Leonardo Mariani

mariani@disco.unimib.it

CINECA \

Advanced

' 4B School on
v PARALLEL
COMPUTING

Configuration Management

University of Milano Bicocca

Advanced

| 4B School on

| : : ~d PARALLEL
COnflgurat|On COMPUTING
Management
Program EVOLUTION > Program’

« CM is concerned with manaqging evolving
software systems:

— control the costs and effort
e procedures + standards
« part of the quality process

CINECA

Advanced

’ School on
v PARALLEL

CM standards COMPUTING

« based on a set of standards which are applied within an
organisation

— how items are identified,
— how changes are controlled
— how new versions are manaqged

« Standards may be based on external CM standards
(e.g., IEEE standard for CM)

* Products to be managed?
— specifications, designs, programs, test data, user manuals...

CINECA

Advanced

f School on

e PARALLEL
COMPUTING

From A. van Lamsweerde “Requirements Engineering”

TRACEABILITY

CINECA \

Features, revisions, variants

Feature = change unit
— functional/non-functional: sets of functional/non-functional reqs

- environmental: assumptions, constraints, work procedures, etc

Feature changes yield new system version
— revision: to correct, improve single-product version

— variant: to adapt, restrict, extend multi-product version
=> commonalities + variations at variation points

A
space

Variant A Revision A1 Revision A2
(user olass A) I YR— " —— O > Mmeeting date

Variant B Revision B1 Revision B2 =

arian ..oy e S meeting date
(user class B) ‘ ‘ ‘ > + /oce?tion
[|

Evolution support requires
traceability management

 Anitem is traceable if we can fully figure out
— WHERE it comes from, WHY it is there
— WHAT it will be used for, HOW it will be used

* Traceability management (TM), roughy

— identify, document, retrieve the rationale & impact of
items

* Objectives of traceability
— assess impact of proposed changes
— easily propagate changes to maintain consistency

TM relies on traceability links among items

 To be identified, recorded, retrieved
* Bidirectional: for accessibility from
— source to target (forward traceability)

— target to source (backward traceability)
* Within same phase (horizontal) Or among phases (vertical)

Objectives, domain concepts, %r d \aackward
requirements, assumptions
horizontal

Architectural components vertical
& connectors

Source code Test data User manual

Advanced

' 4B School on

e PARALLEL
COMPUTING

A taxonomy of traceability link types

Dependency link

Inter-version link Intra-version link
/ \ / \ Subtype
Variant Revision Derivation Use

What are the types of links traced by Configuration Management?

CINECA

Inter-version traceability: variant, revision links

B has all features of A + specific ones

@ ' Variant
— master variantOf

\

common regs for &8 speC|f|c regs for handling
meeting scheduling w important participants

B overrides features of A, adds/removes some, keeps all others

®\‘ ------- Revision
N previous next >

reqs’for optimal date SR regs for optimal date
to fit exclusion constraints v to fit exclusion & preference constraints

+ link annotation with
configuration management info:

date, author, status, rationale

Our focus: how to (semi-)automatically
trace inter-version links

When the Information About
Revisions and Variants is Useful?

A
space
Variant A Revision A1 Revision A2
arian
(user olass A) O O O >
Variant B Revision B1 Revision B2 =
arian Y YORTTY - YHRRRRNY - WORR meeting date
(user class B) ‘ ‘ ‘ > + location
[| [| [|
1 1 |

CASE for CM

Let’s start by thinking to a world
without version control...

Version Management

& C:\a\OHL\CVS stuff\Web_Project -|o] x|

H ave yOU | File Edit Yew Favorites Tools Help |i
y r, = r g R b - - 3
ever had | ¥Back + = ¥ | QSearch L4yFolders LPHistory \ S X wm
. Address |1 Web_Project >
something &1 Web_pro; H
. . MName - Type Comment

Ilke th at In Clweb_Project_FINAL File Folder
yO u fl | e —1web_Project_old File Folder

—lweb_Project_old2 File Folder
SySte m? —web_Project_current File Folder

—lweb_Project_foo File Folder

_1web_Project_Jan11 File Folder

lweb_Project_Jan1s File Folder

CJwWeb_Project_Jan22 File Folder

web_Project_Feb3 File Folder

=] Web_Project_test.tar.gz GZ File

=] Web_Project_demoFebS.zip ZIP File

<| | L

11 object(s) 338 bytes {5 My Computer 4

Version Management

e or this?

Coordination

» How to coordinate the activity of multiple
developers?

— Use one PC?
— Send emails?
— Use a shared folder?

General Scenario

& =

s
synchronize

t—
@
A (,‘}\\OQ
’%% &Y

synchronize

(15

Single User Scenario

produce the initial
version
§

el

Repo

ComputeTaxes

Single User Scenario

v1.0

ComputeTaxes

B

y

ComputeTaxes

Single User Scenario

v1.0

ComputeTaxes

extend!

ComputeTaxes

Single User Scenario

v2.0

ComputeTaxes

y

ComputeTaxes

Single User Scenario

extend!

ComputeTaxes

v2.0

ComputeTaxes

Single User Scenario

Reposit

v3.0

ComputeTaxes

y

ComputeTaxes

Single User Scenario

First release!

Reposit

ComputeTaxes

v3.0

ComputeTaxes
|

Single User Scenario

Repository

v3.0 —rel 1

ComputeTaxes

cvs tag “rel 1”7

First release!

ComputeTaxes

Single User Scenario

Extend and
produce 2
release
Repository
cvs commit
v4.0 —rel 2 <« cvstag “rel 2” ComputeTaxes

ComputeTaxes W
|
|

Single User Scenario

Repository

v3.0.1

ComputeTaxes

v5.0

ComputeTaxes W

Extend both
rel 1erel 2

ComputeTaxes

Single User Scenario

Repository Vv3.0-2
ComputeTaxes
v6.0 - -
ComputeTaxes

Further develop both
branches

Multi User Scenario

ComputeTaxes

v1.0 —

Multi User Scenario

ComputeTaxes

cvs checkout

v1.0 —

ComputeTaxes

v1.0 —

ComputeTaxes

Multi User Scenario

ComputeTaxes

cvs commit

v2.0 —

ComputeTaxes

v1.0 —

ComputeTaxes

Multi User Scenario

When starting a new working session, the user has to execute an update first!

Repository \
v2.0
ComputeTaxes
v2.0 -
ComputeTaxes \% |
v2.0 |

ComputeTaxes

Multi User Scenario

Developers work in parallel

ComputeTaxes

v3.0 T

ComputeTaxes

v3.0 T

ComputeTaxes

Multi User Scenario

ComputeTaxes

cvs commit

v3.0 T

ComputeTaxes

v3.0 T

ComputeTaxes

Multi User Scenario

There is an attempt to overwrite the changes
implemented by another developer — operation

forbidden!!!!
Repository \
v3.0
cVvS commit ComputeTaxes
v3.0
ComputeTa

ComputeTaxes

Multi User Scenario

ComputeTaxes

cvs update

v3.0 T

ComputeTaxes

v3.0 T

ComputeTaxes

ComputeTaxes

Reposit

Multi User Scenario

v3.0

ComputeTaxes

Manual resolution of
the conflicts

ComputeTaxes

v3.0
v4.0 omputeTaxes
ComputeTaxes T =
ComputeTaxes
v3.0 B

Multi User Scenario

ComputeTaxes

cvs commit

v4.0 i

ComputeTaxes

v3.0 T

ComputeTaxes

Structure of the Repository -
Revisions

* A same file occurs in multiple revisions

file1.dat 1.1 1.2 1.3 1.4
file2.dat 1.1 1.2 1.3
file3.dat 1.1 1.2 1.3 1.4 1.5

Structure of the Repository -
Versions

« A coherent and consistent collection of files existing
at a given time might be relevant
— Versions identify these collections of files
— Each version has a name (tag)

file1.dat 11 |— | 1.2 > 1.3
I I
| |

file2.dat 11 |— | 1.2 |— | 1.3

=" I
- 1
file3.dat 11 |— | 1.2 > 13 | — | 14

|

|

|
app-rel-1-0 app-rel-2-0

Structure of the Repository -
Branches

* A project is usually organized into multiple
development branches

— The main branch is usually called head or trunk or master
— Branches can be created and merged

Branching
file1.dat 11 |—— | 12 |— | 13 |— | 14
'
1221 — 11222 | 1223
Merging

1.222 |7 | 1223 — | 1.224

(free) Tools

DEMO

* CVS by example...

SVN vs CVS

Pros SVN
 Atomic commit

« SVN implementations perform typically better than CVS
Implementations

« SVN efficiently stores binary files
* (show GUI)

Pros CVS

« SVN has a unique version number for the whole repository, while
CVS assigns version numbers to the individual files

« SVN “simulates” tags

« in case of “disasters”, the CVS repository is easily readable (text
files), while SVN is not

Advanced
' 4B School on

GIT: From Client-Server S\~ covrurin
to Distributed Version
Control

Remote
Repository

o TN
w0 lem) Gumo

<repository, working directory>

Advanced

f School on
e PARALLEL
G I T COMPUTING

 Distributed version control
« Used by many popular open source projects

Bare repository: shared by RE:::.’::,,

multiple developers push/pull

T commlt

Non-Bare repository: single developer repository
« There is almost nothing you cannot do locally

CINECA \

Advanced
School on

| e
Create a GIT Local = compuTiNG
Repository
* Go into working directory
* Type
— git init
— git clone git://...

working directory _
—|> git —‘ /Repository

Working copy

CINECA

“

Remote
Repository |LPull

ush

Advanced
School on
PARALLEL

COMPUTING

Conflicts

ull
Mirge
;conflic

Advanced

| 4B School on

. S PARALLEL
G It COMPUTING

o Efficient, modern, distributed version
control system

— Advanced branching mechanisms
* Many hosting services available online

* GitHub (github.com)

— Hosting service

— Developers community

— Web-based interface

— Access control

— Collaboration features (including wikis, etc.)

CINECA

Advanced

’ School on
PARALLEL

. p
From Version Control COMPUTING
to Continuous Integration

* When a new version is ready, a number of
quality control activities can be executed
— Testing
— Analysis

* Why not executing them regularly?
— Or after every commit?

CINECA

Advanced

| 4B School on

PARALLEL

. St
Example: Continuous COMPUTING
Integration Policy

« Atime (say 5pm) for delivery of system components is
agreed

* A new version of a system is built from these
components by compiling and linking them

« This new version is tested using pre-defined tests
— Next part about testing and analysis

« Faults that are discovered during testing are
documented and returned to the system developers

CINECA

Advanced
' 4B School on

. . PARALLEL
CruiseControl Build Loop™\.~ cowrurin

d—— source code
N (SCS & local working copy)

_ config

xml

Advanced

' 4B School on

p - PARALLEL

Ta ke Home COMPUTING

» User Version Control Software
— Even if you do not work in a team

¢ git
» Consider continuous integration tools

CINECA

