

Introduction to python for HPC

11th Advanced School in parallel computing

Bologna 2015

m.cestari@cineca.it

In/out

● What's in this course...
– Basic of python language

– Basic of mpi4py

– Learning through examples

● What is not...
– Any type of python “acceleration” (yes python can

be really slow)

In/out

● Often, with HPC, people mean improving
python performance

● Our python course cover this topic

● We will focus on python as an instrument to be
used in massively parallel system

Why python

● Python has gained a lot of momentum in
scientific computation
– It's easy to learn the basics

– It's very powerful (modern language)

– can be coupled with good plotting tool

● In your scientific work sooner or later you'll
come across to a python script

Why python / 2

● In HPC, python:
– can be used as a glue for traditional (compiled)

languages

– can be used for quick prototyping
– can be used to create ad hoc work-flows (i.e. by

interfacing with the scheduling system)

● future employment in massiviley parallel system:
– managing ensamble simulations
– fault tolerance (layer between scheduler and

simulations

Goal

Develop a small python program
that runs multiple serial execution

with different load balancing
techniques applied

Goal / 2

“Hey I can do that!!”

(learn how to start with python
development)

python

language introduction

Interpreter
● Ipython:

➔ enhance the prompt capabilities

● tab completion for functions, modules, variables, files
● works neatly with matplotlib
● filesystem navigation (cd, ls, pwd)
● has access to the standard Python help and ?/?? information
● Search commands (Ctrl-n, Ctrl-p, Ctrl-r)
● the output of the nth command is in _n
● magic commands: type % → (tab) to list them all

➢ %whos
➢ %run script.py
➢ %timeit
➢ %logstart name

➔ improves the interactive mode usage

Python types

● Python is strongly typed and dynamically typed
– Everything is a type: type(x)

– a = 4 ; a = 4.5

● Operator “=” means a reference to a space in
memory that contains an object
– id(x)

● Objects are mutable (once created can be
changed or updated) or immutable

strings

● Strings can be created using quotes (single,
double or triple)
– a = 'home'

– b = “new home”

● Triple quotes are used for string that contains
single or double quotes or that span over more
than a single line

● Escape characters are similar to C (\n \t)

strings / 2

● Multiple actions on strings

>>> a = 'my new home'

>>> a.upper()

>>> a.split()

● Single elements of strings can be accessed

>>> a[0:2] # python index starts from 0

>>> a[-4:] # no values means beginning or end

● Concatenation of strings

>>> a+” is beautiful” >>> a*3

Containers (sequences)

● List

>>> a = [1, 1, 2, 'home'] # mutable

● Tuple

>>> a = (1, 4, 'seven', 6) # immutable

● Dict

>>> a = {'a': 2, 'b':4, 4:5} # mutable

● Set

>>> a = set([1, 1, 3, 5])

List

● Can be not homogeneous

>>> a = [1, 1, 2, 'home']

● Index ranges from 0 to len(list)

● Slicing

>>> a[0:2] # from first to third element [i:j:k] k = stride

>>> a[-1:] + a[:-1] # ['home', 1, 1, 2]

● Mutable (in-place)

>>> a[0] = 4 # [4, 1, 2, 'home']

List / 2

● append

>>> a = [1, 1, 2, 'home']

>>> a.append(3) # [1, 1, 2, 'home', 3]

● pop

>>> a.pop() # remove rightmost element

● Function “range” can be used to create list of integers

>>> a = range(3) # [0, 1, 2]

>>> b = range(2, 10, 3) # first, last (excluded), step

 # [2, 5, 8]

Dictionaries

● Map keys to values (mappings)

>>> a = {'b':2, 'c': 3} # 'b', 'c' keys 2,3 values

>>> a['b'] # returns 3

● There is no left to right order, only mapping

>>> a[-1] # does not work

● a.keys(), a.values(), a.items()

Control-flow statements

● Indentation matters

>>> if a > 3: # mind the colon

 print a

 print 'still in the if statement'

 elif a == 5:

 print 'a is 5'

 else:

 print 'a is less than 3'

for loop

● Any sequence object is iterable

>>> for i in range(5):

 print i # prints 0, 1, 2, 3, 4

● More common in python

>>> a = [1, 1, 4, 'home']

>>> for i in a:

 print i # prints 1, 1, 4, 'home'

● break # exit from inner loop
● continue # go to next iteration

Bool conversion

● Built-in types can be converted in bool, i.e.
they can be used as condition expressions

int 0 # False

int != 0 # True

float 0.0 # False

float != 0.0 # True

empty string “” # False

empty sequence # False

Let's go with a live example

(serial) Python program that runs
simple simulations

cash_flow

● It's a toy model that simulates cash flows of
insurance company deriving from life policies

● Each month the insured (policy holder) pay the
company a sum of money (premium)

● In case of death (random, look up actuarial table)
of the insured, the company pays a sum of money
to the beneficiary of the life policy

● If the insured is still alive, it receives some money
back

cash_flow / 2

Input file

300 # (number of policies, thousands)

15 # (policy length years)

150 # (premium Euro)

2.5 # (beneficiary return factor)

25 # (insured initial age)
 # 25,30,35,40

mpi4py

mpi4py: philosophy

● Provides python bindings to MPI libraries

● Often only a small portion of the code is
time-critical

● Use python for everything, apart from heavy work
calculation
– Memory management

– Input / Output

– User interface

– Error handling

mpi4py

● OO Interface similar to MPI C++

● You can communicate Python objects

● Optimized communications of Python objects
that expose single-segment buffer interface
(contiguous memory buffer), i.e. Numpy arrays
– Performance close to C speed

mpi4py / 2

● No need to call MPI_Init() or MPI_Finalize()

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

size = comm.Get_size()

point to point

● Send(), Recv(), Sendrecv() can communicate
memory buffers

● send(), recv(), sendrecv() can communicate
generic Python objects

● Nonblocking communications are also
available

#!/usr/bin/env python

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

size = comm.Get_size()

buf = []

if rank == 0:

 comm.send([rank, 1000], dest=1, tag=10)

 buf = comm.recv(source=1, tag=20)

else:

 buf = comm.recv(source=0, tag=10)

 comm.send([rank, 1000] , dest=0, tag=20)

print "my rank is %d, I received %s from %d" % (rank, buf, buf[0])

Collective communications

● Barrier() # synchronization

● Global communications
– Broadcast

– Gather

– Scatter

● Global reduction operations

#!/usr/bin/env python

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

if rank == 0:

 data = {'key1' : [7, 2.72, 2+3j], 'key2' : ('abc', 'xyz')}

else:

 data = None

data = comm.bcast(data, root=0) # broadcast of a dict

print rank, data

More info on:

http://mpi4py.scipy.org/docs/apiref/index.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

