Energy efficiency and roadmap to exascale

Carlo Cavazzoni

outline

- Roadmap to Exascale
- HPC architecture challanges
- Energy efficiency
- Co processor architecture
- I/O revolution

Roadmap to Exascale

(architectural trends)

Systems	2009	2011	2015	2018
System Peak Flops/s	2 Peta	20 Peta	100-200 Peta	1 Fxa
System Memory	0.3 PB	1 PB	5 PB	10 PB
Node Performance	125 GF	200 GF	400 GF	1-10 TF
Node Memory BW	25 GB/s	40 GB/s	100 GB/s	200-400 GB/s
Node Concurrency	12	32	0(100)	0(1000)
Interconnect BW	1.5 GB/s	10 GB/s	25 GB/s	50 GB/s
System Size (Nodes)	18,700	100,000	500,000	O(Million)
Total Concurrency	225,000	3 Million	50 Million	O(Billion)
Storage	15 PB	30 PB	150 PB	300.95
1/0	0.2 TB/s	2 TB/s	10 TB/s	20 TB/s
MTTI	Days	Days	Days	0(1Day)
Power	6 MW	~10 MW	~10 MW	~20 MW

Dennard scaling law (downscaling)

The core frequency and performance do not grow following the Moore's law any longer

1985

 10^{3}

Increase the number of cores to maintain the architectures evolution on the Moore's law

1990

1995

Vear

2000

2005

2010

Programming crisis!

- Growth rate in clock frequency and chip area becomes smaller.

as described later.

Moore's Law

Number of transistors per chip double every 18 month

Moore's Law

The true it double every 24 month

The silicon lattice

Si lattice

50 atoms!

There will be still 4~6 cycles (or technology generations) left until we reach 11 ~ 5.5 nm technologies, at which we will reach downscaling limit in some year between 2020-30 (H. Iwai, IWJT2008).

PRACE CINECA

Amdahl's law

In a massively parallel context, an upper limit for the scalability of parallel applications is determined by the fraction of the overall execution time spent in non-scalable operations (Amdahl's law).

HPC trends (constrained by the three law)

Chip Architecture

Strongly market driven

Mobile, Tv set, Screens Video/Image processing

New arch to compete with ARM Intel Less Xeon, but PHI Main focus on low power mobile chip ARM Qualcomm, Texas inst., Nvidia, ST, ecc new HPC market, server maket NVIDIA GPU alone will not last long ARM+GPU, Power+GPU Embedded market Power Power+GPU, only chance for HPC Console market AMD Still some chance for HPC

(sub) Exascale architecture Hybrid, but... Still two model Homogeneus, but...

What 100PFlops system we will see ... my guess

IBM (hybrid) Power8+Nvidia GPU
Cray (homo/hybrid) with Intel only!
Intel (hybrid) Xeon + MIC
Arm (homo) only arm chip, but...
Nvidia/Arm (hybrid) arm+Nvidia
Fujitsu (homo) sparc high density low performed to the second se

System attributes	2001	2010	"2	015″	"2018"			
System peak	10 Tera	2 Peta	200 Pet	aflop/sec	1 Exaflop/sec			
Power	~0.8 MW	6 MW	15	MW	20 MW			
System memory	0.006 PB	0.3 PB	5	PB	32-64 PB			
Node performance	0.024 TF	0.125 TF	0.5 TF	7 TF	1 TF	10 TF		
Node memory BW		25 GB/s	0.1 TB/sec	1 TB/sec	0.4 TB/sec	4 TB/sec		
Node concurrency	16	12	O(100)	O(1,000)	O(1,000)	O(10,000)		
System size (nodes)	416	18,700	50,000	5,000	1,000,000	100,000		
Interconnect BW		1.5 GB/s	150 GB/sec	1 TB/sec	250 GB/sec	2 TB/sec		
MTTI		day	O(1	day)	O(1 day)			

Energy efficiency

Where power is used:

- 1) CPU/GPU silicon
- 2) Memory
- 3) Network
- 4) Data transfer
- 5) I/O subsystem
- 6) Cooling

Short term impact on programming models

Chip efficiency

- The efficiency of CMOS transistor against the supply voltage peaks close to the insulator/conductor transition
- Possibility to design a new Near Threshold Voltage (NTV) chip architecture that is able to work at different regime.
- Accommodate the needs of different workloads and meet the requirements in term of efficiency.

Memory

Today (at 40nm) moving 3 64bit operands to compute a 64bit floating-point FMA takes 4.7x the energy with respect to the FMA operation itself

Extrapolating down to 10nm integration, the energy required to move date Becomes 100x !

We need locality!

Fewer memory per core

What is an Accelerator.

A set (one or more) of very simple execution units that can perform few operations (with respect to standard CPU) with very high efficiency. When combined with full featured CPU (CISC or RISC) can accelerate the "nominal" speed of a system. *(Carlo Cavazzoni)*

Architecture toward exascale

K20 nVIDIA GPU

15 SMX Streaming Multiprocessors

SMX

SMX Instruction Cache																				
Warp Scheduler						Warp Scheduler					Warp Scheduler					Warn Scheduler				
Dispatch Dispatch			D	Dispatch Dispatch				Dispatch Dispatch				Dispatch Dispatch								
+ +						+ +				+ +				+ +						
Register File (65,536 x 32-bit)																				
Core	Com	Core	DP Usit	Com	Com	Com	DP Linit	LDIST	SELL	Core	Core	Com		Com	Core	Corre	DP Linit	LOIST	SELL	
Core	Cone	Gord	OF OTHE	Core	Core	Core		L. C. C. C.	are	Core	Core	Cone	OF ONK	Core	Core	Core	or one		are	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU	
Interconnect Network 64 KB Shared Memory / L1 Cache																				
48 KB Read-Only Data Cache																				
	Tex		Tex			Tex		Tex	<u>د</u>		Tex		Tex	¢		Tex		Tex		
Tex Tex			Tex		Tex		Tex			Tex		Tex			Tex					

192 single precision cuda cores
64 double precision units
32 special function units
32 load and store units
4 warp scheduler (each warp contains 32 parallel Threads)

2 indipendent instruction per warp

Accelerator/GPGPU

CUDA sample

```
void CPUCode( int* input1, int* input2, int* output, int length) {
    for ( int i = 0; i < length; ++i ) {
        output[ i ] = input1[ i ] + input2[ i ];
    }
}
___global_void GPUCode( int* input1, int*input2, int* output, int length) {
    int idx = blockDim.x * blockIdx.x + threadIdx.x;
    if ( idx < length ) {
        output[ idx ] = input1[ idx ] + input2[ idx ];
    }
}</pre>
```

Each thread execute one loop iteration

Intel MIC

Intel[®] MIC Architecture: An Intel Co-Processor Architecture

Many cores and many, many more threads Standard IA programming and memory model

- •Up to 61 Intel® Architecture cores
- ■1.1 GHz

(intel

- •244 threads
- •Up to 8 GB memory
- ■up to 352 GB/s bandwidth
- •512-bit SIMD instructions
- Linux* operating system, IP addressable
- •Standard programming languages and tools
- •Over 1 TeraFlop/s double precision peak performance

MIC Architecture

Core Architecture

- 60+ in-order, low-power Intel® Architecture cores in a ring interconnect
- Two pipelines
 - Scalar Unit based on Pentium® processors
 - Dual issue with scalar instructions
 - Pipelined one-per-clock scalar throughput
- SIMD Vector Processing Engine
- 4 hardware threads per core
 - 4 clock latency, hidden by round-robin scheduling of threads
 - Cannot issue back-to-back inst in same thread
- Coherent 512 KB L2 Cache per core

Knights Landing is the codename for Intel's 2nd generation Intel® Xeon Phi[™] Product Family, which will deliver massive thread parallelism, data parallelism and memory bandwidth – with improved single-thread performance and Intel® Xeon® processor binary-compatibility in a standard CPU form factor. Additionally, Knights Landing will offer integrated Intel® Omni-Path fabric technology, and also be available in the traditional PCIe* coprocessor form factor.

The following is a list of public disclosures that Intel has previously made about the forthcoming product:

PERFORMANCE

High-performance on-package

(MCDRAM)

3+ TeraFLOPS of double-precision peak theoretical performance per single socket node⁰

Over 5x STREAM vs. DDR4¹ ⇒ Over 400 GB/s

Up to 16GB at launch

NUMA support

Over 5x Energy Efficiency vs. GDDR5²

Over 3x Density vs. GDDR52

In partnership with Micron Technology

Flexible memory modes including cache and flat

https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing?utm_content=buffer9926a&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer

Intel Vector Units

Programming MIC

3. Using MKL with offload void your_hook()

float *A, *B, *C; /* Matrices */ #pragma offload target(mic) in(transa, transb, N, alpha, beta) \ in(A:length(matrix_elements)) \ in(B:length(matrix_elements)) \ in(C:length(matrix_elements)) \ out(C:length(matrix_elements)) \ out(C:length(matrix_elements)) \ sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N, &beta, C, &N);

Heterogeneous Compiler

EURORA #1 in The Green500 List June 2013

What EURORA stant for? **EUR**opean many integrated c**OR**e **A**rchitecture

What is EURORA? Prototype Project Founded by PRACE 2IP EU project Grant agreement number: RI-283493 Co-designed by CINECA and EUROTECH

Where is EURORA? EURORA is installed at CINECA

When EURORA has been installed? March 2013

Who is using EURORA? All Italian and EU researchers through PRACE Prototype grant access program

3,200MOPS/W - 30KW

EURORA Benchmarks

Energy measurments (howto)

seconds

Application Benchmarks

QE (Al2O3 small benchmark) Energy to solution – as a function of the clock

Quantum ESPRESSO Energy to Solution (PHI)

Time-to-solution (right) and Energy-to-solution (left) compared between Xeon Phi and CPU only versions of QE on a single node.

Quantum ESPRESSO Energy to Solution (K20)

Time-to-solution (right) and Energy-to-solution (left) compared between GPU and CPU only versions of QE on a single node

Impact on programming and execution models

- 1. Event driven tasks (EDT)
 - a. Dataflow inspired, tiny codelets (self contained)
 - b. Non blocking, no preemption
- 2. Programming model:
 - a. Express data locality with hierarchical tiling
 - b. Global, shared, non-coherent address space
 - c. Optimization and auto generation of EDTs
- 3. Execution model:
 - a. Dynamic, event-driven scheduling, non-blocking
 - b. Dynamic decision to move computation to data
 - c. Observation based adaption (self-awareness)
 - d. Implemented in the runtime environment

I/O Subsystem

I/O subsystem of high performance computers are still deployed using spinning disks, with their mechanical limitation (spinning speed cannot grow above a certain regime, above which the vibration cannot be controlled), and like for the DRAM they eat energy even if their state is not changed. Solid state technology appear to be a possible alternative, but costs do not allow to implement data storage systems of the same size. Probably some hierarchical solutions can exploit both technology, but this do not solve the problem of having spinning disks spinning for nothing.

I/O Challenges

Today

100 clients 1000 core per client **3PByte 3K Disks** 100 Gbyte/sec 8MByte blocks Parallel Filesystem One Tier architecture

Tomorrow

10K clients 100K core per clients 1Exabyte 100K Disks 100TByte/sec **1Gbyte blocks** Parallel Filesystem Multi Tier architecture

Today

.

160K cores, 96 I/O clients, 24 I/O servers, 3 RAID controllers

IMPORTANT: I/O subsystem has its own parallelism!

Today-Tomorrow

.

1M cores, 1000 I/O clients, 100 I/O servers, 10 RAID FLASH/DISK controllers

Tomorrow

1G cores, 10K NVRAM nodes, 1000 I/O clients, 100 I/O servers, 10 RAID controllers

Impact on programming and execution models

DATA:

Billion of (application) files Large (check-point/restart) file **Posix Filesystem:** low level lock/syncronization -> transactional IOP low IOPs (I/O operation per second) **Physical supports:** disk too slow -> archive FLASH aging problem NVRAM (Non-Volatile RAM), PCM (Phase Change Memory), not ready Middlewere: Library HDF5, NetCDF MPI-I/O Each layer has its own semantics