
Performance Evaluation

Giovanni Erbacci - g.erbacci@cineca.it

Supercomputing, Applications & Innovation Department - CINECA

Outline

Performance Evaluation

Definition of parallel system

- size of the problem,

- serial execution time

- parallel execution time

1

- parallel execution time

Performance indices

- speed-up

- efficiency

Art of Performance evaluation

�Performance evaluation of HPC Systems

• Benchmarks

• Performance models

�Performance evaluation of Application Codes

2

�Performance evaluation of Application Codes

What metrics to adopt

Achieving Efficiency

• Parallel computers allow

– faster solutions to problems

– larger problems to be addressed

• An efficient parallel program• An efficient parallel program

– maximises the amount of work each processor does, and

– minimises the amount of communication between processes

• How the problem is decomposed is critical

– different ways exist depending on problem

3

Performance Measures

• Scientist:

– size of the problem,

– accuracy of the solution, etc. ...

– Number of operations per unit time (flop / s),

• Computational scientist:

– execution time,

– speed-up,

– efficiency.

4

Quantifying Performance

• Serial computing concerned with complexity

– how execution time varies with problem size N

– adding two arrays (or vectors) is O(N)

– matrix times vector is O(N2), matrix-matrix isO(N3)

• Look for clever algorithms

– naïve sort is O(N2)– naïve sort is O(N2)

– divide-and-conquer approaches are O(N log (N))

• Parallel computing also concerned with scaling

– how time varies with number of processors P

– different algorithms can have different scaling behaviour

– but always remember that we are interested in minimum time!

5

Parallel System

A parallel system is the implementation of a parallel algorithm on

a specific parallel architecture.

"How to scale the parallel system?"

The size of the problem - W - is the number of basic operations

6

The size of the problem - W - is the number of basic operations

required by the fastest known sequential algorithm to solve the

problem itself, which is equivalent to the concept of

computational complexity.

Observations

Sequential algorithm

- computational complexity

- execution time

f (W) (function of the amount of data supplied as input)

Parallel algorithm

7

Parallel algorithm

- computational complexity

- execution time

f (W, p, arch)

p = number of processors used

arch = architecture on which the algorithm is implemented,

(topology of the interconnection network)

Execution Time

Serial execution time - Ts - is the time that elapses between

the beginning and the end of the program on a single processor.

Parallel execution time - Tp - is the time that elapses between

the beginning of the parallel execution and the time when the

8

the beginning of the parallel execution and the time when the

last processor finishes his execution.

I/O Problem

Speed-up

Speedup =

Sequential execution time of the

best sequential algorithm known

Execution time on P processors

9

• A more honest measure of performance

• Avoids picking an easily parallelizable algorithm with poor

sequential execution time

Speed-up

speed-up is defined as:

S(W,p) = Ts(W) / Tp(W,p)

- What does it represent?

S
p
e
e
d
u
p

10

- What does it represent?

- In which interval varies?

S
p
e
e
d
u
p

P

What Speedup do you get?

• Linear Speed-up :

– Speed-up = N, with N

processors

• Sub-linear Speed-up :

– More normal, due to the

overhead of initialization,

synchronization,

S
p
e
e
d
-u
p

Linear

synchronization,

communication, etc..

• Speed-up in flexion:

– Decreases as the number

of processorsgrows.

• super-linear Speed-up

11

S
p
e
e
d

P

Current

Super Linear Speed-up

• The speed-up is superlinear. when s> p,

• This behavior is due to the fact that the program uses the

memory hierarchies (due HW),

- Subparts fit into cache / memory of each node

- Whole problem does not fit in cache / memory of a single - Whole problem does not fit in cache / memory of a single

node

• or there is a better code optimization with regard to the

scheduling of instructions (due SW) or not determinism eg. in

search problems.

One thread finds near-optimal solution very quickly => leads

to drastic pruning of search space

12

Efficiency

Parallel Efficiency is defined as

E (W, p) = S (W, p) / p

is the ratio between the sequential execution time and the

execution time on p processors, multiplied by p

13

execution time on p processors, multiplied by p

What amount is?

What does it represent?

In whichi nterval varies?

Scalability of Parallel computers

• There is no precise definition of scalability

An Architecture is scalable if it continues to have the same performance per
processor when the number of processors and the size of the computational
problem to be solved increse.

Scalable MPP systems are designed in such a way that larger versions of the same
machine (systems with a greater number of nodes) can be constructed or extended
from the same design.from the same design.

A program scales for a number of processors P, if moving from p-1 to p processors
an improvement in terms of speed-up is observed .

• Improving load balance / algorithm increases the turn-over to a higher numbers of
PEs

• better scaling = ability to utilise larger computers

14

Sources of overhead

The efficiency of real parallel systems often (unless trivial parallel

algorithms, embarrassingly parallel) is not maximum because in a

parallel system appears sources of overhead such as:

- extra computations for the parallel algorithm compared to the

best sequential algorithm,

15

best sequential algorithm,

- need for interprocessor communications,

- workload imbalance and more.

Granularity

• How long does it take to communicate? Relevant network metrics:

– Bandwidth: number of bits per second that can be transmitted

through the network

– Latency: time to make a message transfer through the network

• Message-passing parallel programs can minimize communication

delays by partitioning the program into processes and considering

the granularity of the process on the machine.the granularity of the process on the machine.

16

ioncommunicat

ncomputatio

t

t
ygranularit =

Serial and parallel fractions

The serial fraction of a program, fs , is the ratio between the time

spent in the code inherently sequential and Ts(W).

We define parallel fraction of a program, fp, the ratio between the

time spent in the code parallelizable and Ts(W).

17

time spent in the code parallelizable and Ts(W).

Obviously fs = (1 - fp).

Sequential vs. Parallel

• Sequential execution time: t seconds

• Start-up overhead of parallel execution: t_st seconds (depends on architecture)

• Parallel execution time (ideal): t/p + t_st

• If t/p + t_st > t, no gain!

18

The Serial Component

• Amdahl’s law

• “the performance improvement to be gained by parallelisation is limited by the

proportion of the code which is serial”

• Gene Amdahl, 1967

19

1

1

1 2 4 8 Processors

1 1,33 1,6 1,8 Speed-up

Amdahl’s Law
• Assume a fraction fs is completely serial

– time is sum of serial and potentially parallel

• Parallel time

– parallel part 100% efficient

Tp(W,p)=Ts (W) fs + (Ts(W) fp / p)

• Parallel speedup S(W,p) = Ts(W) / Tp(W,p) =

= Ts(W) /(fs x Ts(W) + (1- fs) x Ts(W) /p)

= p / (1 +(p-1) x f)= p / (1 +(p-1) x fs)

S(W,p) � 1 / fs per p � ∞

– for fs = 0, S= P as expected (ie E= 100%)

– otherwise, speedup limited by 1/ fs for any P

– Eg. if 5% of the code is sequential, the speed-up will never exceed 20 even

with an infinite number of processors.

– the performance improvement to be gained by parallelisation is limited by

the proportion of the code which is serial

– impossible to effectively utilise large parallel machines?

20

Amdahl Law confutation

• Sometimes even a limited speed-up can be a very important milestone

for certain applications.

In addition, applications can scale as the number of processors increases:

– a system with a larger number of processors in general allows to solve the

biggest problems in a reasonable time

– instead of assuming fixed the size of the problem we assume that the

parallel execution time is fixed

– Gustafson's Law.

21

Gustafson’s Law

• Need larger problems for larger numbers of CPUs

• to maintain constant efficiency we need to scale the problem size with the number

of CPUs

1 serial

22

8

1 2 4 8 Processors

1 1,8 3,0 4,5 Speed-up

parallel

Performance Models

Fixed-size model: to find the best parallel system by fixing

W and varying p.

Fixed-time model: identify on the curve of the execution

23

Fixed-time model: identify on the curve of the execution

time, the pairs (W, p) keeping fixed Tp(W,p).

Fixed-memory model: we always work with all available

memory.

Example benchmarks

2048

4096

8192 16384

6

8

10

12

p
e
rf
o
rm
a
n
c
e
 n
s
/d
a
y

GROMACS BG/P scaling for d.kv12 membrane (1.8M
atoms)

2

3

4

5

6

7

lo
g
 s
p
e
e
d
u
p

NAMD/Gromacs speedup

namd

ideal

24

1024

2048

0

2

4

1000 10000

p
e
rf
o
rm
a
n
c
e
 n
s
/d
a
y

#cores

0

1

1 2 4 8 16 32 64

#procs

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64

P
a
ra
ll
e
l
e
ff
ic
ie
n
c
y

#procs

NAMD/Gromacs parallel efficiency

namd

