
MPI Virtual topologies-   
Domain Decomposition case 

study 
Andrew Emerson– a.emerson@cineca.it 

SuperComputing Applications and Innovation Department 



contents 

 Introduction 
 Domain decomposition 
 Examples 
 Game of Life 
 Classical molecular dynamics and scaling 
limits 

 Final comments 
 



introduction 

• Domain decomposition refers to a general set of 

methods for solving a boundary value problem by 

splitting it into smaller boundary value problems. 

• In mathematics often used to solve systems of 

partial differential equations. 

•  In computational chemistry and physics used to 

parallelise simulations over large number of 

interacting particles. 



example 

• Consider example of a system of interacting 

particles  

Assume pair-wise, short-

range interactions 

between particles: 





ji

ijUU



Serial code 

Utot=0.0 

do i=1,N-1 

  F(i) = 0.0 

  do j=i+1,N 

    rij=r(i)-r(j) 

    Utot=Utot+Uij 

    F(i)=F(i)+force(i,j)    

  enddo 

enddo 

 



6 

force matrix N 

N 

P0 

P1 

P2 

Interaction Matrix 

•Double loop is 

equivalent to an 

interaction 

(e.g.force) matrix 

 

•Can parallelise by 

replicating the data 

on each processor 

Interaction Matrix 



0 

1 

2 

3 

4 

5 

6 

7 

N 

N/P 

Fi Ri(t+t) 

A
LL-TO

-A
LL 

Particle decomposition 

•In particle decomposition there is a normally at least one all-

to-all communication step to gather the processor information 

•In Molecular Dynamics codes (above) at least three global 

communications are required. 



Particle decomposition 

(replicated data) 

• Simple  to code and scales reasonably well for 
small N. 

• But communication scales as O(N) so at large N the 
all-to-all communication knocks performance – may 
not scale over 8-16 processors. 

• Replicated data means memory requirements are 
also high. 

• Possible to improve performance by using a block 
subdivision of the interaction matrix, but scaling is 
still limited. 

• To do better we can exploit the locality of the 
interactions and use domain decomposition. 

 

 



Divide 3d space up 

into domains and 

assign particles to 

domains. Also assign a 

processor to each 

domain. 

 

Domain size usually 

chosen such that 

particles in one 

domain only interact 

with those in nearest-

neighbour domains. 



domain decomposition 

Each domain will have 2 types of  particles: 

1. Those which can be entirely managed by the processor, i.e. all 

the interactions are within the domain 

2. Those for which the interactions extend outside the domain. 

Here data have to be sent/received  to/from neighbouring 

domains. 

internal part of 

domain  
Atoms which 

need to be 

shared with 

neighbouring 

domains. 



domain decomposition 

• The difficult part of DD is then to communicate data between a 

domain and its neighbours. 

• Convenient for each processor to assign storage also for atoms in 

neighbouring regions within the cutoff (some times call “ghost” or “halo” 

regions). 

Internal region 

right border 

Storage for left 

border of 

neigbouring cell 



domain decomposition – neighbour 

communication 

• neighbour coords in each dimension conveniently exchanged via 

mpi_cart_shift and  mpi_sendrecv calls 

• First pass, x-direction, left to right, 

call mpi_cart_shift(mpi_box,1,1,proc_left,proc_right,ierror) 

 

call mpi_sendrecv(right_side,nright,MPI_INTEGER,proc_right,0,             

halo_left,nleft,MPI_INTEGER,proc_left,0,mpi_box,status,ierror) 



domain decomposition 

Then right to left 

 

call mpi_sendrecv(left_side,nleft,MPI_REAL,proc_left,0,             

halo_right,nright,MPI_REAL,proc_right,0,mpi_box,status,ier

ror) 



domain decomposition 

We can repeat in the y direction but to ensure we transfer the corners 

we need to include data transferred in the x pass  

data transferred during x 

pass 



domain decomposition 

call mpi_cart_shift(mpi_box,0,1,proc_up,proc_down,ierror) 

 

! top to bottom 

call mpi_sendrecv(bottom_side,nlower,MPI_FLOAT,proc_down,0,             
halo_top,ntop,MPI_REAL,proc_up,0,mpi_box,status,ierror) 

 

! bottom to top 

call mpi_sendrecv(top_side,ntop,MPI_REAL,proc_up,0,             
halo_bottom,nbottom,MPI_REAL,proc_down,0,mpi_box,status,ier
ror 
 

 



domain decomposition 

•Similarly in the z direction, using data transferred in the 

previous y passes (which includes data transferred in x) 

 

•Each processor now has enough information to calculate 

all the interactions in its domain. 

 



particle and domain decomposition 

• Compared to PD (or Replicated Data), DD  

– Exploits the intrinsic locality , minimizing 

communications (no All-to-All) and memory required 

per processor 

– scalable, for large systems 

– can exploit MPI cartesian topology 



Case study 1 – Game of Life 

• A simple 2D cellular automata originally 

conceived by J. Conway in 1970. 

• Based on a few simple rules, able to exhibit 

complex evolution depending on starting 

configuration and run time. 

• Locality of interactions (i.e. state of 

neighbouring cells) implies good candidate for 

parallelization by domain decomposition 



Case study 1 – Game of Life 

• The system consists of a 2D grid of cells. Cells 
evolve as follows: in the next generation a cell will 
1. Be dead if the cell has < 2 live neighbours (lonely) 

2. Stay the same if has exactly 2 neighbours (content) 
1. Be born if the cell has exactly 3 live neighbours  

3.  Die if > 3 live neighbours (overcrowding) 



 Game of Life - strategy 

• Maintain two boards, one for the current generation 
and one for the next generation. 

• Create a master-slave model: the master (e.g. rank 0) 
will generate the original configuration, collect results 
from other procs and write output to file. 

• Partition the 2D array amongst the processors. 

• Generate a cartesian topology. 

• Each processor allocates storage for its own cells + halo 
regions (for neighbours). 

• Procs update their own cells, then communicate 
boundaries to neighbouring cells. Calculate remaining 
cells. 

• Master gathers data from procs, updates current board, 
writes to file → next generation. 

 

 



Game of Life 

decomposition 



 Game of Life – implementation hints 

• cartesian topology 

 

 

 

integer dlength(2),reorder 

logical periods(0:1) 

call mpi_init(ierror) 

call mpi_comm_size(MPI_COMM_WORLD, size, ierror) 

 

! Cartesian topology for grid 

 

call mpi_dims_create(size,2,dlength,ierror) 

periods(0)=.true. 

periods(1)=.true. 

reorder=1 

call mpi_cart_create(MPI_COMM_WORLD,2,dlength,periods, 

reorder,mpi_grid, ierror) 



 Game of Life – implementation hints 

• MPI derived data types for transferring data to 
neighbours 

 

 

 

integer mpi_block, coltype, rowtype 

 

! define a row type 

call mpi_type_vector (local,1,nrow,MPI_INTEGER,rowtype, 

ierror) 

call mpi_type_commit(rowtype,ierror) 

 

! find up and down neighbours 

call 

mpi_cart_shift(mpi_grid,0,1,proc_up,proc_down,ierror) 

 

! send row to down proc, receive row data from up proc 

call 

mpi_sendrecv(locarray(nrow,1),1,rowtype,proc_down,0, &            

edge_up,ncol,MPI_INTEGER,proc_up,0,mpi_grid,status,ierro

r) 

 

 

 

 

 

 



Case study 2 – Classical molecular dynamics 

• Molecular dynamics (MD) programs model physical 

or chemical systems by simulating the movements 

of interacting atoms or molecules. 

• For realistic models, many tens of thousands or 

even millions of interacting atoms may need to be 

simulated. 

• All common MD programs (e.g. GROMACS, NAMD, 

DL_POLY, etc) rely on DD for parallelisation. 



Particle and domain 

decomposition comparison 

•Gromacs v3.3 used 

particle/force 

decomposition as a 

parallel scheme. 

 

•DD was introduced 

into Gromacs 4.x 



final comments 

• domain decomposition commonly used in 

computational chemistry, physics and 

astrophysics to distribute physical domain over 

processors by exploiting locality of interactions 

• can be quite complex to program but MPI has 

many useful commands to simplify 

programming. 


