
 1

Models of parallel
programming

for HPC
Paolo Ciancarini – paolo.ciancarini@unibo.it
Department of Informatics – University of Bologna

 2

Agenda

!  Flynn classification of HPC architectures
!  Programming models for HPC

 3

Serial computing

!  Traditionally, software has been written having in
mind a serial computation:

–  To be run on a single computer having a single Central
Processing Unit (CPU);

–  A problem is broken into a discrete series of steps which
each execute an instruction

–  Instructions are executed one after another.
–  Only one instruction may execute at any moment in time.

 4

Limitations of serial computing

!  Limits to serial computing - both physical and practical reasons pose
strong constraints to building faster sequential computers.

!  Transmission speeds - the speed of a sequential computer is directly
dependent upon how fast data can move through hardware. Absolute
limits are the speed of light (30 cm/nanosecond) and the transmission
limit of copper wire (9 cm/nanosecond). Increasing speeds necessitate
increasing proximity of processing elements.

!  Limits to miniaturization - processor technology is allowing an
increasing number of transistors to be placed on a chip. However, even
with molecular or atomic-level components, a limit will be reached on
how small components can be.

!  Economic limitations - it is increasingly expensive to make a single
processor faster. Using a larger number of moderately fast commodity
processors to achieve the same (or better) performance is less
expensive.

 5

Parallel computing

!  Parallel computing is the use of multiple resources to solve a
computational problem.

–  To be run using multiple CPUs
–  A problem is broken into discrete parts that can be solved simultaneously

(or concurrently)
–  Each part is further broken down to a series of instructions

!  Instructions from each part execute simultaneously on different CPUs

 6

Parallel computing: resources

The computing resources can include:
–  A single computer with multiple processors;
–  A single computer with (multiple) processor(s) and some

specialized computer resources (GPU, FPGA …)
–  A combination of both
–  An arbitrary number of computers connected by a network

 7

Parallel computing is mainstream

!  during the past decades, the trends indicated by ever
faster networks, distributed systems, and multi-core
architectures clearly show that parallelism is the
mainstream of computing

!  It is multi-form, mixing general purpose solutions
(PCs) and very specialized solutions (HPC
architectures)

 8

Who and what? (2)

!  Top500.org provides statistics on
parallel computing users.

!  "Not Specified" is by far the largest
application - probably means multiple
applications.

 9

Von Neumann Architecture

!  Basic design
–  Memory is used to store both

program and data instructions
–  Program instructions are coded data

which tell the computer to do
something

–  Data is simply information to be used
by the program

!  A central processing unit (CPU)
gets instructions and/or data from
memory, decodes the instructions
and then sequentially performs
them.

 10

Flynn's Classical Taxonomy

!  There are different ways to classify parallel
computers. One of the more widely used
classifications, in use since 1966, is called Flynn's
Taxonomy.

!  Flynn's taxonomy distinguishes multi-processor
computer architectures according to how they can be
classified along the two independent dimensions of
Instruction and Data. Each of these dimensions can
have only one of two possible states: Single or
Multiple.

 11

Flynn Matrix

The matrix below defines the 4 possible
classifications according to Flynn

SISD:
single instruction, single data

SIMD:
single instruction, multiple data

MISD:
multiple instructions, single data

MIMD:
multiple instructions, multiple data

 12

Single Instruction, Single Data (SISD)

!  A sequential computer (non-parallel)
!  Single instruction: only one instruction

stream is being acted on by the CPU
during any one clock cycle

!  Single data: only one data stream is
being used as input during any one clock
cycle

!  Deterministic execution
!  This is the oldest form of computer
!  Examples: most old PCs, single CPU

workstations and mainframes

 13

Single Instruction, Multiple Data (SIMD)
!  A type of parallel computer, synchronous, for stream processing
!  Single instruction: all processing units execute the same instruction at any given

clock cycle
!  Multiple data: Each processing unit can operate on a different data element
!  This type of machine typically has an instruction dispatcher, a very high-

bandwidth internal network, and a very large array of very small-capacity
instruction units.

!  Best suited for specialized problems characterized by a high degree of
regularity, such as image processing.

!  Synchronous (lockstep) and deterministic execution
!  Two varieties: Processor Arrays and Vector Pipelines
!  Examples:

–  Processor Arrays: Connection Machine CM-2, Maspar MP-1, MP-2
–  Vector Pipelines: IBM 9000, Cray C90, Fujitsu VP, NEC SX-2, Hitachi S820

 14

Multiple Instruction, Single Data (MISD)

!  A single data stream is fed into multiple processing units.
!  Each processing unit operates on the data independently via

independent instruction streams.
!  Few actual examples of this class of parallel computer have

ever existed. One is the experimental Carnegie-Mellon C.mmp
computer (1971).

!  Some conceivable uses might be:
–  multiple frequency filters operating on a single signal stream

!  multiple cryptography algorithms attempting to crack a single
coded message.

 15

Multiple Instruction, Multiple Data (MIMD)

!  The most common type of computer today.
!  Multiple Instruction: every processor may be executing a

different instruction stream
!  Multiple Data: every processor may be working with a different

data stream
!  Execution can be synchronous or asynchronous, deterministic

or non-deterministic
!  Examples: most current supercomputers, networked parallel

computer "grids”, symmetric multiprocessor computers (SMP),
and including multi-core personal computers (PCs).

 16

Terminology

!  Task
–  A logically separate section of computational work. A task is

typically a program that is executed by a processor (in some
operating systems the term “process” is used).

!  Parallel task
–  A task that can be executed by multiple processors safely

!  Sequential execution
–  Serial execution of a program, one statement at a time. This

is what happens on a single processor machine. However,
virtually all parallel tasks will have sections that must be
executed serially: these are called critical regions.

Parallel computing has its own "jargon”: some of the commonly used terms
associated with parallel computing are listed below.

 17

!  Parallel (concurrent) execution
–  Execution of a program by more than one task, with each task

being able to execute the same or a different statement at the same
moment in time.

!  Shared Memory
–  Hardware: describes a computer architecture where all processors

have direct (usually bus based) access to common physical
memory. Software: a programming model where parallel tasks all
have the same "picture" of memory and can directly address and
access the same logical memory locations regardless of where the
physical memory actually exists.

!  Distributed Memory
–  Hardware: refers to network based memory access for physical

memory that is not shared. Software: tasks can only logically "see"
local machine memory and must use special communications to
access memory on other machines where other tasks are
executing.

 18

!  Communications
–  Parallel tasks typically need to exchange data. There are several

ways this can be accomplished, such as through a shared memory
bus or over a network, however the actual event of data exchange
is commonly referred to as communications regardless of the
method employed.

!  Synchronization
–  The coordination of parallel tasks, often associated with

communications. Often implemented by establishing a
synchronization point within an application where a task may not
proceed further until another task(s) reaches the same or logically
equivalent point.

–  Synchronization usually involves waiting by at least one task, and
can therefore cause a parallel application's wall clock execution
time to increase.

 19

!  Granularity
–  In parallel computing, granularity is a qualitative measure of the

ratio of computation to communication.
–  Coarse: relatively large amounts of computational work are done

between communication events
–  Fine: relatively small amounts of computational work are done

between communication events
!  Observed speedup

–  Observed speedup of a code which has been parallelized, defined
as:

wall-clock time of serial execution
wall-clock time of parallel execution

–  One of the simplest and most widely used indicators for a parallel
program's performance.

 20

!  Parallel overhead
–  The amount of time required to coordinate parallel tasks, as

opposed to doing useful work.
Parallel overhead can include factors such as:
-  Task start-up time
-  Synchronizations
-  Data communications
-  Software overhead imposed by parallel compilers, libraries, tools,

operating system, etc.
-  Task termination time

!  Massively parallel
–  Hardware having many processors. The meaning of many keeps

increasing, but currently BG/L pushes this number to 6 digits.

 21

!  Scalability
–  Refers to a parallel system's (hardware and/or software)

ability to demonstrate a proportionate increase in parallel
speedup with the addition of more processors. Factors that
contribute to scalability include:
-  Hardware - particularly memory-cpu bandwidths and network

communications
-  Application algorithm
-  Parallel overhead related
-  Characteristics of your specific application and coding

 22

Memory architectures

!  Shared Memory
!  Distributed Memory
!  Hybrid Distributed-Shared Memory

 23

Shared Memory

!  Shared memory parallel computers vary widely, but generally
have in common the ability for all processors to access all
memory as global address space.

!  Multiple processors can operate independently but share the
same memory resources.

!  Changes in a memory location effected by one processor are
visible to all other processors.

!  Shared memory machines can be divided into two main classes
based upon memory access times: UMA and NUMA.

 24

Shared Memory : UMA vs. NUMA

!  Uniform Memory Access (UMA):
–  Most commonly represented today by Symmetric Multiprocessor

(SMP) machines
–  Identical processors
–  Equal access and access times to memory
–  Sometimes called CC-UMA - Cache Coherent UMA. Cache

coherent means if one processor updates a location in shared
memory, all the other processors know about the update. Cache
coherency is accomplished at the hardware level.

!  Non-Uniform Memory Access (NUMA):
–  Often made by physically linking two or more SMPs
–  One SMP can directly access memory of another SMP
–  Not all processors have equal access time to all memories
–  Memory access across link is slower
–  If cache coherency is maintained, then may also be called CC-

NUMA - Cache Coherent NUMA

 25

Shared Memory: Pro and Con

!  Advantages
–  Global address space provides a user-friendly programming

perspective to memory
–  Data sharing between tasks is both fast and uniform due to the

proximity of memory to CPUs
!  Disadvantages:

–  Primary disadvantage is the lack of scalability between memory
and CPUs. Adding more CPUs can geometrically increases traffic
on the shared memory-CPU path, and for cache coherent systems,
geometrically increase traffic associated with cache/memory
management.

–  Programmer responsibility for synchronization constructs that
insure "correct" access of global memory.

–  Expense: it becomes increasingly difficult and expensive to design
and produce shared memory machines with ever increasing
numbers of processors.

 26

Distributed Memory

!  Like shared memory systems, distributed memory systems vary widely but share
a common characteristic. Distributed memory systems require a communication
network to connect inter-processor memory.

!  Processors have their own local memory. Memory addresses in one processor
do not map to another processor, so there is no concept of global address space
across all processors.

!  Because each processor has its own local memory, it operates independently.
Changes it makes to its local memory have no effect on the memory of other
processors. Hence, the concept of cache coherency does not apply.

!  When a processor needs access to data in another processor, it is usually the
task of the programmer to explicitly define how and when data is communicated.
Synchronization between tasks is likewise the programmer's responsibility.

!  The network "fabric" used for data transfer varies widely, though it can can be as
simple as Ethernet.

 27

Distributed Memory: Pro and Con

!  Advantages
–  Memory is scalable with number of processors. Increase the

number of processors and the size of memory increases
proportionately.

–  Each processor can rapidly access its own memory without
interference and without the overhead incurred with trying to
maintain cache coherency.

–  Cost effectiveness: can use commodity, off-the-shelf processors
and networking.

!  Disadvantages
–  The programmer is responsible for many of the details associated

with data communication between processors.
–  It may be difficult to map existing data structures, based on global

memory, to this memory organization.
–  Non-uniform memory access (NUMA) times

 28

Hybrid Distributed-Shared Memory

Comparison of Shared and Distributed Memory Architectures

Architecture CC-UMA CC-NUMA Distributed

Examples SMPs
Sun Vexx
DEC/Compaq
SGI Challenge
IBM POWER3

Bull NovaScale
SGI Origin
Sequent
HP Exemplar
DEC/Compaq
IBM POWER4 (MCM)

Cray T3E
Maspar
IBM SP2
IBM BlueGene

Communications MPI
Threads
OpenMP
shmem

MPI
Threads
OpenMP
shmem

MPI

Scalability to 10s of processors to 100s of processors to 1000s of processors

Drawbacks Memory-CPU bandwidth Memory-CPU bandwidth
Non-uniform access times

System administration
Programming is hard to
develop and maintain

Software Availability many 1000s ISVs many 1000s ISVs 100s ISVs

Summarizing a few of the key characteristics of shared and
distributed memory machines

 29

Hybrid Distributed-Shared Memory
!  The largest and fastest computers in the world today employ both

shared and distributed memory architectures.

!  The shared memory component is usually a cache coherent SMP
machine. Processors on a given SMP can address that machine's
memory as global.

!  The distributed memory component is the networking of multiple SMPs.
SMPs know only about their own memory - not the memory on another
SMP. Therefore, network communications are required to move data
from one SMP to another.

!  Current trends seem to indicate that this type of memory architecture
will continue to prevail and increase at the high end of computing for
the foreseeable future.

!  Advantages and Disadvantages: whatever is common to both shared
and distributed memory architectures.

 30

Parallel programming models

!  Overview
!  Shared Memory Model
!  Threads Model
!  Message Passing Model
!  Data Parallel Model
!  Other Models

 31

Overview

!  There are several parallel programming models in
common use:

–  Shared memory
–  Threads
–  Message Passing
–  Data Parallel
–  Hybrid

!  Parallel programming models exist as an abstraction
above hardware and memory architectures.

 32

Overview

!  Although it might not seem apparent, these models are NOT specific to
a particular type of machine or memory architecture. In fact, any of
these models can (theoretically) be implemented on any underlying
hardware.

!  Shared memory model on a distributed memory machine: Kendall
Square Research (KSR) ALLCACHE approach.

–  Machine memory was physically distributed, but appeared to the user as a
single shared memory (global address space). Generically, this approach is
referred to as "virtual shared memory".

–  Note: although KSR is no longer in business, there is no reason to suggest
that a similar implementation will not be made available by another vendor
in the future.

–  Message passing model on a shared memory machine: MPI on SGI Origin.
!  The SGI Origin employed the CC-NUMA type of shared memory

architecture, where every task has direct access to global memory.
However, the ability to send and receive messages with MPI, as is
commonly done over a network of distributed memory machines, is not
only implemented but is very commonly used.

 33

Overview

!  Which model to use is often a combination of what is
available and personal choice. There is no "best"
model, although there certainly are better
implementations of some models over others.

!  The following sections describe each of the models
mentioned above, and also discuss some of their
actual implementations.

 34

Shared Memory Model

!  In the shared-memory programming model, tasks share a
common address space, which they read and write
asynchronously.

!  Various mechanisms such as locks / semaphores may be used
to control access to the shared memory.

!  An advantage of this model from the programmer's point of view
is that the notion of data "ownership" is lacking, so there is no
need to specify explicitly the communication of data between
tasks. Program development can often be simplified.

!  An important disadvantage in terms of performance is that it
becomes more difficult to understand and manage data locality.

 35

Shared Memory Model: Implementations

!  On shared memory platforms, the native compilers
translate user program variables into actual memory
addresses, which are global.

!  No common distributed memory platform
implementations currently exist. However, as
mentioned previously in the Overview section, the
KSR ALLCACHE approach provided a shared
memory view of data even though the physical
memory of the machine was distributed.

 36

Threads Model

!  In the threads model of parallel programming, a single process can have
multiple, concurrent execution paths.

!  Perhaps the most simple analogy that can be used to describe threads is the
concept of a single program that includes a number of subroutines:

–  The main program a.out is scheduled to run by the native operating system. a.out
loads and acquires all of the necessary system and user resources to run.

–  a.out performs some serial work, and then creates a number of tasks (threads) that
can be scheduled and run by the operating system concurrently.

–  Each thread has local data, but also, shares the entire resources of a.out. This
saves the overhead associated with replicating a program's resources for each thread.
Each thread also benefits from a global memory view because it shares the memory
space of a.out.

–  A thread's work may best be described as a subroutine within the main program. Any
thread can execute any subroutine at the same time as other threads.

–  Threads communicate with each other through global memory (updating address
locations). This requires synchronization constructs to insure that more than one
thread is not updating the same global address at any time.

–  Threads can come and go, but a.out remains present to provide the necessary shared
resources until the application has completed.

!  Threads are commonly associated with shared memory architectures and
operating systems.

 37

Threads model implementations

!  From a programming perspective, threads implementations commonly comprise:
–  A library of subroutines that are called from within parallel source code
–  A set of compiler directives imbedded in either serial or parallel source code

!  In both cases, the programmer is responsible for determining all parallelism.
!  Threaded implementations are not new in computing. Historically, hardware

vendors have implemented their own proprietary versions of threads. These
implementations differed substantially from each other making it difficult for
programmers to develop portable threaded applications.

!  Unrelated standardization efforts have resulted in two very different
implementations of threads: POSIX Threads and OpenMP.

!  POSIX Threads
–  Library based; requires parallel coding
–  Specified by the IEEE POSIX 1003.1c standard (1995).
–  C Language only
–  Commonly referred to as Pthreads.
–  Most hardware vendors now offer Pthreads in addition to their proprietary threads

implementations.
–  Very explicit parallelism; requires significant programmer attention to detail.

 38

Threads Model: OpenMP

!  OpenMP
–  Compiler directive based; can use serial code
–  Jointly defined and endorsed by a group of major computer

hardware and software vendors. The OpenMP Fortran API was
released October 28, 1997. The C/C++ API was released in late
1998.

–  Portable / multi-platform, including Unix and Windows NT platforms
–  Available in C/C++ and Fortran implementations
–  Can be very easy and simple to use - provides for "incremental

parallelism"
!  Microsoft has its own implementation for threads, which is not

related to the UNIX POSIX standard or OpenMP.

 39

Message Passing Model

!  The message passing model demonstrates the
following characteristics:

–  A set of tasks that use their own local memory during
computation. Multiple tasks can reside on the same physical
machine as well across an arbitrary number of machines.

–  Tasks exchange data through communications by sending
and receiving messages.

–  Data transfer usually requires cooperative operations to be
performed by each process. For example, a send operation
must have a matching receive operation.

 40

Message Passing Model Implementations: MPI

!  message passing implementations commonly comprise a library
of subroutines that are imbedded in source code. The
programmer is responsible for determining all parallelism.

!  Historically, a variety of message passing libraries have been
available since the 1980s. These implementations differed
substantially from each other making it difficult for programmers
to develop portable applications.

!  In 1992, the MPI Forum was formed with the primary goal of
establishing a standard interface for message passing
implementations.

!  Part 1 of the Message Passing Interface (MPI) was released in
1994. Part 2 (MPI-2) was released in 1996. Both MPI
specifications are available on the web at
www.mcs.anl.gov/Projects/mpi/standard.html.

 41

Message Passing Model Implementations: MPI

!  MPI is the "de facto" industry standard for message passing, replacing
virtually all other message passing implementations used for production
work. Most, if not all of the popular parallel computing platforms offer at
least one implementation of MPI. A few offer a full implementation of
MPI-2.

!  For shared memory architectures, MPI implementations usually don't
use a network for task communications. Instead, they use shared
memory (memory copies) for performance reasons.

 42

Data Parallel Model

!  The data parallel model demonstrates the following
characteristics:

–  Most of the parallel work focuses on performing operations on a
data set. The data set is typically organized into a common
structure, such as an array or cube.

–  A set of tasks work collectively on the same data structure,
however, each task works on a different partition of the same data
structure.

–  Tasks perform the same operation on their partition of work, for
example, "add 4 to every array element".

!  On shared memory architectures, all tasks may have access to
the data structure through global memory. On distributed
memory architectures the data structure is split up and resides
as "chunks" in the local memory of each task.

 43

Data Parallel Model Implementations

!  Programming with the data parallel model is usually
accomplished by writing a program with data parallel constructs.
The constructs can be calls to a data parallel subroutine library
or, compiler directives recognized by a data parallel compiler.

!  Fortran 90 and 95 (F90, F95): ISO/ANSI standard extensions
to Fortran 77.

–  Contains everything that is in Fortran 77
–  New source code format; additions to character set
–  Additions to program structure and commands
–  Variable additions - methods and arguments
–  Pointers and dynamic memory allocation added
–  Array processing (arrays treated as objects) added
–  Recursive and new intrinsic functions added
–  Many other new features

!  Implementations are available for most common parallel
platforms.

 44

Data Parallel Model Implementations

!  High Performance Fortran (HPF): Extensions to Fortran 90 to
support data parallel programming.

–  Contains everything in Fortran 90
–  Directives to tell compiler how to distribute data added
–  Assertions that can improve optimization of generated code added
–  Data parallel constructs added (now part of Fortran 95)
–  Implementations are available for most common parallel platforms.

!  Compiler Directives: Allow the programmer to specify the
distribution and alignment of data. Fortran implementations are
available for most common parallel platforms.

!  Distributed memory implementations of this model usually have
the compiler convert the program into standard code with calls
to a message passing library (MPI usually) to distribute the data
to all the processes. All message passing is done invisibly to the
programmer.

 45

Other Models

!  Other parallel programming models besides those previously
mentioned certainly exist, and will continue to evolve along with
the ever changing world of computer hardware and software.

!  Only three of the more common ones are mentioned here.
–  Hybrid
–  Single Program Multiple Data
–  Multiple Program Multiple Data

 46

Hybryd

!  In this model, any two or more parallel programming models are
combined.

!  Currently, a common example of a hybrid model is the
combination of the message passing model (MPI) with either the
threads model (POSIX threads) or the shared memory model
(OpenMP). This hybrid model lends itself well to the increasingly
common hardware environment of networked SMP machines.

!  Another common example of a hybrid model is combining data
parallel with message passing. As mentioned in the data parallel
model section previously, data parallel implementations (F90,
HPF) on distributed memory architectures actually use message
passing to transmit data between tasks, transparently to the
programmer.

 47

Single Program Multiple Data (SPMD)

!  Single Program Multiple Data (SPMD):
!  SPMD is a "high level" programming model that can be built

upon any combination of the previously mentioned parallel
programming models.

!  A single program is executed by all tasks simultaneously.
!  At any moment in time, tasks can be executing the same or

different instructions within the same program.
!  SPMD programs usually have the necessary logic programmed

into them to allow different tasks to branch or conditionally
execute only those parts of the program they are designed to
execute. That is, tasks do not necessarily have to execute the
entire program - perhaps only a portion of it.

!  All tasks may use different data

 48

Multiple Program Multiple Data (MPMD)

!  Multiple Program Multiple Data (MPMD):
!  Like SPMD, MPMD is actually a "high level"

programming model that can be built upon any
combination of the previously mentioned parallel
programming models.

!  MPMD applications typically have multiple executable
object files (programs). While the application is being
run in parallel, each task can be executing the same
or different program as other tasks.

!  All tasks may use different data

 49

Credits

!  Hager, Introduction to HPC for scientists and
engineers, Chapman, 2010

 50

Questions?

paolo.ciancarini@unibo.it

