
•  Simple algorithms such as grep, text-indexing, 

reverse indexing 
•  Bayesian classification: data mining 
•  Facebook uses it for various operations: 

demographics 
•  Financial services use it for analytics 
•  Astronomy: Gaussian analysis for locating extra-

terrestrial objects 
•  Expected to play a critical role in semantic web  



Hadoop 

•  At Google MapReduce operation are run on a 
special file system called Google File System 
(GFS) that is highly optimized for this purpose 

•  GFS is not open source 
•  Doug Cutting and Yahoo! reverse engineered 

the GFS and called it Hadoop Distributed File 
System (HDFS) 

•  The software framework that supports HDFS, 
MapReduce and other related entities is called  
the project Hadoop or simply Hadoop 

•  This is open source and distributed by Apache 



Basic Features: HDFS 

•  Highly fault-tolerant 
•  High throughput 
•  Suitable for applications with large data 

sets 
•  Streaming access to file system data 
•  Can be built out of commodity hardware  



Credits 

•  Gamma, et al. Design Patterns, Addison-
Wesley, 1995 

•  Mattson et al., Patterns for parallel 
programming, Addison-Wesley, 2013 

•  OrtegaArjona, Patterns for parallel 
software design, Wiley 2010 



Questions? 

paolo.ciancarini@unibo.it 


