
Computing with
OpenACC Directives

Francesco Salvadore – f.salvadore@cineca.it
SuperComputing Applications and Innovation Department

BASICS

Common Accelerator

Architecture Themes

• Separate device memory

• Many-cores

• Multithreading

• Vectors

• In-order instruction issue

• Memory strides matter

• Smaller caches

• NVIDIA GPU

• ATI GPU

• Intel MIC

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

OpenACC friendly Disclaimer

OpenACC

Directives

Easily Accelerate

Applications

OpenACC does not make GPU programming easy.

(...)

GPU programming and parallel programming is not

easy. It cannot be made easy. However, GPU

programming need not be difficult, and certainly

can be made straightforward, once you know how

to program and know enough about the GPU

architecture to optimize your algorithms and data

structures to make effective use of the GPU for

computing. OpenACC is designed to fill that role.

(Michael Wolfe, The Portland Group)

OpenACC Directives

Program myscience

... serial code ...

!$acc parallel loop

do k = 1,n1

do i = 1,n2

... parallel code ...

enddo

enddo

!$acc end parallel loop

...

End Program myscience

CPU GPU

Simple Compiler directives

Compiler Parallelizes code

Works on many-core GPUs &

multicore CPUs

OpenACC

Directive

OpenACC – Directive Based Approach

• Directives are added to serial source code

– Manage loop parallelization

– Manage data transfer between CPU and GPU memory

• Works with C, C++, or Fortran

– Can be combined with explicit CUDA C/Fortran usage

• Directives are formatted as comments

– They don't interfere with serial execution

• Maintaines portability of original code

Familiar to OpenMP

Programmers

main() {

double pi = 0.0; long i;

#pragma omp parallel for reduction(+:pi)

for (i=0; i<N; i++)

{

double t = (double)((i+0.05)/N);

pi += 4.0/(1.0+t*t);

}

printf(“pi = %f\n”, pi/N);

}

CPU

OpenMP

main() {

double pi = 0.0; long i;

#pragma acc parallel loop reduction(+:pi)

for (i=0; i<N; i++)

{

double t = (double)((i+0.05)/N);

pi += 4.0/(1.0+t*t);

}

printf(“pi = %f\n”, pi/N);

}

CPU GPU

OpenACC

• Easy: Directives are the easy path to accelerate compute

intensive applications

• Open: OpenACC is an open GPU directives standard,

making GPU programming straightforward and portable

across parallel and multi-core processors

• Powerful: GPU Directives allow complete access to the massive

parallel power of a GPU

OpenACC
The Standard for GPU Directives

Focus on Exposing Parallelism

With Directives, tuning work focuses on exposing

parallelism, which makes codes inherently better

Example: Application tuning work using directives for new Titan system at ORNL

S3D

Research more efficient
combustion with next-
generation fuels

CAM-SE
Answer questions about specific
climate change adaptation and
mitigation scenarios

• Tuning top 3 kernels (90% of runtime)
• 3 to 6x faster on CPU+GPU vs. CPU+CPU
• But also improved all-CPU version by 50%

• Tuning top key kernel (50% of runtime)
• 6.5x faster on CPU+GPU vs. CPU+CPU
• Improved performance of CPU version by 100%

OpenACC Specification and Website

• Full OpenACC 1.0 Specification available online

• OpenACC 2.0a revised on August 2013

http://www.openacc-standard.org

• Novelty in OpenACC 2.0 are significant

– OpenACC 1.0 maybe not very mature...

• Some changes are inspired by the development of

CUDA programming model

– but the standard is not limited to NVIDIA GPUs: one

of its pros is the interoperabilitybetween platforms

http://www.openacc-standard.org/

OpenACC: Implementations and Vendors

• Standard implementation

– CRAY provides full OpenACC 2.0 support in CCE 8.2

– PGI does not support OpenACC 2.0, yet

– GNU implementation is forthcoming (expected in 5.0

release)

• We will focus on PGI compiler

– 30 days trial license useful for testing

• PGI:

– all-in-one compiler, easy usage

– sometimes the compiler tries to help you...

– but also a constraint on the compiler to use

PGI compilers

• Check the feature you need!

subroutine saxpy(n, a, x, y)
real :: x(:), y(:), a
integer :: n, i

$!acc parallel loop
do i=1,n

y(i) = a*x(i)+y(i)
enddo

$!acc end parallel loop
end subroutine saxpy

...
! Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

void saxpy(int n,

float a,

float *x,

float *restrict y)

{

#pragma acc parallel loop

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

...

// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

A Very Simple Exercise: SAXPY
SAXPY in C SAXPY in Fortran

Directive Syntax

• C
#pragma acc directive [clause [,] clause] …]

Often followed by a structured code block

• Fortran
!$acc directive [clause [,] clause] …]

Often paired with a matching end directive surrounding a

structured code block
!$acc end directive

OpenACC parallel Construct

• Programmer identifies a block of code suitable for

parallelization

• and guarantees that no dependency occurs across iterations

• Compiler generates parallel instructions for that loop

• e.g., a parallel CUDA kernel for a GPU

#pragma acc parallel loop

for (int j=1;j<n-1;j++) {

for (int i=1;i<n-1;i++) {

A[j][i] = B[j][i] + C[j][i]

}

}

First let us focus on the

simplest usage,

combining parallel
and loop directives

Another approach: kernels construct

• The kernelsconstruct expresses that a region may
contain parallelism and the compiler determines what

can be safely parallelized

!$acc kernels

do i=1,n

a(i) = 0.0

b(i) = 1.0

c(i) = 2.0

end do

do i=1,n

a(i) = b(i) + c(i)

end do

!$acc end kernels

kernel 1

kernel 2

The compiler

identifies 2 parallel

loops and generates

2 kernels

C
#pragma acc kernels [clause …]

{ structured block }

OpenACC parallel vs. kernels

parallel
• Requires analysis by

programmer to ensure safe

parallelism

• Straightforward path from

OpenMP

• Mandatory to fully control the

different levels of parallelism

• Implicit barrier at the end of

the parallel region

kernels
• Compiler performs parallel

analysis and parallelizes what it

believes safe

• Can cover larger area of code with

a single directive

• Please, write clean codes and add

directives to help the compiler

• Implicite barrier at the end and

between each kernel (e.g. loop)

Which is the best?

C tip: the restrict keyword

• Declaration of intent given by the programmer to the compiler

Applied to a pointer, e.g.

float *restrict ptr

Meaning: “for the lifetime of ptr, only it or a value directly derived

from it (such as ptr + 1) will be used to access the object to which

it points”*

• Limits the effects of pointer aliasing

• OpenACC compilers often require restrict to determine

independence between the iterations of a loop

– Crucial when adopting kernelsdirective, but also for other

optimizations

– Note: if the programmer violates the declaration, the behavior is

undefined

Complete SAXPY example code

• Use restrict to help the compiler

when adopting kernels

– Apply a loop directive

• Be careful: restrict is C99 but

not C++ standard

#include <stdlib.h>

void saxpy(int n,

float a,

float *x,

float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

y[i] = a * x[i] + y[i];

}

int main(int argc, char **argv)

{

int N = 1<<20; // 1 million floats

if (argc > 1)

N = atoi(argv[1]);

float *x = (float*)malloc(N * sizeof(float));

float *y = (float*)malloc(N * sizeof(float));

for (int i = 0; i < N; ++i) {

x[i] = 2.0f;

y[i] = 1.0f;

}

saxpy(N, 3.0f, x, y);

return 0;

}

*restrict:

“I promise y does not alias

x”

Loop Construct

C
#pragma acc loop [clause …]

{ for block }

Fortran
!$acc loop [clause …]

{ do block }

Applies to a loop which must immediately follow this directive

Describes:

type of parallelism

loop-private variables, arrays, and reduction operations

We already encountered it combined with the parallel directive

combining kernels and loop is also possible but limits the capability of

kernels construct (i.e. extending to wide regions of code)

Independent clause
• In a kernels construct, the independent loop clause

helps the compiler in guaranteeing that the

iterations of the loop are independent wrt each

other

• E.g., consider m>n
#pragma acc kernels

#pragma acc loop independent

for(int i;i<n;i++)

c[i] = 2.*c[m+i];

• In parallel construct the independent clause is

implied on all loop directives without a seq clause

Seq and collapse
• The seq clause specifies that the associated loops have to be

executed sequentially on the accelerator

• Beware: the loop directive applies to the immediately following

loop
#pragma acc parallel

#pragma acc loop collapse(2) // independent is automatically enforced

for(int i;i<n;i++)

for(int k;k<n;k++)

#pragma acc loop seq

for(int j;j<n;j++)

c[i][j][k] = 2.*c[i][j+1][k];

• collapse(<n_loops>) clause allows for extending loop to tightly

nested loops

– but the compiler may decide to collapse loops anyway, check the

report!

Loop reductions

• The reductionclause on a loop specifies a reduction operator

on one or more scalar variables

– For each variable, a private copy is created for each thread

executing the associated loops

– At the end of the loop, the values for each thread are combined

using the reduction clause

• Reductions may be defined even at parallel level (advanced

topic)

• Common operators are supported:

+ * max min && ||

Finding Parallelism in your code

• (Nested) for loops are best for parallelization

• Large loop counts needed to offset GPU/memcpy overhead

• Iterations of loops must be independent of each other

– To help compiler: restrict keyword (C), independent clause

• Compiler must be able to figure out sizes of data regions

– You can use directives to explicitly control sizes (see next)

• Pointer arithmetic should be avoided if possible

– Use subscripted arrays, rather than pointer-indexed arrays.

• Function calls within accelerated regions must be handled with

care

Environment and Conditional

Compilation

ACC_DEVICE device Specifies which device

type to connect to.

ACC_DEVICE_NUM num Specifies which device

number to connect to.

_OPENACC Preprocessor directive for

conditional compilation.

Set to OpenACC version

Runtime Library Routines

Fortran

use openacc

#include "openacc_lib.h"

acc_get_num_devices

acc_set_device_type

acc_get_device_type

acc_set_device_num

acc_get_device_num

acc_async_test

acc_async_test_all

C

#include "openacc.h"

acc_async_wait

acc_async_wait_all

acc_shutdown

acc_on_device

acc_malloc

acc_free

Selecting the device
• Device selection can be achieved by OpenACC runtime library routines

– device type: acc_device_cuda/acc_device_nvidia for PGI

– GPUs are numbered starting from 0 (PGI)

#ifdef _OPENACC

int mygpu, myrealgpu, num_devices; acc_device_t my_device_type;

#ifdef CAPS

my_device_type = acc_device_cuda;

#elif PGI

my_device_type = acc_device_nvidia;

#endif

if(argc == 1) mygpu = 0; else mygpu = atoi(argv[1]);

acc_set_device_type(my_device_type) ;

num_devices = acc_get_num_devices(my_device_type) ;

fprintf(stderr,"Number of devices available: %d \n ",num_devices);

acc_set_device_num(mygpu,my_device_type);

fprintf(stderr,"Trying to use GPU: %d \n",mygpu);

myrealgpu = acc_get_device_num(my_device_type);

fprintf(stderr,"Actually I am using GPU: %d \n",myrealgpu);

if(mygpu != myrealgpu) {fprintf(stderr,"I cannot use the requested GPU: %d\n",mygpu);exit(1); }

#endif

Compiling and running (PGI)

• Example of compilation:
pgcc –acc=noautopar -ta=nvidia -Minfo=accel –o saxpy_acc saxpy.c -DPGI

noautopar is needed to avoid automatic parallelization of loops

• Compiler output (-Minfo=accel):

– For the hands-on, compile using the makefile and run by typing

• make pgi

• ./laplace2d_acc_pgi N (N is the GPU number to use, 0 1 2 ...)

pgcc -acc -Minfo=accel -ta=nvidia -o saxpy_acc saxpy.c

saxpy:

8, Generating copyin(x[:n-1])

Generating copy(y[:n-1])

Generating compute capability 1.0 binary

Generating compute capability 2.0 binary

9, Loop is parallelizable

Accelerator kernel generated

9, #pragma acc loop worker, vector(256) /* blockIdx.x threadIdx.x */

CC 1.0 : 4 registers; 52 shared, 4 constant, 0 local memory bytes; 100% occupancy

CC 2.0 : 8 registers; 4 shared, 64 constant, 0 local memory bytes; 100% occupancy

Submission scripts

#!/bin/bash

#PBS -N laplace_acc

#PBS -o job.out

##PBS -e job.err

#PBS -j oe

#PBS -l walltime=00:10:00

#PBS -l select=1:ncpus=1:ngpus=1:mpiprocs=1

#PBS -q debug

#PBS -A train_scA2014

##PBS -q R426809

module load pgi/14.1

cd $PBS_O_WORKDIR

DIR=001-laplace2D-accparallel

#DIR=002-laplace2D-kernels

#DIR=003-laplace2D-collapse

#DIR=004-laplace2D-data

#DIR=005-laplace2D-declare

#DIR=006-laplace2D-function

#DIR=007-laplace2D-withcuda

#DIR=008-laplace2D-dynamic

#DIR=009-laplace2D-c++

cd $DIR

./laplace2d_acc_pgi

Submission scripts

submit_acc.sh – submit_omp.sh – submit_mpiacc.sh

Example: Jacobi Iteration

• Iteratively converges to correct value (e.g. Temperature), by

computing new values at each point from the average of

neighboring points.

– Common, useful algorithm

– Example: Solve Laplace equation in 2D:

𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

Jacobi Iteration C Code

while (error > tol && iter < iter_max) {
error=0.0;

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

error = max(error, abs(Anew[j][i] - A[j][i]);
}

}

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}

iter++;
}

Iterate until converged

Iterate across matrix

elements

Calculate new value from

neighbors

Compute max error for

convergence

Swap input/output arrays

Note! This is an
didactic

implementation: the
second loop could be
avoided implementing
a 2-step iteration
A->Anew ; Anew->A

Base Exercise 0: OpenMP C Code

while (error > tol && iter < iter_max) {
error=0.0;

#pragma omp parallel for shared(m, n, Anew, A) reduction(max:error)
for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

error = max(error, abs(Anew[j][i] - A[j][i]);
}

}

#pragma omp parallel for shared(m, n, Anew, A)
for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}

iter++;
}

Parallelize loop across

CPU threads

Parallelize loop across

CPU threads

Exercises: More Compiling Instructions

• To compile, first load environment variables for the compiler
module load pgi/14.10

• Then, use the provided makefile, e.g.
> cd 000-laplace2D-openmp
C:

 make pgi

Take the elapsed times using 1 or more threads
• To run using OpeMP, specify the number of threads

– setenv OMP_NUM_THREADS 6 if using tcsh

– export OMP_NUM_THREADS=6 if using bash

GPU startup overhead

• If no other GPU process running, GPU driver may be

swapped out

– Linux specific

– Starting it up can take 1-2 seconds

• Two options

– Run nvidia-smi in persistence mode (requires root privileges)

– Run “nvidia-smi –q –l 30” in the background

• Nvidia-smi should be running in persistent mode for these

exercises

Exercise 1: Jacobi Acc parallel

• Task: use acc parallel to parallelize the Jacobi nested loops

• Edit laplace2d.c

– In the 001-laplace2D-accparallel directory

– Add directives where needed

– Modify the Makefile to activate the acceleration

• PGI compiler

• Figure out the proper compilation commands (similar to SAXPY

example)

– Compile and run the OpenACC version and compare the

performances with that of OpenMP version, in the 000-
laplace2D-openmp

• compare the performances using OMP_NUM_THREADS=1 and

OMP_NUM_THREADS=4 or more

Exercise 1 Solution: OpenACC C

while (error > tol && iter < iter_max) {
error=0.0;

#pragma acc parallel loop reduction(max:error)
for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

error = max(error, abs(Anew[j][i] - A[j][i]);
}

}

#pragma acc parallel loop
for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}

iter++;
}

Execute GPU kernel for

loop nest

Execute GPU kernel for

loop nest

Exercise 1 Solution: OpenACC Fortran
do while (err > tol .and. iter < iter_max)
err=0._fp_kind

!$acc parallel loop reduction(max:err)
do j=1,m

do i=1,n
Anew(i,j) = .25_fp_kind * (A(i+1, j) + A(i-1, j) + &

A(i , j-1) + A(i , j+1))
err = max(err, Anew(i,j) - A(i,j))

end do
end do

!$acc end parallel loop

!$acc parallel loop
do j=1,m-2

do i=1,n-2
A(i,j) = Anew(i,j)

end do
end do

!$acc end parallel loop
iter = iter +1

end do

Generate GPU kernel for

loop nest

Generate GPU kernel for

loop nest

Exercise 1 Solution: C Makefile

PGCC = pgcc –acc=noautopar -ta=nvidia,time,cuda5.0,cc35 -Minfo=accel -O3

GCC = gcc -O3 #-Wall -Wextra

BIN = laplace2d_acc_pgi laplace2d_acc_caps

help:

@echo "Please specify the make target according to the compiler"

@echo "make pgi"

pgi: laplace2d.c

$(PGCC) -o laplace2d_acc_$@ $<

clean:

$(RM) $(BIN) __hmpp*

Exercise 1: Compiler output (C - PGI)

pgcc -acc -ta=nvidia -Minfo=accel -o laplace2d_acc laplace2d.c
main:

57, Generating copyin(A[:4095][:4095])
Generating copyout(Anew[1:4094][1:4094])
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary

58, Loop is parallelizable
60, Loop is parallelizable

Accelerator kernel generated
58, #pragma acc loop worker, vector(16) /* blockIdx.y threadIdx.y */
60, #pragma acc loop worker, vector(16) /* blockIdx.x threadIdx.x */

Cached references to size [18x18] block of 'A'
CC 1.3 : 17 registers; 2656 shared, 40 constant, 0 local memory bytes; 75% occupancy
CC 2.0 : 18 registers; 2600 shared, 80 constant, 0 local memory bytes; 100% occupancy

64, Max reduction generated for error
69, Generating copyout(A[1:4094][1:4094])

Generating copyin(Anew[1:4094][1:4094])
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary

70, Loop is parallelizable
72, Loop is parallelizable

Accelerator kernel generated
70, #pragma acc loop worker, vector(16) /* blockIdx.y threadIdx.y */
72, #pragma acc loop worker, vector(16) /* blockIdx.x threadIdx.x */

CC 1.3 : 8 registers; 48 shared, 8 constant, 0 local memory bytes; 100% occupancy
CC 2.0 : 10 registers; 8 shared, 56 constant, 0 local memory bytes; 100% occupancy

Exercise 1: Performance

Execution
Time (s) -

PGI

Time (s) -

CAPS

CPU 1 OpenMP thread 21.9 17.1

CPU 2 OpenMP threads 11.3 9.3

CPU 4 OpenMP threads 6.0 5.6

CPU 8 OpenMP threads 3.7 4.0

CPU 16 OpenMP threads 3.3 3.5

OpenACC GPU 30 33

2 eight-core Intel(R) Xeon(R) CPU E5-2687W @ 3.10GHz GPU: Nvidia Tesla K20s

accelerated?
NO!

Exercise 2: Jacobi Acc kernels

• Task: use acc kernels to parallelize the Jacobi loops

• For this simple case, no significant difference wrt acc

parallel

– but, try to understand the compiler report to be sure about what

the compiler is doing

• Edit laplace2d.c in the 002-laplace2D-kernels
directory

– any change in performances?

– actually, no significant change...

Ex. 2 Solution: OpenACC C

while (error > tol && iter < iter_max) {
error=0.0;

#pragma acc kernels loop reduction(max:error)
for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

error = max(error, abs(Anew[j][i] - A[j][i]);
}

}

#pragma acc kernels
for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}

iter++;
}

Execute GPU kernel for

loop nest

Execute GPU kernel for

loop nest

Exercise 3: Collapsing loops

• Look at the compiler report:

– GPUs work well when there is a large number of iterations

to be parallelized

– exploiting multiple loop nesting is crucial

• Use loop construct and collapse clause to optimize loops

– which loop is actually affected? why?

• Edit laplace2d.c in the 003-laplace2D-collapse

directory

– any change in performances?

Exercise 3: Performance

Execution
Time (s) -

PGI

Time (s) -

CAPS

CPU 1 OpenMP thread 21.9 17.1

CPU 8 OpenMP threads 3.7 4.0

OpenACC GPU-parallel 30 33

OpenACC GPU-collapse 27 30

2 eight-core Intel(R) Xeon(R) CPU E5-2687W @ 3.10GHz GPU: Nvidia Tesla K20s

Small
performance

gain. For PGI
noautopar is

crucial,
otherwise inner
loop is always
parallelized

What is going wrong?

• Add –ta=nvidia,time to compiler command line

Accelerator Kernel Timing data
001-laplace2D-kernels/laplace2d.c
main
69: region entered 1000 times

time(us): total=77524918 init=240 region=77524678
kernels=4422961 data=66464916

w/o init: total=77524678 max=83398 min=72025 avg=77524
72: kernel launched 1000 times

grid: [256x256] block: [16x16]
time(us): total=4422961 max=4543 min=4345 avg=4422

001-laplace2D-kernels/laplace2d.c
main
57: region entered 1000 times

time(us): total=82135902 init=216 region=82135686
kernels=8346306 data=66775717

w/o init: total=82135686 max=159083 min=76575 avg=82135
60: kernel launched 1000 times

grid: [256x256] block: [16x16]
time(us): total=8201000 max=8297 min=8187 avg=8201

64: kernel launched 1000 times
grid: [1] block: [256]
time(us): total=145306 max=242 min=143 avg=145

acc_init.c
acc_init
29: region entered 1 time

time(us): init=158248

66.5 seconds

66.8 seconds

4.4 seconds

8.3 seconds

Huge Data Transfer

Bottleneck!
Computation: 12.7 seconds

Data movement: 133.3 seconds

Basic Concepts

PCI Bus

Transfer data

Offload computation

For efficiency, decouple data movement and compute off-load

GPU

GPU Memory

CPU

CPU Memory

Excessive Data Transfers

while (error > tol && iter < iter_max) {
error=0.0;

...
}

#pragma acc parallel loop reduction(max:error)

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);
error = max(error, abs(Anew[j][i] - A[j][i]);

}
}

A, Anew resident on host

A, Anew resident on host

A, Anew resident on accelerator

A, Anew resident on accelerator

These copies

happen every

iteration of the outer

while loop!*

Copy

Copy

*Note: there are two #pragma acc kernels, so there are 4 copies per while loop iteration!

Golden rule: check the compiler report!

• The compiler tries to

minimize the CPU-GPU

data movements

• In the previous case

– in the first loop :

• A is copied in, from CPU

to GPU

• Anew is copied out, from

GPU to CPU

– in the second loop:

• Anew is copied in

• A is copied out

pgcc -acc -ta=nvidia -Minfo=accel
laplace2d.c
main:

57, Generating copyin(A[:4095][:4095])
Generating

copyout(Anew[1:4094][1:4094])
.........
69, Generating copyout(A[1:4094][1:4094])

Generating copyin(Anew[1:4094][1:4094])
.........

DATA MANAGEMENT

Explicit data control: the naive way

• It is possible to explicitely control the data movements at the

opening of the acc parallel regions using data clauses

#pragma acc parallel loop reduction(max:error) copyin(A) copyout(Anew)
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);
error = max(error, abs(Anew[j][i] - A[j][i]);

}
}

#pragma acc parallel loop copyin(Anew) copyout(A)
for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}

• But we cannot lower down the amount of copies because the scope of

the GPU variables is limited to the accelerated regions. What now?

Data Construct

Fortran
!$acc data [clause …]

structured block

!$acc end data

C
#pragma acc data [clause …]

{ structured block }

Manages explicitely data movements

Crucial to handle GPU data persistence

Allows for decoupling the scope of GPU variables from that of the

accelerated regions

May be nested

Data clauses define different possible behaviours

the usage is similar to that of data clauses in parallel regions

Data Clauses

copy (list) Allocates memory on GPU and copies data from host to

GPU when entering region and copies data to the host

when exiting region.

copyin (list) Allocates memory on GPU and copies data from host to

GPU when entering region.

copyout (list) Allocates memory on GPU and copies data to the host

when exiting region.

create (list) Allocates memory on GPU but does not copy.

present (list) Data is already present on GPU from another

containing data region.

and present_or_copy[in|out], present_or_create, deviceptr.

Array Shaping

• The compiler sometimes cannot determine the sizes of arrays

– you must specify them by using data clauses and array “shape”

– you may need just a section of an array

– sub-array syntax is allowed, in Fortran it is language-native

• C

#pragma acc data copyin(a[1:size]), copyout(b[s/4:3*s/4+1])

• Fortran

!$pragma acc data copyin(a(1:size)), copyout(b(s/4:s))

• Data clauses can be used on data, kernels or parallel

Update Executable Directive

Fortran
!$acc update [clause …]

Clauses:

host(list) or self(list)

device(list)

C

#pragma acc update [clause …]

Used to synchronize data among existing data when they change

in the corresponding copy (e.g. update device copy after host copy

changes)

Note: subarray may be updated but updated memory must be

contiguous

Moves data from GPU to host, or host to GPU

Data movement can be conditional and asynchronous

Exercise 4: Jacobi Data Directives

• Task: use acc data to minimize transfers in the Jacobi

example

• Start from given laplace2d.c In the 002-laplace2d-data
directory

– Add directives where needed

• Q: What speedup can you get with data + kernels directives?

– Versus 1 CPU core? Versus 8 CPU cores?

Exercise 4 Solution: OpenACC C

#pragma acc data copy(A), create(Anew)
while (error > tol && iter < iter_max) {
error=0.0;

#pragma acc parallel loop reduction(max:error)
for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

error = max(error, abs(Anew[j][i] - A[j][i]);
}

}

#pragma acc parallel loop
for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}

iter++;
}

Copy A in at the beginning of

loop, out at the end. Allocate

Anew on accelerator

Exercise 4: Performance

Execution
Time (s) -

PGI

Time (s) -

CAPS

CPU 1 OpenMP thread 21.9 17.1

CPU 8 OpenMP threads 3.7 4.0

OpenACC GPU-parallel 30 33

OpenACC GPU-collapse 30 30

OpenACC GPU-data 0.9 1.3

2 eight-core Intel(R) Xeon(R) CPU E5-2687W @ 3.10GHz GPU: Nvidia Tesla K20s

14x compared

to 1 core!

4x compared

to 8 cores!

Declare data
• It is possible to further extend the scope of data on the device

– it significantly enhances code readability and maintainability

• The declare directive specifies that a variable or array has to

be allocated in the device memory for the duration of the

implicit data region of a function

– used in the declaration section of a function

– may specify whether the data have to be transferred and how

– for global scope variables, the implicit region is the whole

program

C Fortran
float a[100]; real A(100)

#pragma acc declare create(A) !$acc declare create(A)

Declare data - 2

• Standard data clauses may be specified

– copy, copyin, copyout, create, present, ... (restrictions apply for

global variables)

– specific data clauses may be employed, too

• device_resident

– the memory has to be allocated on the accelerator memory and

not on the host memory

• link

– only a global link for the named variable should be statically

created in the accelerated memory

– to be used for large global host static data referenced within an

accelerated routine

• The compiler implementations may still lag behind

Exercise 5

• Employ the declaredirective to manage the data

persistence and transfer

• Ensure that the data are correctly synchronized

before and after the accelerated regions

– beware: the default behavior for arrays is

present_or_copyand only one number is interpreted as

the size

– hence, you need to update data on device or host

check the support
of your compiler
for declare!

Exercise 5 Solution: OpenACC C

double A[NN][NM];
#pragma acc declare create(A)
double Anew[NN][NM];
#pragma acc declare create(Anew)
.............
int main() {
.............
#pragma acc update device(A)
while (error > tol && iter < iter_max) {
error=0.0;

#pragma acc parallel loop collapse(2) reduction(max:error)
for(int j = 1; j < n-1; j++)

...............
#pragma acc parallel loop collapse(2)
for(int j = 1; j < n-1; j++)

................

iter++;
}
#pragma acc update host(A)
.........
}

Declare A and A new to

create data on the GPU

Update A and parallelize

loops

Data and functions

• What happens when calling a

function from a data region?

– e.g., consider that the

updating of A, including the

loops, is performed by a

function

– the data region opened by

the calling function applies

– default behaviours when

considering each parallel

region

– in C you just have to take

care of the reduction variable

using a temporary variable

void update_A(int n, int m, double *error)

{

double error_loc = 0.0;

#pragma acc parallel loop \

reduction(max: error_loc)

for(int j = 1; j < n-1; j++)

{

for(int i = 1; i < m-1; i++)

{

Anew[j][i] = 0.25 * (A[j][i+1] +

A[j][i-1]+ A[j-1][i] + A[j+1][i]);

error_loc = fmax(error_loc,

abs(Anew[j][i] - A[j][i]));

}

}

*error = error_loc ;

}

Default behaviours and Privatization

• For arrays present_or_copy: no GPU allocation nor CPU-GPU

copies are performed if the variable exists in a surrounding data

region

– i.e., the default behavior is shared, but private clause may be enforced to loop

• For scalars the rules are not trivial

– for acc parallel regions, the default is firstprivate(private but initialized

with the global value)

– for kernels, default is copy(in and out), and private cannot be specified

– if needed, it is usually best to specify private at the loop construct level
void copy_A(int n, int m) {

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

#pragma acc loop private(Asca)

for(int i = 1; i < m-1; i++) {

Asca = Anew[j][i];

A[j][i] = Asca;

}

} }

check the compiler
report!

PGI compiler performs a
live-in/live-out

analysis to help you

Exercise 6

• Add directives for the case with called functions

– Look at the compiler messages: what about intermediate

copies of A and Anew? Why?

• Add also the value of A(2,2) printed together to iter,error

• Update subarray rules:
– In fortran v(start_x:end_x,start_y:end_y)

• if start or end are not specified, the array bounds

are used

• and only one number is interpreted as the end

– In C v[start_x:size_x][start_y:size_y]

• if start or size are not specified, the array bounds are used, if known

• and only one number is interpreted as the size

multidimensional
section updates not
supported by CAPS
3.4.1, update the

whole matrix

Exercise 6: solution excerpt

Fortran
if(mod(iter,100).eq.0) then

!$acc update host(A(2:2,2:2))

write(*,'(i5,f10.6,f10.6)'), iter, error, A(2,2)

endif

C
if(iter % 100 == 0) {

#pragma acc update host(A[2:1][2:1])

printf("%5d, %0.6f, %0.6f", iter, error, A[2][2]);

}

Calling functions

• What happens if an accelerated region calls a function?

– e.g., performing the updating for each grid point
#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

update_grid_point(m,n,i,j);

error = fmax(error, fabs(Anew[j][i] - A[j][i]));

}

}

• According to OpenACC1.0, the only solution is to inline the

function

– it can be done manually

– or by relying on smart usage of the preprocessor

– or the compiler may inline the function, using adequate options

Inlining tricks

• Inlining of functions depends on the compiler skills

• But you can help the compiler

• Two important points when using PGI

–Minline=name:<function name>

– automatic arrays defined inside the function must be avoided:

pass them even if you do not need their values in the calling

program

– in Fortran, reshaping arrays (different shapes of array from caller

to dummy arguments) must be explicitely requested specifying

–Minline=reshape

Linking accelerated functions

• From OpenACC 2.0, the acc routine allows for

effective separate compilation and correct linking

– it tells the compiler that there will be a device copy of the

routine
#pragma acc routine

extern void update_grid_point(n,m,i,j);

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

update_grid_point(m,n,i,j);

error = fmax(error, fabs(Anew[j][i] - A[j][i]));

}

}

#pragma acc routine

extern void update_grid_point(n,m,i,j) {

...

}

Linking accelerated functions / 2
• Crucial to keep the existing code modularity

• Check if available with your compiler!

• It is possible to rename the device function using the bind

clause

– it tells the compiler that there will be a device version of the

routine with a different name

– and when defining the function nohostavoid the host compilation
#pragma acc routine bind(update_grid_point_dev)

extern void update_grid_point(n,m,i,j);

#pragma acc parallel loop

......

#pragma acc routine nohost

extern void update_grid_point_dev(n,m,i,j) {

...

}

Further speedups

• OpenACC gives us more detailed control over parallelization

– Via gang, worker, and vector clauses

• By understanding more about OpenACC execution model

and GPU hardware organization, we can get higher

speedups on this code

• By understanding bottlenecks in the code via profiling, we

can reorganize the code for higher performance

• Will tackle these in later exercises

Tips and Tricks

• (PGI) Use time option to learn where time is being spent

– -ta=nvidia,time

• Eliminate pointer arithmetic

• Inline function calls in directives regions

– (PGI): -inline or –inline,levels(<N>)

• Use contiguous memory for multi-dimensional arrays

• Use data regions to avoid excessive memory transfers

• Conditional compilation with _OPENACC macro

OpenACC and CUDA

interoperability

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

CUDA Libraries are

interoperable with OpenACC

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

CUDA Languages are

interoperable with OpenACC,

too!

Sharing data with libraries

• CUDA libraries and OpenACC both operate on device arrays

• OpenACC provides mechanisms for interop with library calls

– deviceptr data clause

– host_data construct

• Note: same mechanisms useful for interop with custom

CUDA C/C++/Fortran code

deviceptr Data Clause

deviceptr(list) Declares that the pointers in list

refer to device pointers that need not be

allocated or moved between the host and

device for this pointer.

Example:

C

#pragma acc data deviceptr(d_input)

Fortran

$!acc data deviceptr(d_input)

host_data Construct

Makes the address of device data available on the host.

host_data(list) Tells the compiler to use the device

address for any variable in list. Variables in the

list must be present in device memory due to

data regions that contain this construct

Example

C

#pragma acc host_data use_device(d_input)

Fortran

$!acc host_data use_device(d_input)

Example: 1D convolution using CUFFT

• Perform convolution in frequency space

1. Use CUFFT to transform input signal and filter kernel into the

frequency domain

2. Perform point-wise complex multiply and scale on transformed

signal

3. Use CUFFT to transform result back into the time domain

• We will perform step 2 using OpenACC

// Transform signal and kernel
error = cufftExecC2C(plan, (cufftComplex *)d_signal,

(cufftComplex *)d_signal, CUFFT_FORWARD);
error = cufftExecC2C(plan, (cufftComplex *)d_filter_kernel,

(cufftComplex *)d_filter_kernel, CUFFT_FORWARD);

// Multiply the coefficients together and normalize the result
printf("Performing point-wise complex multiply and scale.\n");
complexPointwiseMulAndScale(new_size,

(float *restrict)d_signal,
(float *restrict)d_filter_kernel);

// Transform signal back
error = cufftExecC2C(plan, (cufftComplex *)d_signal,

(cufftComplex *)d_signal, CUFFT_INVERSE);

Source Excerpt

This function

must execute on

device data

OpenACC convolution code

void complexPointwiseMulAndScale(int n, float *restrict signal,
float *restrict filter_kernel)

{
// Multiply the coefficients together and normalize the result
#pragma acc data deviceptr(signal, filter_kernel)

{
#pragma acc parallel loop

for (int i = 0; i < n; i++) {
float ax = signal[2*i];
float ay = signal[2*i+1];
float bx = filter_kernel[2*i];
float by = filter_kernel[2*i+1];
float s = 1.0f / n;
float cx = s * (ax * bx - ay * by);
float cy = s * (ax * by + ay * bx);
signal[2*i] = cx;
signal[2*i+1] = cy;

}
}

}

If the OpenACC compiler does not support structs in

OpenACC loops, then we cast the Complex* pointers to

float* pointers and use interleaved indexing

Linking CUFFT

• #include “cufft.h”

• Compiler command line options:

CUDA_PATH = /usr/local/pgi/linux86-64/2012/cuda/4.0

CCFLAGS = -I$(CUDA_PATH)/include –L$(CUDA_PATH)/lib64

-lcudart -lcufft

Must use

PGI-provided

CUDA toolkit

paths

Must link libcudart

and libcufft

Results

[harrism@kollman0 cufft-acc]$./cufft_acc
Transforming signal cufftExecC2C
Performing point-wise complex multiply and scale.
Transforming signal back cufftExecC2C
Performing Convolution on the host and checking correctness

Signal size: 500000, filter size: 33
Total Device Convolution Time: 11.461152 ms (0.242624 for point-wise
convolution)
Test PASSED

OpenACCCUFFT + cudaMemcpy

Summary

• Use deviceptrdata clause to pass pre-allocated

device data to OpenACC regions and loops

• Use host_data to get device address for pointers

inside acc data regions

• The same techniques shown here can be used to

share device data between OpenACC loops and

– Your custom CUDA C/C++/Fortran/etc. device code

– Any CUDA Library that uses CUDA device pointers

Exercise 7
• Try to mix OpenACC and CUDA paradigms for the Laplace

example

• The basic idea is to focus on some sections of code and

optimize them employing CUDA APIs

• As an example, try to implement the second loop calling a

cudaMemcpy, a DeviceToDevice copy

– use the host_datadirective to make the data visible to the host

– you need to define an extern C function which calls the

cudaMemcpy

– passing the arrays and the extents

• Compilation, modify the Makefile consistently

– compile the CUDA function using nvcc and the openacc code

using PGI

– then, link the objects together

Exercise 7 - Solution

Replace the second accelerated loop with

#pragma acc host_data use_device(A,Anew)
{

cudaFun(A,Anew,m,n);
}

Create a file named cudaFun.cu with the CUDA function
extern "C" void cudaFun(double **A, double **Anew, int n, int m) {

cudaMemcpy((double*)A,(double*)Anew,m*n*sizeof(double),

cudaMemcpyDeviceToDevice);

}

Modify the data clause for Anew since the Memcpy extends to the

boundaries now...
#pragma acc data copy(A), copyin(Anew)

Exercise 7 - Makefile
CUDA_PATH = /cineca/prod/compilers/pgi/13.10/none/linux86-64/2013/cuda/5.0/

PGCC = pgcc -g -acc -ta=nvidia,time,cuda5.0,cc35 -Minfo=accel -O3 -DPGI

GCC = gcc -O3 -DCAPS #-Wall -Wextra

CAPSMC = capsmc --codelet-required # --debug -g -G

CUDA_FLAGS = -I$(CUDA_PATH)/include -L$(CUDA_PATH)/lib64 -lcudart

pgi: laplace2d_acc_pgi.o cudaFun.o

$(PGCC) laplace2d_acc_pgi.o cudaFun.o $(CUDA_FLAGS) -o laplace2d_acc_pgi_withcuda

laplace2d_acc_pgi.o: laplace2d.c

$(PGCC) -c -o laplace2d_acc_pgi.o $<

caps: laplace2d_acc_caps.o cudaFun.o

$(CAPSMC) $(GCC) laplace2d_acc_caps.o cudaFun.o $(CUDA_FLAGS) -o laplace2d_acc_caps_withcuda

laplace2d_acc_caps.o: laplace2d.c

$(CAPSMC) $(GCC) -c -o laplace2d_acc_caps.o $<

cudaFun.o: cudaFun.cu

nvcc -c cudaFun.cu -o cudaFun.o

Exercise 7: Performance

Execution
Time (s) -

PGI

Time (s) -

CAPS

CPU 1 OpenMP thread 21.9 17.1

CPU 8 OpenMP threads 3.7 4.0

OpenACC GPU-parallel 30 33

OpenACC GPU-collapse 30 30

OpenACC GPU-data 0.9 1.3

OpenACC GPU-withcuda 0.8 1.3

2 eight-core Intel(R) Xeon(R) CPU E5-2687W @ 3.10GHz GPU: Nvidia Tesla K20s

no significant
improvement for

this simple
case

Exercise 8
• Up to now, we used statically allocated memory

– Using OpenACC for dynamically allocated data is possible

– data extents need to be explicitely specified

• It may be more difficult for the compiler to assess

the independence of iterations

– this is obviously crucial adopting the kernels directive

– but, it may be important even using parallel directive, for the

internal loops

– best practice: use explicit loop directive or collapse clause to

strongly control the parallelization of each loop

• Try to accelerate the code in the directory 009-laplace2D-

dynamic

• using parallel directive

• using kernel directive

Exercise 8 – Solution excerpts

• Data extents must be specified
#pragma acc data copy(T[0:n2*n2]), create(Tnew[0:n2*n2])

• Parallel directive may be used unchanged
#pragma acc parallel loop collapse(2)

• If using kernels, loop and collapse have to be

specified, otherwise the compiler probably

decides to serialize the loop
#pragma acc kernels loop collapse(2)

What about performances? Very good

OpenACC and C++
• C++ is supported according to the OpenACC standard

– but compilers may significantly lag behind!

• In dataconstructs

– if a variable or array of struct or class is specified, all the data

members of the struct or class are allocated and copied, as

appropriate

– if a struct or class member is a pointer type, the data addressed

by that pointer are not implicitely copied

• At present, using PGI or CAPS, the code needs to be adapted

recovering a C-like style

– PGI has its own C++ compiler while CAPS relies on an underlying

compiler

– use _OPENACC macro to differentiate the code

– it clearly limits the code maintainability

Exercise 9
• Implement OpenACC acceleration to the Laplace C++ code

– the code employs vector containers and multi-index-like

overloading

– you need to extract the pointer to the data, overloading the ()

could be an idea

class field {

int n; int m; vector<double> vec;

public:

field(int nn, int mm) : n(nn), m(mm) { vec.assign(nn*mm,0.); }

double& operator() (int i, int j) { return vec[m*i+j]; }

double* operator() () { return &(vec[0]); }

};

– to access vector indexes, a macro could be employed
#define IDX(i,j) ((i)*(NM)+(j))

Exercise 9 - Solution
double *A_p, *Anew_p;

..........

field A(n,m); field Anew(n,m);

..........

A_p = A(); Anew_p = Anew();

#pragma acc data copy(A_p[0:NN*NM]), create(Anew_p[0:NN*NM])

{

while (error > tol && iter < iter_max) {

error = 0.0;

#pragma acc parallel loop collapse(2) reduction(max: error)

for(j = 1; j < n-1; j++) {

for(i = 1; i < m-1; i++) {

#ifdef _OPENACC

Anew_p[IDX(j,i)] = 0.25*(A_p[IDX(j,i+1)]+A_p[IDX(j,i-1)]+A_p[IDX(j-1,i)]+A_p[IDX(j+1,i)]);

error = fmax(error, fabs(Anew_p[IDX(j,i)] - A_p[IDX(j,i)]));

#else

Anew(j,i) = 0.25 * (A(j,i+1) + A(j,i-1) + A(j-1,i) + A(j+1,i));

error = fmax(error, fabs(Anew(j,i) - A(j,i)));

#endif

} }

.......

OpenACC and MPI

• OpenACC may be used to accelerate the codes featuring MPI

parallelization
– each MPI process may be accelerated, just like what happens when adding OpenMP simple

constructs to MPI codes

• When dealing with MPI communications, obvious data

synchronizations must be performed

– update host before sending data

– update device after receiving data

• In the simplest approach, each MPI process controls a

different GPU

– again, use runtime library routines

– possibly, some MPI processes use GPUs while other processes

use the host as the computing unit

Exercise 10
• Add OpenACC directives to the MPI laplace code in the

directory 010-laplace2D-mpi/

– the baseline features a 2D MPI Cartesian decomposition

– before evolving the field data, halo data are copied into buffers

and MPI exchanges are performend

• The association of MPI processes to GPUs is already

prepared considering a machine with a defined number of

GPUs

#define NGPU_PER_NODE 4

mygpu = rank%NGPU_PER_NODE;

– employ MPI colours to make it more general

• Remember to specify the array extents to be created or

updated

– when dealing with MPI, dynamic memory is a common choice

Exercise 10 – Solution excerpt

#pragma acc data copy(T[0:stride_x*stride_y]), create(Tnew[0:stride_x*stride_y]), \

create(buffer_s_rl[0:mymsize_y]), create(buffer_s_lr[0:mymsize_y]), \

create(buffer_s_tb[0:mymsize_x]), create(buffer_s_bt[0:mymsize_x]), \

create(buffer_r_rl[0:mymsize_y]), create(buffer_r_lr[0:mymsize_y]), \

create(buffer_r_tb[0:mymsize_x]), create(buffer_r_bt[0:mymsize_x])

........................

#pragma acc kernels

#pragma acc loop independent

for(j = 1; j<=mymsize_y; j++)
buffer_s_rl[j-1] = T[stride_y+j];

#pragma acc update host(buffer_s_rl[0:mymsize_y])
.........................
#pragma acc update device(buffer_r_rl[0:mymsize_y])

#pragma acc parallel loop collapse(2) reduction(max:myvar)

for (i=1; i<=mymsize_x; ++i) {
for (j=1; j<=mymsize_y; ++j) {

use CAPS
compiler, PGI
does not handle
reductions over
nested loops
when dynamic

memory
allocation
occurs

Exercise 10: Performance

Execution Time (s) - PGI
Time (s) -

CAPS

CPU 8 OpenMP threads 3.7 4.0

OpenACC GPU-parallel 30 33

OpenACC GPU-collapse 30 30

OpenACC GPU-data 0.9 1.3

OpenACC GPU-withcuda 0.8 1.3

OpenACC GPU 2 MPI

procs
0.5 0.7

2 eight-core Intel(R) Xeon(R) CPU E5-2687W @ 3.10GHz GPU: Nvidia Tesla K20s

significant
scalability

Optimizing OpenACC

parallelization

Cache Directive

• The cache directive may appear at the top of (inside of) a

loop

– it specifies array elements or subarrays that should be fetched into the

higheset level of the cache for the body of the loop

– obviously the actual performance gain strongly depends on the

analyzed loop

#pragma acc parallel loop collapse(2) reduction(max:error)

for(j = 1; j < n-1; j++) {

for(i = 1; i < m-1; i++) {

#pragma acc cache(A[i-1:2][j-1:2])

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1]

+ A[j-1][i] + A[j+1][i]);

error = fmax(error, fabs(Anew[j][i] - A[j][i]));

}

}

Parallel Construct

Fortran
!$acc parallel [clause …]

structured block
!$acc end parallel

Clauses
if(condition)

async(expression)

num_gangs(expression)

num_workers(expression)

vector_length(expression)

C
#pragma acc parallel [clause …]

{ structured block }

private(list)

firstprivate(list)

reduction(operator:list)

Also any data clause

Parallel Clauses

num_gangs (expression) Controls how many parallel gangs are
created (CUDA gridDim).

num_workers (expression) Controls how many workers are created

in each gang (CUDA blockDim).

vector_length (list) Controls vector length of each worker

(SIMD execution).

private(list) A copy of each variable in list is allocated

to each gang.

firstprivate (list) private variables initialized from host.

reduction(operator:list) private variables combined across

gangs.

Loop Construct

Fortran
!$acc loop [clause …]

loop
!$acc end loop

Combined directives
!$acc parallel loop [clause …]
!$acc kernels loop [clause …]

C
#pragma acc loop [clause …]

{ loop }

Detailed control of the parallel execution of the following loop.

Loop Clauses

collapse(n) Applies directive to the following n

nested loops.

seq Executes the loop sequentially on the

GPU. Often, something went wrong...

private(list) A copy of each variable in list is

created for each iteration of the loop. It

is default behavior

reduction(operator:list) private variables combined across

iterations.

Loop Clauses Inside parallel Region

gang Shares iterations across the

gangs of the parallel region.

worker Shares iterations across the

workers of the gang.

vector Execute the iterations in SIMD

mode.

Loop Clauses Inside kernels Region

gang [(num_gangs)] Shares iterations across at most

num_gangs gangs.

worker [(num_workers)] Shares iterations across at most

num_workers of a single gang.

vector [(vector_length)] Executes the iterations in SIMD

mode with maximum vector_length.

independent Specifies that the loop iterations

are independent.

Fermi and Kepler architecuters sketches

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Cor

e

Instruction Cache

CUDA Core
Dispatch Port

Result Queue

ALU

Operand Collector

Dispatch Port

SM

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

Register File (65,536 x 32-bit)

Warp Scheduler

Dispatch Unit Dispatch Unit

Warp Scheduler

Dispatch Unit Dispatch Unit

Warp Scheduler

Dispatch Unit Dispatch Unit

Warp Scheduler

Dispatch Unit Dispatch Unit

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

Fermi Kepler

OpenACC and targets
• OpenACC on NVIDIA GPUs compiles to target the CUDA

platform

– CUDA is a parallel computing platform and programming model

invented by NVIDIA.

• OpenACC may potentially target different architectures

– NVIDIA GPU, AMD GPU, Intel MIC, many-cores and CPUs, too

– CAPS compiler allows for producing OpenCL code instead of

CUDA code

– PGI is testing OpenACC on AMD Radeon cards

• The mapping between OpenACC parallel levels and target is

performed by the compiler

CUDA and Kernel Execution

• Each kernel is executed on

one device

• Multiple kernels can execute

on a device at one time

…
…

…

CUDA-enabled GPU

CUDA thread • Each thread is executed by

a core

CUDA core

CUDA thread block

• Each block is executed by

one SM and does not migrate

• Several concurrent blocks

can reside on one SM

depending on the blocks’

memory requirements and

the SM’s memory resources

…

CUDA Streaming

Multiprocessor

CUDA kernel grid

...

OpenACC execution Model

• The OpenACC execution model has three levels:

– gang, worker and vector

• This is supposed to map to an architecture that is a collection of

Processing Elements (PEs)

– Each PE is multithreaded and each thread can execute vector instructions

• For GPUs one possible mappings could be

– gang==block, worker==warp, vector==threads in a warp

– omit “worker” and just have gang==block, vector==threads of a

block

• Depends on what the compiler thinks is the best mapping for the

problem

Mapping OpenACC to CUDA threads and blocks

#pragma acc kernels

for(int i = 0; i < n; ++i) y[i] += a*x[i];

#pragma acc kernels loop gang(100) vector(128)

for(int i = 0; i < n; ++i) y[i] += a*x[i];

#pragma acc parallel num_gangs(100) vector_length(128)

{

#pragma acc loop gang vector

for(int i = 0; i < n; ++i) y[i] += a*x[i]; }

100 thread blocks, each with 128

threads, each thread executes

one iteration of the loop, using

kernels

100 thread blocks, each with 128

threads, each thread executes

one iteration of the loop, using

parallel

Let the compiler decide: probably

16 blocks, 256 threads each

Mapping OpenACC to CUDA threads and blocks

#pragma acc parallel num_gangs(100)
{

for(int i = 0; i < n; ++i) y[i] += a*x[i]; }

#pragma acc parallel num_gangs(100)
{

#pragma acc loop gang
for(int i = 0; i < n; ++i) y[i] += a*x[i]; }

100 thread blocks, each with

apparently 1 thread, each thread

redundantly executes the loop

compiler can notice that only

'gangs' are being created, so it

might decide to create threads

instead, say 2 thread blocks of 50

threads.

Mapping OpenACC to CUDA threads and blocks

#pragma acc kernels loop gang(100) vector(128)

for(int i = 0; i < n; ++i) y[i] += a*x[i];

#pragma acc kernels loop gang(50) vector(128)

for(int i = 0; i < n; ++i) y[i] += a*x[i];

100 thread blocks, each with 128

threads, each thread executes

one iteration of the loop, using

kernels

50 thread blocks, each with 128

threads. Each thread does two

elements worth of work

Doing multiple iterations per

thread can improve performance

by amortizing the cost of setup

Tuning loops
• Selecting the optimal strategy

to match the 3 OpenACC

layers to the code loops is

usually a compiler job
– not easy to manually optimize a code

selecting magic numbers

– In case you need to optimize more,

probably the use of CUDA and/or CUDA

libraries is the best choice for specific

sections of code

– but using OpenACC allows for a much

greater portability

– device_type clause may be employed to

have multiple tuning

void matvecmul(float* x, float* a,

float* v, int m, int n){

#pragma acc parallel loop \

device_type(nvidia) num_gangs(200) \

device_type(radeon) num_ganges(400)

for(int i = 0; i < m; ++i)

{

.......

}

Advanced parallelization

• On the other hand, a control of

the OpenACC loop layers may

be crucial when the loop

structure to parallelize is not

trivial

– i and xx are privates as

for the gang level

– but xx is reduction as

for the worker level

void matvecmul(float* x, float* a,

float* v, int m, int n){

#pragma acc parallel loop gang

for(int i = 0; i < m; ++i){

float xx = 0.0;

#pragma acc loop worker reduction(+:xx)

for(int j = 0; j < n; ++j)

xx += a[i*n+j]*v[j];

x[i] = xx;

}

}

CPU: MPI and Asynchronism

• For CPU parallel MPI programs, employing the asynchronism may significantly

improve performances

– the main idea is to overlap communications to computations

– the overlapping between computing and communications may be

achieved using non-blocking MPI calls

• A basic pattern suitable for one

iteration of the Laplace program is

based on splitting the domain into

bulk, boundary and halo points

– boundary updating

– MPI Send/Recv non-blocking calls to exchange halos (extra-boundary

points)

– bulk updating

– MPI Wait calls

CPU+device, MPI and Asynchronism

• For GPU-enabled codes, the asynchronism has additional features

– the programming model has two main actors: host –

coprocessor

– usually, the basic objective is still the overlapping of tasks

• CPU and GPU computations may be overlapped

– but, the computing power of the GPU is often larger and

decomposing the work-load is not trivial

– however, special tasks may be better executed by the CPU

• As for overlapping communications, CPU-device copies

have to be taken into account

– different patterns are required

– achieving overlapping becomes more important (CPU-GPU

copies are expensive)

OpenACC async and wait
• OpenACC allows for

asynchronous compute

regions and data updates with

the async clause

• It is also possible to have a

number of asyncqueues by

adding a value expression to

the async clause

– activities with the same async

value will be executed as

they are enqueued by the

host thread

#pragma acc parallel async

{ }

#pragma acc update device(...) async

{ }

#pragma acc wait

#pragma acc parallel async(1)

{ }

#pragma acc parallel async(2)

{ }

#pragma acc wait(1)

{ }

#pragma acc wait(2)

A CPU-GPU asynchronous pattern for Laplace

• A basic pattern to hide communications between GPU and

GPU considering GPU->host and host -> GPU intermediate

copies

– update boundary – synchronous

– update bulk – asynchronous

– MPI halo exchange - blocking or not blocking with MPI waits

– OpenACC wait for update bulk

• Use CUDA-streams or OpenACC async to implement it

What we left out

• A few directives, e.g.:

– atomic

– enter data/exit data

• More on targeting platforms

– e.g., compiler extensions

• Some clauses, e.g., tile

• (Much) more on the run-time library

Perspectives
• The main reference: www.openacc-standard.org

• PGI and CAPS full implementations of OpenACC 2.0

• Future improvements of the standard

– at present, no standard way to support arrays inside C++ classes, C

structs or Fortran derived data types

• Multi-platform implementations and tests:

– AMD GPUs, Intel MICs,...

• Open-Source OpenACC implementations
– OpenACC extension will be supported in mainstream GCC

compilers

http://www.openacc-standard.org/

OpenMP 4.0 and accelerators

• OpenMP – de-facto standard for Shared-Memory

Parallelization – from 4.0 release includes directives

to handle accelerators

• Some ideas follow the OpenACC approach

• Accelerator
– different functionality (optimized for something special)

– different instruction set

– each accelerator attached to one host device

– it may or may not share memory with the device

• Execution model:
– host-centric

OpenMP target data management

• target data construct

– creates a device data environment for the

extent of the region

– map clause: map a variable from the current

task's data environment to the device data

environment associated with the construct

alloc/to/from/tofrom

• target update: synchronize host and

device copies

• declare target: for variable and functions!

OpenMP target and teams
#pragma omp target device(0) map(tofrom:B)

#pragma omp parallel for

for (i=0; i<N; i++)

B[i] += sin(B[i]);

#pragma omp target device(0) map(tofrom:B)

#pragma omp teams num_teams(num_blocks) num_threads(bsize)

#pragma omp distribute

for (i=0; i<N; i += num_blocks)

#pragma omp parallel for

for (b = i; b < i+num_blocks; b++)

B[b] += sin(B[b]);

#pragma acc parallel copy(B[0:N]) num_gangs(numblocks)\

vector_length(bsize)

#pragma acc loop gang vector

for (i=0; i<N; ++i)

B[i] += sin(B[i]);

OpenMP 4.0 for

Intel Xeon Phi

OpenMP

4.0 for

Nvidia GPU

OpenACC for

NVIDIA GPU

OpenMP 4.0 implementation

• Intel compiler 2015 implements OpenMP 4.0 target

directives but presently supports only Intel Xeon Phi

devices

• GNU compiler 5.0 is going to provide support to

different type of accelerators

– keep updated!

References

• OpenACC standard
– http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf

• OpenACC technical report on structured types
– http://www.openacc.org/sites/default/files/TR-14-1.pdf

• PGI

– https://www.pgroup.com/resources/accel.htm

• OpenMP

– http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

Credits

Mark Harris - NVIDIA

John Urbanic - Pittsburgh Supercomputing Center

Sarah Tariq - NVIDIA

Jeff Larkin – NVIDIA

Christian Terboven

