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Part I
Introduction to the Intel Xeon Phi architecture



Trends: transistors



Trends: clock rates



Trends: cores and threads



The number of transistors increases

The power consumption must not increase

The density cannot increase on a single chip

Increase the number of cores

Trends: summarizing...

Solution :



Coupled to the CPU

To accelerate highly parallel kernels, facing with the 
Amdahl Law

GP-GPU and Intel Xeon Phi..



7100 / 5100 / 3100 Series available

5110P:

Intel Xeon Phi clock: 1053 MHz

60 cores in-order

~ 1 TFlops/s DP peak performance (2 Tflops SP)

4 hardware threads per core

8 GB DDR5 memory

512-bit SIMD vectors (32 registers)

Fully-coherent L1 and L2 caches

PCIe bus (rev. 2.0)

Max Memory bandwidth (theoretical) 320 GB/s

Max TDP: 225 W

What is Intel Xeon Phi?



The comparison is naïve

MIC vs GPU naïve comparison

System K20s 5110P

# cores 2496 60 (*4)

Memory size 5 GB 8 GB

Peak performance 

(SP)

3.52 TFlops 2 TFlops

Peak performance 

(DP)

1.17 TFlops 1 TFlops

Clock rate 0.706 GHz 1.053 GHz

Memory bandwidth 208 GB/s (ECC off) 320 GB/s



MIC = Many Integrated Cores is the name of the 

architecture

Xeon Phi = Commercial name of the Intel product based on 

the MIC architecture

Knight's corner, Knight's landing, Knight's ferry are 

development names of MIC architectures

We will often refer to the CPU as HOST and Xeon Phi as 

DEVICE

Terminology



YES: It can be used to “accelerate” hot-spots of the code 

that are highly parallel and computationally extensive

In this sense, it works alongside the CPU

It can be used as an accelerator using the “offload” 

programming model

An important bottleneck is represented by the 

communication between host and device (through PCIe)

Under this respect, it is very similar to a GPU 

Is it an accelerator?



NOT ONLY: the Intel Xeon Phi can behave as a many-core 

X86 node. 

Code can be compiled and run “natively” on the Xeon 

Phi platform using MPI + OpenMP

The bottleneck is the scalability of the code 

Amdahl Law

Under this respect, the Xeon Phi is completely different from 

a GPU

This is way we often call the Xeon Phi “co-processor” 

rather than “accelerator”

Is it an accelerator? / 2



Many-core performances



Instruction Pipelining

Two independent pipelines arbitrarily known as the U 

and V pipelines

(only) 5 stages to cope with a reduced clock rate, e.g. 

compared to the Pentium 20 stages

In-order instruction execution

Manycore architecture

Homogeneous 

4 hardware threads per core

Architecture key points/1



Interconnect: bidirectional ring topology

All the cores talk to one another through a bidirectional 

interconnect

The cores also access the data and code residing in the 

main memory through the ring connecting the cores to 

memory controller

Given eight memory controllers with two GDDR5 channels 

running at 5.5 GT/s

Aggregate Memory Bandwidth = 8 memory controllers ×

2 channels × 5.5 GT/s × 4 bytes/transfer = 352 GB/s

System interconnect

Xeon Phi are often placed on PCIe slots to work with the 

host processors

Architecture key points/2



Cache:

L1: 8-ways set-associative 32-kB instruction and 32-kB 

data

L1 access time: 3 cycles

L2: 8-way set associative and 512 kB in size 

(unified)Interconnect: bidirectional ring topology

TLB cache:

L1 data TLB supports three page sizes: 4 kB, 64 kB, and 

2 MB

L2 TLB

If one misses L1 and also misses L2 TLB, one has to 

walk four levels of page table, which is pretty expensive

Architecture key points/3



The VPU (vector processing unit) implements a novel 

instruction set architecture (ISA), with 218 new instructions 

compared with those implemented in the Xeon family of SIMD 

instruction sets.

The VPU is fully pipelined and can execute most instructions 

with four-cycle latency and single-cycle throughput.

Each vector can contain 16 single-precision floats or 32-bit 

integer elements or eight 64-bit integer or double-precision 

floating point elements.

Architecture key points/4



Each VPU instruction passes through one or more of the following five 
pipelines to completion:

Double-precision (DP) pipeline: Used to execute float64 arithmetic, 
conversion from float64 to float32, and DP-compare instructions.

Single-precision (SP) pipeline: Executes most of the instructions 

including 64-bit integer loads. This includes float32/int32 arithmetic and 

logical operations, shuffle/broadcast, loads including loadunpack, type 

conversions from float32/int32 pipelines, extended math unit (EMU) 

transcendental instructions, int64 loads, int64/float64 logical, and other 
instructions.

Mask pipeline: Executes mask instructions with one-cycle latencies.

Store pipeline: Executes the vector store operations.

Scatter/gather pipeline: Executes the vector register read/writes from 
sparse memory locations.

Mixing SP and DP computations is expensive! 

Architecture key points/5



Architecture sketch/1



Architecture sketch/2



Part II
Programming models



Same target, different pathways

Though the problem is very similar (i.e. heterogeneous device connected to 

the CPU through a low bandwith channel), there are many programming 

approaches:

-Based on a low-level language addressing the memory space of the device 
-Proprietary (CUDA)

-Open (OpenCL)

-Based on directives (“pragma”) to the compiler

-OpenMP4.0
-OpenACC

-Intel Language Extension for Offload (LEO)



- Directive based approach are relatively simpler because they permit to manage 

the data transfer in an explicit way without affecting too much the original code

- Directive based approaches preserve the portability of the code 

- CUDA and OpenCL are low level languages that permits to obtain better 
perfomances but:

- CUDA is a proprietary language and it is only suitable for GPUs 

- OpenCL is open and suitable for both GPUs and MICs but it does not 

permit to reach the same level of performances for both of them

- Both CUDA and OpenCL require to make important changes to the code
- Using CUDA in many cases forces to create a separate developing branch of 

the code.

- Intel LEO can be used only on the Intel Xeon Phi platform

- Intel LEO approach is much similar to the directives implemented in 
OpenMP4.0

- Implementing LEO forces to better work on vectorization and threadization: 

this effort is fruitful also when working on CPU only

Comparing strategies



Intel Xeon Phi programming 
models

Intel Xeon Phi has a twofold nature:

- accelerator

- coprocessor

According to this one has the chance to work with different programming 
models.

The choice of the programming model can be made according to the 

requirements of the application.



main()

foo()

MPI_*()

main()

foo()

MPI_*()

main()

foo()

MPI_*()

foo()

main()

foo()

MPI_*()

main()

foo()

MPI_*()

main()

foo()

MPI_*()

main()

foo()

MPI_*()

OFFLOAD MPI

Host-only Offload with LEO Symmetric with MPI Coprocessor only
(“native”)

-mmic flag

At a glance..Intel Xeon Phi programming 
models



PRO:

l it is a cross-compiling mode

l very simple

l just add -mmic, login and execute
l use well known OpenMP and MPI (or pthreads or OpenCL)

lCONS:

l very slow I/O

l poor single thread performance
l only suitable for highly parallel codes (cfr Amdahl)

l CPU unused

Coprocessor only (“native”)Intel Xeon Phi programming 
models



Intel provides a set of directives to the compiler named “LEO”: Language 

Extension for Offload.

These directives manage the transfer and execution of portions of code to the device.

C/C++    

#pragma offload target (mic:device_id)

Fortran   
!dir$ offload target (mic:device_id)

Offload (1)Intel Xeon Phi programming 
models



Variable and function definitions

C/C++

__attribute__ ((target(mic)))

Fortran

!dir$ attributes offload:mic :: <function/var name>

It compiles (allocates) variables on both the host and device

For entire files or large blocks of code (C/C++ only)

#pragma offload_attribute (push, target(mic))

#pragma offload_attribute (pop)

Offload (2)Intel Xeon Phi programming 
models



Explicit copy must be managed by the programmer using clauses defined 
in the LEO 

Offload (3)

Since host and device don't have physical or virtual shared memory, 
variable must be copied in an explicit or in an implicit way.

Implicit copy is assumed for 

- scalar variables

- static arrays

Intel Xeon Phi programming 
models



Programmer clauses for explicit copy:

in, out, inout, nocopy

Data transfer with offload region:

C/C++     #pragma offload target(mic) in(data:length(size))

Fortran   !dir$ offload target (mic) in(data:length(size)) 

Data transfer without offload region:

C/C++ #pragma offload_transfer target(mic)in(data:length(size))

Fortran  !dir$ offload_transfer target(mic) in(data:length(size))

Offload (4)Intel Xeon Phi programming 
models



C/C++

#pragma offload target (mic) out(a:length(n)) \

in(b:length(n))

for (i=0; i<n; i++){
a[i] = b[i]+c*d

}

Fortran

!dir$ offload begin target(mic) out(a) in(b)

do i=1,n

a(i)=b(i)+c*d

end do

!dir$ end offload 

Offload (5)Intel Xeon Phi programming 
models: examples



C/C++

__attribute__ ((target(mic)))

void foo(){

printf(“Hello MIC\n”);

}

int main(){

#pragma offload target(mic)

foo();

return 0;
}

Fortran

!dir$  attributes &

!dir$  offload:mic ::hello

subroutine hello

write(*,*)”Hello MIC”
end subroutine

program main

!dir$ attributes &

!dir$ offload:mic :: hello
!dir$ offload begin target (mic)

call hello()

!dir$ end offload

end program

Offload (6)Intel Xeon Phi programming 
models: examples



Memory allocation 

- CPU is managed as usual

- on coprocessor is defined by in,out and inout clauses

Input/Output pointers

- by default on coprocessor “new” allocation is performed for 

each pointer
- by default de-allocation is performed after offload region

- defaults  can be modified with alloc_if and free_if qualifiers

Offload (7)Intel Xeon Phi programming 
models



Using  memory qualifiers

free_if(0)

free_if(.false.)  retain target memory

alloc_if(0)

alloc_if(.false.) reuse data in subsequent offload

alloc_if(1)
alloc_if(.true.) allocate new memory

free_if(1)

free_if(.true.) deallocate memory

Offload (8)Intel Xeon Phi programming 
models



#define ALLOC alloc_if(1)

#define FREE free_if(1)

#define RETAIN free_if(0)

#define REUSE alloc_if(0)

#allocate the memory but don't de-allocate

#pragma offload target(mic:0) in(a:length(8)) ALLOC RETAIN)

...

#don't allocate or deallocate the memory

#pragma offload target(mic:0) in(a:length(8) REUSE RETAIN)

#don't allocate the memory but de-allocate

#pragma offload target(mic:0) in(a:length(8) REUSE FREE) 

note: specify the device_id when using more 

than one device 

target(mic:0)

target(mic:1) ...

Offload (9)Intel Xeon Phi programming 
models



Partial offload of arrays

int *p;

#pragma offload ... in (p[10:100] : alloc(p(5:1000))
{...}

It allocates 1000 elements on coprocessor; first usable 

element has index 5,  last has index 1004; only 100 

elements are tranferred, 
starting from index 10.

p[10:100]
first element

length

Offload (10)Intel Xeon Phi programming 
models



Copy from a variable to another one

It permits to copy data from the host to a different array allocated on the device

integer :: p(1000), p1(2000)

integer :: rank1(1000), rank2(10,100)

!dir$ offload ... (p(1:500) : into (p1(501:1000)))

Offload (12)Intel Xeon Phi programming 
models



Using OpenMP in an offload region:

C/C++

#pragma offload target (mic) 

#pragma omp parallel for 

for (i=0; i<n; i++){

a[i]=b[i]*c+d;
}

Fortran
!dir$ omp offload target (mic)

!$omp parallel do

do i=1,n

A(i)=B(i)*C+D 

end do
!$omp end parallel

optional, if defined, it must be immediately
followed by a openmp directive 

Setting up the environment:
OMP_NUM_THREAD = 16

MIC_ENV_PREFIX = MIC

MIC_OMP_NUM_THREADS = 120

Offload (13)Intel Xeon Phi programming 
models



Tuning up OpenMP

lthe coprocessor has 4 hardware threads per core; at least 2 should be used;

lfor many-cores systems (and hence for the Xeon Phi) binding threads to the 
lcores and choosing an affinity are crucial factor that affect performance

MIC_ENV_PREFIX = MIC
MIC_KMP_AFFINITY  = 

compact

scattered

balanced

Offload (14)Intel Xeon Phi programming 
models



LEO compiler options

l-opt-report-phase:offload activate reporting

l-no-offload disable offload

l-offload-attribute-target=mic build ALL functions for both host and device

Offload (15)Intel Xeon Phi programming 
models



Static libraries

lxiar can be used to create libraries containing offloaded code

lspecify -qoffload-build that forces xiar to create both a library for the host (xxx.a) and 

la library for the device (xxxMIC.a)

luse the same options that you would use for ar

luse normally the linker options (-L.. -lxxx.a) and the compiler will automatically 

linclude the coprocessor library

Offload (16)Intel Xeon Phi programming 
models



Managing multiple devices

Including offload.h

#include <offload.h> 

you can use a few API:

_offload_number_of_device()
_offload_get_device_number()

or use runtime environmente variables:

OFFLOAD_DEVICES=0,1

always remember to specify the target device target(mic:1)

Offload (17)Intel Xeon Phi programming 
models



MIC specific MACROs

#ifdef __INTEL_OFFLOAD

#include <offload.h>

#endif

#ifdef __INTEL_OFFLOAD

printf(“%d MICS available\n”,_Offload_number_of_devices());

#endif

int main(){

#pragma offload target(mic)

{

#ifdef __MIC__

printf(“Hello MIC number %d\n”, _Offload_get_device_number());

#else

printf(“Hello HOST\n”);

}

}

Offload (18)Intel Xeon Phi programming 
models



I/O from offloaded regions

lBuffered printf are available (use only to debugging purposes!)
lAlways use fflush(0) on the coprocessor

lFiles I/O is possible only through a proxy filesystem

Offload (19)Intel Xeon Phi programming 
models



Asynchronous computation

By default, offload forces the host to wait for completion

lAsynchronous offload starts the offload and continues on the next statement just

lafter the offload region

lUse the signal clause to synchronize with a offload_wait statement

Offload (20)Intel Xeon Phi programming 
models



Example

char signal_var;

do {

#pragma offload target(mic:0) signal(&signal_var)

{

long_running_mic_compute();

}

concurrent_cpu_computation();

#pragma offload_wait target(mic:0) wait(&signal_var)

} while(1);

Offload (21)Intel Xeon Phi programming 
models



Reporting

Use OFFLOAD_REPORT or the variable _Offload_report with a 

verbosity from 1 to 3. 
OFFLOAD_REPORT=1 only provides timing

Conditional offload 

Only offload if it is worth

#pragma offload target (mic) in (b:length(size)) \

out (a:length(size) \

if(size>100)

Offload (22)Intel Xeon Phi programming 
models



icc -mmic mycode.c -o mycode.x

scp mycode.x mic0:.

ssh mic0

export OMP_NUM_THREADS=240
./mycode.x

Simple... but not always successful

Native modeIntel Xeon Phi programming 
models: native mode



Using MPI you can make work together the executable running on the host and the 
one running on the device (compiled with -mmic)

lLoad balancing can be an issue

lTuning of MPI and OpenMP on both host and device is crucial

lDependent on the cluster implementation (physical network, MPI implementation, 

ljob scheduler..)

Symmetric mode (1)Intel Xeon Phi programming 
models: symmetric mode 



Example

# compile the program for the coprocessor (-mmic)

mpiicc -mmic -o test.MIC test.c

# compile the program for the host 

mpiicc -mmic -o test test.c

#copy the executable to the coprocessor

scp test.MIC mic0:/tmp/test.MIC

#set the I_MPI_MIC variable

export I_MPI_MIC=1

#launch MPI jobs on the host knf1 and on the coprocessor mic0

mpirun -host knf1 -n 1 ./test : -n 1  -host mic0 /tmp/test.MIC

Symmetric mode (2)Intel Xeon Phi programming 
models: symmetric mode



Lots of cores but also... large registers!

SSE : 128 bit
2 x DP or 4 x SP 

AVX : 256 bit
4 x DP or 8 x SP 

MIC : 512 bit
8 x DP or 16 x SP 

Vectorization



SIMD arithmetic

a[0] a[1] a[7]

b[0] b[1] b[7]b[1]b[1]

a[2] a[3] a[4] a[5] a[6]

b[2] b[3] b[4] b[5] b[6]

a[0] a[1] a[7]a[2] a[3] a[4] a[5] a[6]

+b[0] +b[7]+b[1] +b[2] +b[3] +b[4] +b[5] +b[6]

+

=

a[0] a[1] a[7]a[2] a[3] a[4] a[5] a[6]

+b[0] +b[7]+b[1] +b[2] +b[3] +b[4] +b[5] +b[6]

Vectorization



SIMD Fused Multiply Add

a[0] a[1] a[7]

b[0] b[1] b[7]b[1]b[1]

a[2] a[3] a[4] a[5] a[6]

b[2] b[3] b[4] b[5] b[6]

*

+

c[0] c[1] c[7]c[2] c[3] c[4] c[5] c[6]

=

d[0] d[1] d[7]d[2] d[3] d[4] d[5] d[6]

Vectorization



Intel released a version for Xeon Phi of the MKL mathematical libraries

MKL have three different usage models

lAutomatic offload (AO)

lCompiler assisted offload (CAO)

lNative execution

MKL Libraries



lOffload is automatic and transparent

lThe library decides when to offload and how much to offload (workdivision)

lUsers can control parameters through environment variables or API

You can enable automatic offload with

MKL_MIC_ENABLE=1

or
mkl_mic_enable()

Automatic offload (1)MKL Libraries



Not all the MKL functions are enabled to AO.

In MKL 11.0.1:

lLevel 3 BLAS: xGEMM, xTRSM, xTRMM

lLAPACK xGETRF, xPOTRF, xGEQRF

Always check the documentation for updates

Automatic offload (2)MKL Libraries



lMKL functions can be offloaded as other “ordinary” functions using the LEO pragmas

lAll MKL functions can take advantage of the CAO

lIt's a more flexible option in terms of data management (you can use 

ldata persistence or mechanisms to hide the latency...)

Compiler assisted offload (1)MKL Libraries



C/C++
#pragma offload target (mic) \

in (transa, transb, N, alpha, beta) \

in (A:length(matrix_elements)) in (B:length(matrix_elements)) \

inout (C:length(matrix_elements))

{ 

sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N, &beta, C, &N); 

}

Fortran

!dir$ attributes offload : mic : sgemm

!dir$ offload target(mic) & 

!dir$ in (transa, transb, m, n, k, alpha, beta, lda, ldb, ldc), &

!dir$ in (a:length(ncola*lda)), in (b:length(ncolb*ldb)) &

!dir$ inout (c:length(n*ldc))

CALL sgemm (transa, transb,m,n,k,alpha,a,lda,b,ldb,beta,c,ldc)

MKL Libraries: CAO



MKL libraries are also available when using the native mode. 

Tips:

Use all the 240 threads: MIC_OMP_NUM_THREADS=240

Set the thread affinity: MIC_KMP_AFFINITY = ...

MKL nativeMKL Libraries



Part III
Optimization hints



In principle the main advantage of using Intel MIC 

technology with respect to other coprocessors is the 
simplicity of the porting

Programmers may compile their source codes based 

on common HPC languages (Fortran/ C / C++) specifying 
MIC as the target architecture (native mode)

Is it enough to achieve good performances? By the way, 
why offload?

Usually not, parallel programming is not easy

A general need is to expose parallelism

Performance and parallelism



GPU paradigms (e.g. CUDA):

Despite the sometimes significant effort required to port 
the codes...

...are designed to force the programmer to expose (or 

even create if needed) parallelism

Programming Intel MIC

The optimization techniques are not far from those 

devised for the common CPUs

As in that case, achieving optimal performance is far 

from being straightforward

What about device maturity?

GPU vs MIC



Let us recall 3 basic features of current Intel Xeon Phi:

Peak performance originates from “many slow but 

vectorizable cores”

clock frequency x n. cores x n. lanes x 2 FMA Flops/cycle

1.091 GHz x 61 cores x 16 lanes x 2 = 2129.6 Gflops/cycle

1.091 GHz x 61 cores x 8 lanes x 2 = 1064.8 Gflops/cycle

Bandwidth is (of course) limited, caches and alignment 

matter

The card is not a replacement for the host processor. It is a 

coprocessor providing optimal power efficiency

Intel Xeon Phi very basic 
features



In general terms, an application must fulfill three 

requirements to efficiently run on a MIC

(1) Highly vectorizable, the cores must be able to exploit 

the vector units. The penalty when the code cannot be 
vectorized is very high

(2) high scalability, to exploit all MIC multi-threaded cores: 

scalability up to 240 processors (processes/threads) running 

on a single MIC, and even higher running on multiple MIC

(3) ability of hiding I/O communications with the host 
processors and, in general, with other hosts or coprocessors

Optimization key points



In recent Intel compilers, vectorization is enabled by default
May be turned off by explicit options

The compiler must be able to detect the possibility to do that

The essential requirement is the possibility to unroll the loop 

having the different iterations performed simultaneously 

Some critical conditions
If the loop is part of a loop nest, it must be the inner loop unless 

it is completely unrolled or interchange occurs (use -O3)

Straight-line code: no jumps or branches but masked assignment 
allowed

Countable loop: number of iterations must be known when 

starting (even if not at compile time)

No loop dependencies: iterations must be performed in parallel

Auto-vectorization



Writing “clean” code is a good starting point to have the code 

vectorized
Prefer array indexing instead of explicit pointer arithmetic

Use restrict keyword to tell the compiler that there is no array 

aliasing

Excerpt from a real code the compiler manages to vectorize:
REAL * __restrict__ anspx=an+spxoff;

REAL * __restrict__ ansmx=an+smxoff;

...

for(ix=istart; ix<iend; ix++) {

as = anspx[ix]*JpxWO[ix] + anspy[ix]*JpyWO[ix] + 

anspz[ix]*JpzWO[ix] + ansmx[ix]*JmxWO[ix] + 

ansmy[ix]*JmyWO[ix] + ansmz[ix]*JmzWO[ix] + 

...

}

Vectorization: arrays and restrict



Using array notation is a good way to guarantee the compiler 

that the iterations are independent
In Fortran this is consistent with the language array syntax

a(1:N) = b(1:N) + c(1:N)

In C the array notation is provided by Intel Cilk Plus
a[1:N] = b[1:N] + c[1:N]

Beware:
The first value represents the lower bound for both languages

But the second value is the upper bound in Fortran whereas it is 

the length in C

An optional third value is the stride both in Fortran and in C

Multidimensional arrays supported, too

Vectorization: array notation



Another opportunity is forcing vectorization by means of 

directives

The programmer guarantees the possibility to vectorize

Until a few years ago, only compiler dependent directives 

available

#pragma ivdep

Instructs the compiler to ignore assumed vector dependencies 

(proven dependencies area not ignored)

#pragma vector always

Instructs the compiler to override any efficiency heuristic 

during the decision to vectorize or not

Vectorization: directives



Intel took leadership in defining OpenMP 4.0 SIMD extensions

Several tuning options available

Applied to a loop:
#pragma omp simd

Applied to a function to enable the creation of a version that 

can process arguments using SIMD instructions from a single 

invocation from a SIMD loop:
#pragma omp declared simd

Vectorization: OpenMP 4.0 simd

Thread Level 

Parallelism

SIMD parallelism

Auto Parallel Auto vectorization

OpenMP threading OpenMP 4.0 simd

Posix threads Vectorization intrinsics

Ease of use

Programmer control



IMCI intrinsics

The coding become hard

And  the code is no more portable to common CPUs

for(i=0; i<N; i++) 

A[i] = A[i] + B[i];

for(i=0; i<N; i+=16) {

__mm512 Avec = mm512load_ps(A+i);    

__mm512 Bvec = mm512load_ps(B+i);

Avec = mm512add_ps(Avec, Bvec);

_mm512_store_ps(A+i,Avec);

}

The arrays float A[N] and float B[N] are aligned on a 64-byte boundary

Variables Avec and Bvec are 512=16 x sizeof(float) bits

Vectorization: Intel Xeon Phi 
intrinsics



MPI and OpenMP are the most common choices

Up to 60 MPI processes are reasonable for a single MIC

And 1 MPI process per MIC may be an interesting choice

The optimal choice between MPI and OpenMP depends on 

the application 

MPI Programming models, basically three configurations

Co-processor only (native mode)

MPI+Offload

Symmetric

Exploiting cores



MPI communications are heterogeneous. Performances 

strongly vary!

From some tests on the Eurora cluster at Cineca

Experimenting heterogeneity

PingPong SendRecv

CPU-CPU same node 5-11 5-22

CPU-CPU diff node 2.9 5

MIC-MIC same node 0.9 1.8

MIC-MIC diff node 0.9 1.6

CPU-MIC same node 5.9 11

CPU-MIC diff node 1.45 1.65



When running in symmetric mode, load balancing is a critical 

issue

Usual MPI decompositions assume homogeneous 

computing units

Mixing MPI and OpenMP may help

Assign a different number of MPI processes to host and 

coprocessor

Exploit the full machine potential by means of OpenMP

threads

E.g.

Host: 4 MPI ranks + 4 OpenMP threads

MIC: 8 MPI ranks + 30 OpenMP threads

Symmetric mode: load balancing



Several threading models available

OpenMP

Fortran (2008) DO concurrent

Intel Cilk Plus

Intel Threading Building Block

Intel Math Kernel Library

OpenMP has clear advantages wrt portability

In offload mode, it is possible (required) to tune both the host 

and coprocessor parameters (e.g. number of threads)

Threading models



Placement of threads on MIC cores and hardware threads

The basic configuration is 

controlled by the variable

KMP_AFFINITY

Additional advanced 

settings are possible too

Scatter

Balanced

Compact

Thread Affinity



The impact of affinity on performance may be very                   

significant

From a realworld example (3d-stencil code)

Affinity and performances



As recalled, the number of threads for each MPI process 

may become large (up to 240)

From different tests, it turns out that collapsing OpenMP

loops results in improved performances

From a realworld example (3d reacting Navier-Stokes 

equations)

Collapse loops

MIC OMP threads no-collapse collapse

1 108.7 109.26

16 7.67 7.52

30 5.24 4.51

60 3.08 2.51

120 2.60 1.87

180 1.89 1.77

240 2.20 1.67



“Dividing a loop into a set of parallel tasks of a suitable 

granularity. In general, tiling consists of applying multiple steps 

on a small part of a problem instead of running each step on 

the whole problem one after the other. The purpose of tiling is 

to increase reuse of data in caches”

#pragma omp for collapse(2)

for (int z = 0; z < nz; z++) {

for (int y = 0; y < ny; y++) {

for (int x = 0; x < nx; x++) {

#define YBF 16

#pragma omp for collapse(2)

for (int yy = 0; yy < ny; yy += YBF) {

for (int z = 0; z < nz; z++) {

int ymax = yy + YBF;

if (ymax >= ny) ymax = ny;

for (int y = yy; y < ymax; y++) {

Tiling



“Depending on the memory patterns, possible TLB cache 

thrashing must be considered with care
Padding between allocated arrays may be a good solution

The problem may be difficult to analyze for non-HPC experts

From a spin glass simulation code, the spin updating time 

has been measured against the padding pages between 

arrays

TLB cache thrashing

Padding pages Time per spin

0 1.458

1 0.737

4 0.764

8 1.222

16 1.537

32 1.543



When getting unexpected performance results or whenever 

there is the need to have a deep understanding of the 

measured times, using Intel Vtune profiler is a good idea

From the previous TLB thrashing example

Intel VTune



DA is  a method to force the compiler to create data objects in 

memory on specific byte boundaries. This is done to increase 
efficiency of data loads and stores to and from the processor.

For MIC memory movement is optimal when the data 

starting address lies on 64 byte boundaries

Two steps are needed

(1) Align the data
float A[1000] __attribute__((aligned(64)));

buf = (char*) _mm_malloc(bufsizes[i], 64);

real, allocatable :: a(:)

!dir$ attributes align:64 :: a

Data alignment/1



(2) Use pragma/directives and clauses to tell the compiler 

that the accesses are aligned

For an i-loop that has a memory access of the form 

a[i+n1], the loop has to be structured in such a way that the 

starting-indices have good alignment properties.

__assume_aligned(a, 64);

__assume(n1%16==0);

__assume(n2%16==0);

for(i=0;i<n;i++) { 

// Compiler vectorizes loop with all aligned accesses

X[i] += a[i] + a[i+n1] + a[i-n1]+ a[i+n2] + a[i-n2];

}

Data alignment/2



Starting with Composer XE 2013 Update 1 compiler, 

streaming stores instructions are generated under certain 

conditions

Instructions intended to speed up the performance in the 

case of vector-aligned unmasked stores in streaming 

kernels where we want to avoid wasting memory 

bandwidth by being forced to read the original content of 

an entire cache line from memory when we overwrite their 

whole content completely

Heuristics may be not sufficient: user can provide hints to the 

compiler, e.g.

#pragma vector nontemporal A

where A[i]=... is the store inside the loop

Streaming store and prefetch



Why offload mode?

Cons
The porting is much more complex than to native mode

And the programmer must take care of host-coprocessors data 
exchanges which may be disastrous wrt performances

The symmetric mode allows to use both host and MIC at the 
same time

Pros
it is also reasonable to assume that, the host being in charge of 

MPI calls (as it happens in offload mode), the MIC is free to 

execute, at its best, the computing intensive part of the code 
without wasting time in managing the communications

Native vs Offload



Consider a finite difference time domain code parallelized by 

standard domain decomposition. At each step:

(a) update boundary and bulk values 

(b) exchange ghosts with neighboring processes

MPI optimizations: FDTD



MPI patterns allow to overlap computations with 

communications (hiding the communication cost)

Standard CPU pattern using MPI non blocking functions 

(available for MIC native mode as well)

Update boundary

Exchange ghost – MPI non blocking

Update bulk

Wait exchanges – MPI wait

To achieve full overlapping, the bulk updating time must be 

larger than the communication time

Using MIC (native), sometimes the final performances are far 

from optimal

MPI optimizations: FDTD/2



MIC-Offload pattern (similar to multi-GPU approach)

Update boundary

Update bulk – asynchronous  (non blocking)

Exchange ghost – MPI blocking

Wait bulk update

#pragma offload target(mic:0) … async(a)

{

<code to be offloaded>

}

CPU operations (e.g. MPI calls)

#pragma offload_wait(a)

MPI optimizations: FDTD/3



Scaling results from Heisenberg Spin Glass code

Strong scaling for native/offload and sync/async versions

MPI optimizations: HSG

#MICS Native-

Sync

Native-

Async

Offload-

Sync

Offload-

Async

1 0.709 0.717 1.049 1.078

2 0.484 0.431 0.558 0.527

4 0.445 0.325 0.335 0.281

8 0.376 0.246 0.219 0.167

16 0.343 0.197 0.154 0.113

Weak scaling comparison with other architectures

#Procs Size CPU GPU MIC-n MIC-o

1 256 3.73 0.67 0.78 1.34

8 512 0.48 0.068 0.25 0.17

Efficiency 96.2% 123% 39.9% 100%


