Advanced
' School on
p PARALLEL
COMPUTING

Software Test and Analysis

Leonardo Mariani
University of Milano Bicocca

mariani@disco.unimib.it

CINECA \

CINECA

Advanced

f School on
: ~ad PARALLEL
Qu 3 | |ty COMPUTING

Process Qualities

Product Qualities

— Internal qualities (maintainability, ...)

— External qualities
e Performance
Usability
Correctness
Portability

Advanced
f School on

. PARALLEL
Quality Process .~ couriring

* activities + responsibilities
— focused primarily on ensuring adequate quality
— concerned with project schedule
— integral part of the development process

Quality Speed Efficiency

CINECA \

What Activities?

Product e

Service
Rental Services

VDB Tx I/I; '|
"
4 GPS Rx GROUND

GPS Rx AN\N\\\\ STATION

requirements

Non-Functional

Requirements

Tv‘l\ nic H ‘:”\“

regulations

customer

specification

Key Principle of Quality Planning

cost of faults

error detect the f:

v v

Today you will see some
practices and tools that might

help you increasing the
effectiveness of V&V activities

time

cost of faults

error detect the fault

v v

time

Testing and Analysis

Static Dynamic

Analysis \ {Analysis

observe

build &
compile

(compiled) &

ANALYSIS

__

expected
input output output

j\> (compiled) j\>

TESTING

 Why Static Analysis?

— corner cases hard to execute

* 1f ((currentHour>23) && (isLeapYear))
{..do something terribly wrong..}

— prevention
» check if variables are always initialized before use

* Why Dynamic Analysis?

— Easy to execute but hard to fail bugs
* Memory leak: allocate memory without freeing it

* Why Testing?
— Main approach to check correctness

— Most intuitive way to compare the behavior of a
program wrt an expectation

Advanced
| 4B School on

Our Plan N\ ciririne
e Program Analysis
— Static Analysis
e cppCheck

— Dynamic Analysis
e Valgrind
e Testing
— Unit testing
e Boost unit tests
— Mocking
e G(oogle)Mock
— Coverage
® gCcov

CINECA

Why Program Analysis?

Exhaustively check properties that are difficult to test
— Faults that cause failures

* rarely
* under conditions difficult to control

Why Automated Analysis?

Manual program inspection effective in finding faults difficult
to detect with testing

But humans are not good at

— repetitive and tedious tasks

— maintaining large amounts of detail

Automated analysis replace human inspection for some
classes of faults

Advanced
r School on
S>amf PARALLEL
COMPUTING

Static vs dynamic analysis

e Static analysis

— eXxamine program source code
e examine the complete execution space
e but may lead to false alarms

e Dynamic analysis

e no inf PowerManager::PowerManager(IMsgSender* msgSender)
: msgSender_(msgSender) { }

void PowerManager::SignalShutdown()

{

msgSender_->sendMsg("shutdown()");
i S

Rule-Based Static Analysis
(of source code)

RULES
** correctness rules **

** stylistic rules **

4

" o

STATIC

=

ALARMS
** violations of
correctness rules**

** violations of stylistic

rules **

4

In some domains the code must comply to a standard set of rules
e.g., MISRA in the automotive domain

Advanced

7 PARALLEL
Example N OMPUTING

e cppCheck

— open source static analysis tool for C/C++

e Poco C++ Library

— Library for building C++ network-applications

CINECA

Advanced
| 4B School on

e PARALLEL
COMPUTING

An Experience from a Real Case:
Checking MISRA Rules

214 rules dedicated to development of better
and more reliable automotive software

CINECA

Advanced
School on
PARALLEL
COMPUTING

e 36.850 rule violations

Distribution of the Violations per Rule

7000

6000

5000

9 €T-Y00TZVYUSIN

0T 0Z-700ZVYSIN

LT0-VYSIN

S ST-¥00TVYSIN

S €T-Y00TZVYUSIN

- 4T YT-v00ZVYSIN

- T TPT-700ZVYSIN

- S 0Z-700TVYSIN

- 976T-00TVYSIN

- 0T ZT-v00TVYSIN

1T 02-700ZVYSIN

THO-VYSIN

- 7 ST-00TVYSIN

- ¥ 6T-P00TVYSIA

- 17 L-¥00TVYSIN

B € S-700TVYHSIN

9 T TT-¥00ZVYSIN

BT ZT-¥00TVYHSIN

S 6T-Y00TZVYUSIN

T €T-¥00ZVYUSIN

S/ €T-¥00CVYSIN

- 27T 0T-¥00ZVYSIN

- € 9T-700ZVYSIN

£ T79-002vHSIN

T TT-5002vYSIN

¥ TT-¥00TVYSIA

- 1T TT0T-700ZVYSIN

- 8 PT-700TVYSIN

9 0T-¥00TZVYSIN

e T 0Z-700TVYSIN

0T ¥T-7O0ZVASIN

9 T ZT-¥00ZVYSIN
g1 0T-¥00CVYSIN

- 9 T 0T-v00TVYSIN

- 4T 0T-¥00ZVYSIN

- S CT-700TVYSIN

- [TZT-¥00TVYSIN

6 YT-FO0ZVYHSIA

4000

3000

2000

1000

e e——— e T 0T-700ZVYSIN

o

CINECA

Advanced
School on
Distribution of the Violations per Category COMPUTING
9000
8000
7000 -
6000 -
5000 A
4000 -
3000 A
2000 -
1000 - I I I
o I m =
QS)) S) & S S o S S Q> QS
@\o g\\o #o° «*Q 6,;,\0 é\o"\ ;_}o‘\ -C<>° .s‘&’} ¥ «*'8\ ,&Q’ # & & & & L
& o & & & &S é,‘o & d° & N & b°° N £ 5 &
s & < K F L ¥ s & & F & ¢ F K
& ¢ $ & 0 F & & ¢ & & & o
S R & Q L & 8 S S S S J
oC & & & X o C < o & o
& 5 N S] &« N
& \ a}"b (b Q,Q 0\0 ®Q (9\'
i{\& «\ e ¢ R @"
v & ?
CINECA \

Pareto Analysis

Top 11 Rules

7000
6000
5000

4000

3000

2000

Ill-

. -.L
0

2 N o7
3 ; Y '\' ¥ %
S S S > S ¥ i S
> S > S N N N N Y
\gl \gl \o (_gy

&

Top 6 Categories

9000

8000 -

7000 A

6000 -

5000 -

4000 -
3000 -
2000 -
1000 -

Arithmetic type Control flow Functions Types Expression Language extensions
conversion

Top 11 Rules

MISRA2004-10_1_a Arithmetic type conversion
Avoid implicit conversions between signed and unsigned integer types

MISRA2004-16_10 Functions
If a function returns error information, then that error information shall be tested

MISRA2004-6_3 Types
typedefs that indicate size and sighedness should be used in place of the basic types

MISRA2004-14 9 Control Flow
if' and 'else' should be followed by a compound statement

MISRA2004-2_4 Language Extensions
Sections of code should not be commented out

MISRA2004-13_2 Control Statement Extensions
Tests of a value against zero should be made explicit, unless the operand is effectively
Boolean

Top 11 Rules

MISRA2004-12_7 Expressions
Bitwise operators shall not be applied to operands whose underlying type is signed

MISRA2004-14 7 Control Flow
A function shall have a single point of exit at the end of the function

MISRA2004-23 Declarations and definitions
Make declarations at file scope static where possible

MISRA2004-12_5 Expressions
The operands of a logical && or | | shall be primary-expressions

MISRA2004-20_3 Standard Libraries
The validity of values passed to library functions shall be checked

Advanced

’ School on
PARALLEL

- . S’
COmpleX|ty Metrics COMPUTING
(static analysis)

e Code Complexity = how hard is to maintain,
test, debug, ... the software

e Thus do no write complex code!

How to Measure Complexity?

CINECA

Advanced
| 4B School on

. PARALLEL
Code Complexity ™\~ comrurin

e No single measure
— Cyclomatic complexity = complexity of decisions in
a function
e CC< 10 from McCabe

— LOCs = number of lines of code in a function
e Loc <200 from the literature

— MaxDepth = the nesting level of code blocks in a
function

e MD < 5 from the literature

CINECA

Advanced

' 4B School on

: : PARALLEL
DynamlC AnalySIS N COMPUTING

Easy to execute
but hard to fail
cases:

- Memory Leak
- Data races

Program

m

Do you see any fault in this piece of
code?

. . Heap block overrun
void f(VOId) { - sporadic failures

int* x = malloc(10 * si
x[10] = 0;

Memory leak

- Slow down and crashes in long
running executions

Advanced

| 4B School on
(Dynamic) Memory = compuTinG

Analysis

allocat Unallocated
(unwritable and unreadable) T

deallocate

|
Allocated and uninitialized deallocate)A Allocated and initialized
(writable, but unreadable) (readable and writable)

initialize

CINECA

Data Race

int main()

#include <thread>
#include <iostream>
#include <vector>

unsigned const increment_count=2000000;
unsigned const thread _count=2;

unsigned i=0;

void func()

{

for(unsigned c=0;c<increment_count;++c)

What is the output of this program?

{

std::vector<std::thread> threads;
for(unsigned c=0;c<thread_count;++c)

{
threads.push_back(std::thread(func));

}

for(unsigned c=0;c<threads.size();++c)

{
threads[c].join();

}

std::cout<<thread_count<<" threads, Final i="<<I|
<<”, increments="<<(thread_count*increment_count)
<<std::endl;

2 threads, Final i=2976075, increments=4000000

2 threads, Final i=3097899, increments=4000000

2 threads, Final i=4000000, increments=4000000
2 threads, Final i=3441342, increments=4000000
2 threads, Final i=2942251, increments=4000000

#include <thread>
#include <iostream>
#include <vector>

Data Race

int main()

{

unsigned const increment_count=2000000;

unsigned const thread count=2;

unsigned i=0;

void func()

{

}

for(unsigned c=0;c<increment_count;++c)

{

}

++i;

)

std::vector<std::thread> threads;
for(unsigned c=0;c<thread_count;++c)
{

threads.push_back(std::thread(func));

}

for(unsigned c=0;c<threads.size();++c)

{
threads[c].join();

}

std::cout<<thread_count<<" threads, Final i="<<I|
<<”, increments="<<(thread_count*increment_count)
<<std::endl;

Data races can compromise the correctness of the program!

Serious problem in concurrent (and long running) software

Simple lockset analysis: example

Thread | Program trace | Locks held | Lockset(x)

| 0 | {lcki, (ck2} INIT:all locks for x

Advanced

School on

PARALLEL
Exam pl \ COMPUTING

e \alGrind

— provides several dynamic analysis tools
e Memcheck most popular tool

— Compile with -g

CINECA \

Advanced
School on
PARALLEL
COMPUTING

Testing

Advanced
' 48 School on
e PARALLEL
" COMPUTING

Testing Levels

expected
input output output
. Q/ Program Q/ o o0
: : . , system
unit testing integration testing
icesting

II
——

Test Case Implementation

CINECA

e To automate testing we need

— driver
— stubs
— oracles

e *Unit (e.g., Gunit, Boot unit testing,

QTUnit): framework that
supports development of

— drivers and
— Oracles

Advanced

| 4B School on
v PARALLEL
COMPUTING

STUB STUB

interacti:k‘

component
under test

ORACLE

s
- ‘Q‘Q{J o ;‘
cases S
DRIVER
*UNIT

A Sample BOOST Test Case

int add(inti, intj){returni+j;}

BOOST AUTO_TEST CASE(my_test)

{

// seven ways to detect and report the same error:
BOOST_CHECK(add(2,2)==4); // #1 continues on error
BOOST_REQUIRE(add(2,2)==4); // #2 throws on error
if(add(2,2)!=4)

BOOST_ERROR("Ouch..."); // #3 continues on error
if(add(2,2)!=4)

BOOST_FAIL("Ouch..."); // #4 throws on error
if(add(2,2) !=4) throw "Ouch..."; // #5 throws on error
BOOST_CHECK_MESSAGE(add(2,2) ==4, // #6 continues on error

"add(..) result: " << add(2,2));
BOOST CHECK_EQUAL(add(2,2),4); // #7 continues on error

}

Advanced

f School on

Examp|e) N = compuTING

e BOOST Unit testing with Eclipse CDT

CINECA \

Advanced

| 4B School on

e PARALLEL
Stub COMPUTING
* *Unit does not support stubs
— testers must manually develop
them
— create stubs that provide STUB STUB

different results to different test

1
|
I
|
1
|
cases may be complex and -
time-consuming ; @\'
— faulty stubs reduce productivity ! interacﬁ:k‘ /ﬁ:racﬁon :5
1
|

and quality of your testing

*Unit allows to specify conditions on 1 \,5ck component ORACLE
values returned fromthe object T undettest (- - - - - - - -
under test, but does not allow to
specify the expected interactions; -~~~ """ """ T T AT T T T T T T T T T T T T T T

— e.g., we want to verify thata request result
ShoppingCart removes 2 .
items from a warehouse when _
a cart with 2 items is purchased! ¥, @\

1

|

I

|

1

|

(note that you do not have the |[fesr] #BF , |
warehouse) Tl e [; '
cases st - i !

|

1

|

I

I
I
I
: DRIVER ORACLE
I
I

CINECA e, e e e e = 1

Advanced

f School on

Examp|e) > compuTinG

e Gmock + BOOST Unit Testing with Eclipse CDT

CINECA \

Advanced

P~/ FARALLEL
RegreSSiOn COMPUTING

e Yesterday it worked, today it doesn’t
- | was fixing X, and accidentally broke Y
- That bug was fixed, but now it’ s back
e Tests must be re-run after any change
- Adding new features
- Changing, adapting software to new conditions
- Fixing other bugs
e Regression testing can be a major cost of
software maintenance
- Sometimes much more than making the change

CINECA

Advanced

r School on
PARALLEL
The Oracle Problem ~ COMPUTING

e |t is not always possible to predict the result of
a test

e E.g., what is the expected result of an

e HPC system that simulates and plan delivery of millions
of items for FedEx?

e HPC system that processes billion of transactions for
NASDAQ stock exchange?

e HPC Graphic technology used at Dreamworks?
e HPC fluid dynamics simulations carried on at Whirpool?

CINECA

Advanced

(\a PARALLEL
Weak Oracles COMPUTING

* You do not know the precise result of a simulation
but you may know the properties that must hold for

the simulation
— Every item must be part of a travel plan

— The total money in the stock does not change as a
consequence of stock exchanges

— Items hit by a light cannot be darker than the original item

— The results obtained assuming fluid incompressibility must
not be ... than the results obtained with the simulation

CINECA

Advanced

’ School on
V PARALLEL

Metamorphic Testing COMPUTING

* You do not know the precise result of a simulation
but you may know properties that relate the result
of a simulation with the result of another
simulation

— If all the items have been scheduled for shipping in
simulation X, all the items must be also scheduled for
shipping in all the simulations consistent with X that have
to ship a smaller number of items

— Given the brightness of an item in simulation X, the same
item cannot be darker in any simulation consistent with X
that uses a stronger light

CINECA

Advanced
f School on

PARALLEL
Executable Models = omPUTING

e You have an executable model of your
implementation that can be used as an oracle
— E.g., MatLab or Mathematica model

Test Inouts Program Program
Pt - Output

compare

ALpg.el = i
o Model
AgrpBangelp 1] = ALspegRangelr 1D - Aepg s) Mo seetem10d 17]
L - P - IdentityMatrix[n]:
2 - Table[
P - P

Output
For[i-1,
e

CINECA \ Model

Advanced

f School on
e PARALLEL
COMPUTING

Did | Write Enough Test Cases?

CINECA \

Advanced

| 4B School on

PARALLEL

l Why structural = compurinG
(code-based) testing?

“What is missing in our test suite?”

= - | Judging test suite thoroughness based on
Q the structure of the program itself

 |If part of a program is not executed by any test case in
the suite, faults in that part cannot be exposed

« Butwhat's a “part”?

— Typically, a control flow element or combination: e.g.,
Statements, Branches
CINECA

Advanced

| 4B School on

PARALLEL

No guarantees = compuring

Executing all control flow elements does not
guarantee finding all faults

* The state may not be corrupted when the statement is executed with
some data values

— E.g., a/b generates a failure only if b ==

« Corrupt state may not propagate through execution to eventually
lead to failure

— E.g., trainSpeed = 3 X 10"8 m/s generates a problem only if the speed
of the train is used in a computation

 What is the value of structural coverage?

— Increases confidence in thoroughness of testing by removing obvious
inadequacies

CINECA

Advanced

| 4B School on
-

PARALLEL

Structural testing COMPUTING
in practice o

coverage data ' |nterpret the paths
D runtests and get = P

results
coverage data
Tests q> — Dead code

Flaws in
add test cases the test

suite

mr,r

« Attractive because automated
— coverage measurements are convenient progress indicators
— sometimes used as a criterion of completion

CINECA

Advanced

’ School on
V PARALLEL

Statement testing COMPUTING

* Adequacy criterion: each statement must
be executed at least once

« Coverage:
executed statements
statements

» Rationale: a fault in a statement can only
be revealed by executing the faulty
statement

CINECA

Example

Ty =
{“ »” , “testn ,

“test+case%1Dadequacy’}
17/18 = 94% Stmt Cov.

T, =
{“adequate+test

%0Dexecution%7U"}
18/18 = 100% Stmt Cov.

T, =

{“%3D”, “%A”’ “a+b”,
“test”}

18/18 = 100% Stmt Cov.

int cgi__decode (char *encoded , char *decoded)

v
{char *eptr = encoded ; @
char *dptr = decoded ;
intok = 0;

v

[while (veptr) { (B)- N

False)VTrueﬁv

charc; @

C = *eptr;

if (c=="+"{

hFaIseA True \v
})
FalseJ‘ True

[3

else

}

*dptr = *eptr; J

®

int digit _low = Hex_ Values [*(++eptr)];
if (digit_high ==-1 || digit_low == -1) {

int digit _high = Hex _Values[*(++eptr)]; ﬂ

*dptr = "\0';

return ok ;
}

’

FalsegL
Truej

else { @ ok=1; @
*dptr = 16 * digit_high +) J
digit_low;

Y

:)
v

++dptr;

+ +ept : @ //
{ ptr;

}

o\

“All statements’ can miss some cases

« Complete statement
coverage may not imply
executing all branches in
a program

e Example:

- Suppose block F were
missing
- Statement adequacy

would not require false
branch from D to L

T3 =
{u n, “+%OD+%4J”}

100% Stmt Cov.
No false branch from D

*dptr ="\0';
return ok ;

int cgi__decode (char *encoded , char *decoded)

v
{char *eptr = encoded ;
char *dptr = decoded ;
intok = 0;
< while (*eptr) { -
False———~ “Trueﬁ'
[charc;
‘ C = *eptr;
if (c=="+"{
False — A True

(elseif (c=="%"){ (D)
ﬁFaIseJ\ True }

4

*dptr ="
}

*dptr = *eptr;

Else { C} fntdigit_high = Hex_Values [*(++eptr)]; @
i J

int digit_low = Hex_Values [*(++eptr)];
f (digit_high == -1 || digit_low ==-1) {

V/;FalseJ\True
Y

else {

*dptr = 16 * digit_high +

digit_low;

}

Branch testing

e Adequacy criterion: each branch (edge in the CFG)
must be executed at least once

* Coverage:
executed branches
branches

152211

T,={"", "+%0D+%4)"}
100% Stmt Cov. 88% Branch Cov. (7/8 branches)

Tz — {“%3D”’ “%A”’ “a+b”’ “test”}
100% Stmt Cov. 100% Branch Cov. (8/8 branches)

Advanced

| 4B School on

PARALLEL

Statements vs brancheds. = cowririne

Covering all % Covering all

statements < branches

CINECA

Advanced

f School on

Example N\ = ompuTING

e Collecting coverage information with gcov

CINECA \

Advanced

| 4B School on

e PARALLEL
COMPUTING

DID | WRITE THE RIGHT TEST
CASES?

CCCCCC

Advanced
| 4B School on

. . S PARALLEL
Functional testing COMPUTING

e Functional testing: Deriving test cases from program
specifications

e Functional refers to the source of information used in test case
design, not to what is tested

e Also known as:
— specification-based testing (from specifications)

— black-box testing (no view of the code)

e Functional specification = description of intended
program behavior

— either formal or informal

CINECA

Advanced

| 4B School on

| . e PARALLEL
Systematic vs COMPUTING

Random Testing

e Random (uniform):
— Pick possible inputs uniformly
e Systematic (non-uniform):
— Try to select inputs that are especially valuable

— Usually by choosing representatives of classes that are
likely to fail often or not at all

e Functional testing is systematic testing

CINECA

Advanced

| 4B School on
Why Not Random? = compuTinG

e Non-uniform distribution of faults
e Fxample:

. —b+ /b2 — 4ac
- 2a

Assume that fault is an incomplete implementation logic:
Program does not properly handle the case in which

b? - 4ac =0 and a=0
Failing values are sparse in the input space — needlesin a

very big haystack. Random sampling is unlikely to choose
a=0.0 and b=0.0

CINECA

The space of possible input values

(the haystack)

Systematic Partition Testing

B Failure (valuable test case)

[No failure

00
OO

00
00

00
OO

00
OO

00
00

00
OO

00
00

00
OO

00
OO

00
00

00
OO

00
OO

00
OO

00
OO

00
00

00
OO

00
OO

00
OO

00
OO

00
00

Failures are sparse
in the space of
possible inputs ...

... but dense in some
parts of the space

00

%D o0 OO0 00
o0 O 000000

OO

00
OO

00
OO

00
OO

00
OO

HE
I

00
OO

00
OO

00
OO

00
OO

00
OO

00
OO

00
O

00
OO

00
OO

00
OO

If we systematically test some
cases from each part, we will
include the dense parts

00
OO

00
OO

00
OO

00
00

00
00

00
OO

00
OO

00
00

00
00

00
OO

00
OO

00
00

00
00

00
OO

00
OO

00
00

00
OO

Functional testing is one way of
drawing pink lines to isolate

regions with likely failures

Advanced

’ School on
PARALLEL

Steps: From specification ™\ _coururi
to test cases

e 1. Decompose the specification

— If the specification is large, break it into independently testable
features to be considered in testing

e 2.Select representatives
— Representative values of each input, or

— Representative behaviors of a model

e 3. Form test specifications

— Typically: combinations of input values, or model behaviors

e 4. Produce and execute actual tests

CINECA

Take Home

Static Dynamic

Analysis \ ,Analysis

observe

build &
compile

(compiled) 5

ANALYSIS

__

expected
input output output

:1> (copied) j\> O <:> O

TESTING

Take Home

Rule-Based Memory

(cppCheck)\ , Analysis +

Metrics DRD
(Valgrind)

build &
compile S observe
(compiled)
Unit testing expected
(Boost) input output output
Mocking VeI
(GMock) f :> (compiled) j‘> e 0

Coverage
(gcov)

