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In/out

● What's in this course...
– Basic of python language 

– Basic of mpi4py

– Learning through examples

● What is not... 
– Any type of python “acceleration” (yes python can 

be really slow)



  

In/out

● Often, with HPC, people mean improving 
python performance

● Our python course cover this topic 

● We will focus on python as an instrument to be 
used in massively parallel system



  

Why python

● Python has gained a lot of momentum in 
scientific computation 
– It's easy to learn the basics

– It's very powerful (modern language)  

– can be coupled with good plotting tool  

● In your scientific work sooner or later you'll 
come across to a python script 



  

Why python / 2

● In HPC, python: 
– can be used as a glue for traditional (compiled) 

languages 

– can be used for quick prototyping 
– can be used to create ad hoc work-flows (i.e. by 

interfacing with the scheduling system)   

● future employment in massiviley parallel system:
– managing ensamble simulations
– fault tolerance (layer between scheduler and 

simulations 



  

Goal 

Develop a small python program 
that runs multiple serial execution 

with different load balancing 
techniques applied



  

Goal / 2

“Hey I can do that!!”

(learn how to start with python 
development) 



  

python 

language introduction



  

Interpreter
● Ipython:  

➔ enhance the prompt capabilities  

● tab completion for functions, modules, variables, files 
● works neatly with matplotlib
● filesystem navigation (cd, ls, pwd)
● has access to the standard Python help and ?/?? information 
● Search commands (Ctrl-n, Ctrl-p, Ctrl-r)
● the output of the nth command is in _n
● magic commands: type % → (tab) to list them all

➢ %whos     
➢ %run script.py
➢ %timeit 
➢ %logstart name

➔ improves the interactive mode usage



  

Python types

● Python is strongly typed and dynamically typed
– Everything is a type:    type(x)   

– a = 4 ;  a =  4.5

● Operator “=” means a reference to a space in 
memory that contains an object
– id(x)

  

● Objects are mutable (once created can be 
changed or updated) or immutable



  

strings

● Strings can be created using quotes (single, 
double or triple)
– a = 'home'   

– b = “new home”

● Triple quotes are used for string that contains 
single or double quotes or that span over more 
than a single line

● Escape characters are similar to C (\n \t)



  

strings / 2

● Multiple actions on strings

>>> a = 'my new home'   

>>> a.upper()

>>> a.split()

● Single elements of strings can be accessed 

>>> a[0:2]    # python index starts from 0

>>> a[-4:]     # no values means beginning or end

● Concatenation of strings

>>> a+” is beautiful”        >>> a*3



  

Containers (sequences)

● List

>>> a = [1, 1, 2, 'home']   # mutable

● Tuple

>>> a = (1, 4, 'seven', 6)  #  immutable 

● Dict

>>> a = {'a': 2, 'b':4, 4:5}  # mutable

● Set

>>> a = set([1, 1, 3, 5])



  

List

● Can be not homogeneous

>>> a = [1, 1, 2, 'home']   

● Index ranges from 0 to len(list)

● Slicing 

>>> a[0:2]   # from first to third element   [i:j:k]  k = stride  

>>> a[-1:] + a[:-1]    # ['home', 1, 1, 2]

● Mutable (in-place)

>>> a[0] = 4     # [4, 1, 2, 'home']



  

List / 2

● append

>>> a = [1, 1, 2, 'home']

>>> a.append(3)    # [1, 1, 2, 'home', 3]

● pop 

>>> a.pop()   # remove rightmost element

● Function “range” can be used to create list of integers

>>> a = range(3)    #  [0, 1, 2] 

>>> b = range(2, 10, 3)   #  first, last (excluded), step

                                        #  [2, 5, 8]



  

Dictionaries

● Map keys to values (mappings)

>>> a = {'b':2, 'c': 3}   #  'b', 'c' keys   2,3 values   

>>> a['b']   # returns 3

● There is no left to right order, only mapping

>>> a[-1]   # does not work 

● a.keys(), a.values(), a.items()



  

Control-flow statements 

● Indentation matters

>>> if a > 3:  # mind the colon    

           print a

           print 'still in the if statement'

       elif a == 5:

           print 'a is 5'    

       else:

            print 'a is less than 3' 

 



  

for loop 

● Any sequence object is iterable

>>> for i in range(5):

           print i   #  prints 0, 1, 2, 3, 4

● More common in python 

>>> a = [1, 1, 4, 'home']

>>> for i in a:

           print i   #  prints 1, 1, 4, 'home'

● break     # exit from inner loop
● continue  # go to next iteration



  

Bool conversion

● Built-in types can be converted in bool, i.e. 
they can be used as condition expressions

int 0      # False

int != 0  # True

float 0.0      # False

float != 0.0  # True

empty string “” # False

empty sequence   # False 



  

Let's go with a live example

(serial) Python program that runs 
simple simulations 



  

cash_flow 

● It's a toy model that simulates cash flows of 
insurance company deriving from life policies

● Each month the insured (policy holder)  pay the 
company a sum of money (premium)

● In case of death (random, look up actuarial table) 
of the insured, the company pays a sum of money 
to the beneficiary of the life policy

● If the insured is still alive, it receives some money 
back



  

cash_flow / 2

Input file 

300   # (number of policies, thousands)

15    # (policy length years)

150   # (premium Euro)

2.5   # (beneficiary return factor)

25    # (insured initial age)           
      # 25,30,35,40



  

mpi4py



  

mpi4py: philosophy 

● Provides python  bindings to MPI libraries 

● Often only a small portion of the code is 
time-critical 

● Use python for everything, apart from heavy work 
calculation
– Memory management

– Input / Output

– User interface

– Error handling



  

mpi4py

● OO Interface similar to MPI C++   

● You can communicate Python objects   

● Optimized communications of Python objects 
that expose single-segment buffer interface 
(contiguous memory buffer), i.e. Numpy arrays
– Performance close to C speed



  

mpi4py / 2

● No need to call MPI_Init() or MPI_Finalize()  

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

size = comm.Get_size()



  

point to point 

● Send(), Recv(), Sendrecv()  can communicate 
memory buffers

● send(), recv(), sendrecv() can communicate 
generic Python objects   

● Nonblocking communications are also 
available



  

#!/usr/bin/env python

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

size = comm.Get_size()

buf = [ ]

if rank == 0:

    comm.send([rank, 1000], dest=1, tag=10)

    buf = comm.recv(source=1, tag=20)

else:

    buf = comm.recv(source=0, tag=10)

    comm.send([rank, 1000] , dest=0, tag=20)

print "my rank is %d, I received %s from %d" % (rank, buf, buf[0])



  

Collective communications 

● Barrier()    # synchronization

● Global communications
– Broadcast

– Gather

– Scatter

● Global reduction operations



  

#!/usr/bin/env python

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

if rank == 0:

    data = {'key1' : [7, 2.72, 2+3j],  'key2' : ( 'abc', 'xyz')}

else:

    data = None

data = comm.bcast(data, root=0)   # broadcast of a dict

print rank, data



  

More info on:

http://mpi4py.scipy.org/docs/apiref/index.html
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