239 Summer
School on
PARALLEL
COMPUTING

MPI| datatypes

Andrew Emerson, Giusy Muscianisi and Luca Ferraro
{a.emerson,g.muscianisi, l.ferraro}@cineca.it

SuperComputing Applications and Innovation Department

\

CINECA

Summer
School on

COMPUTING

What are?
Derived datatypes are datatypes that are built from the basic MPI
datatypes (e.g. MPI_INT, MPI_REAL, ...)

Why datatypes?

e Since all data is labeled by type, an MPI implementation can
support communication between processes on machines with very
different memory representations and lengths of elementary
datatypes (heteroeneous communication)

e Specifying application-oriented layout of data in memory
can reduce memory-to memory copies in the implementaion
allows the use of special hardware (scatter/gather) when available

o Specifying application-oriented layout of data on a file can reduce
systems calls and physical disk 1/0

CINECA 2

Summer
School on

COMPUTING

You may need to send messages that contain
1. non-contiguous data of a single type (e.g. a sub-block of a matrix)

2. contiguous data of mixed types (e.g., an integer count, followed by a sequence
of real numbers)

3. non-contiguous data of mixed types
Possible solutions:

1. make multiple MPI calls to send and receive each data element
— |f advantegeous, copy data to a buffer before sending it

2. use MPI_pack/MPI_Unpack to pack data and send packed data (datatype
MPI_PACKED)

3. use MPI_BYTE to get around the datatype-matching rules. Like MPI_PACKED,
MPI_BYTE can be used to match any byte of storage (on a byte-addressable
machine), irrespective of the datatype of the variable that contains this byte.

« Additional latency costs due to multiple calls
« Additional latency costs due to memory copy

. Not portable to a heterogeneous system using MPI_BYTE or
MPI_PACKED

CINECA

CINECA

Summer
School on

COMPUTING

The user explicitly packs data into a contiguous buffer before sending it, and
unpacks it from a contiguous buffer after receiving it.

MPI_Pack(inbuf, incount, datatype, outbuf, outsize, position, comm)

- pack: "incount” data of type "datatype” from buffer "inbuf”

- to: contiguous storage area "outbuf” containing "outsize” bytes

- "position” is the first location in the output buffer to be used for
packing, updated when exiting from MPI_Pack

- the communication "comm” to be used in the next has to be specified

MPI_Unpack(inbuf, insize, position, outbuf, outcount, datatype, comm)

- Unpacks a message into the receive buffer specified by “"outbuf,
outcount, datatype” from the buffer space specified by “inbuf and
insize"

MPI_PACKED is the datatype of packed data, to be send/received

Summer
School on

COMPUTING

int position; int n; float a,b; char buffer[100];
if (myrank == 0){

n=4;, a=1,; b=2.; position =0;

/Il packing

MPI_Pack(&a, 1, MPI_FLOAT, buffer, 100, &position, MPI_COMM_WORLD);
MPI_Pack(&b, 1, MPI_FLOAT, buffer, 100, &position, MPI_COMM_WORLD);
MPI_Pack(&n, 1, MPIL_INT, buffer, 100, &position, MPI_COMM_WORLD);

/[communication

MPI_Bcast(buffer, 100, MPI_PACKED, 0, MPI_COMM_WORLD);

} else {

}

CINECA

/[communication

MPI1_Bcast(buffer, 100, MPI_PACKED, 0, MPI_COMM_WORLD);

position = 0;

/[unpacking

MPI1_Unpack(buffer, 100, &position, &a, 1, MPI_FLOAT, MPI_COMM_WORLD);
MPI1_Unpack(buffer, 100, &position, &b, 1, MP1_FLOAT, MPI_COMM_WORLD);
MPI_Unpack(buffer, 100, &position, &n, 1, MPI_INT, MPI_COMM_WORLD);

CINECA

Summer
School on

COMPUTING

Derived datatypes allow, in most cases, to avoid explicit packing and unpacking

- the user specifies the layout of the data to be sent or received, and the
communication library directly accesses a noncontiguous buffer.

But packed data are provided for many reasons

Compatibility

- with previous libraries

- development of additional communication libraries layered on top of MPI
Dynamic behaviour

- amessage can be received in several parts, where the receive operation done
on a later part may depend on the content of a former part

- In MPI_Unpack, the count argument specifies the actual number of items that
are unpacked (In MPI_Recv the count argument specifies the maximum number
of items that can be received)

Buffering

- outgoing messages may be explicitly buffered in user supplied space, thus
overriding the system buffering policy

- buffering is not the evil: explcit buffering allows for the implementation of
efficient MPI patterns

Summer
School on

COMPUTING

You may need to send messages that contain
1. non-contiguous data of a single type (e.g. a sub-block of a matrix)

2. contiguous data of mixed types (e.g., an integer count, followed by a sequence
of real numbers)

3. non-contiguous data of mixed types
Datatype solution:

1. The idea of MPI derived datatypes is to provide a simple, portable, elegant
and efficient way of communicating non-contiguous or mixed types in a
message.

e During the communication, the datatype tells MPI system where to take
the data when sending or where to put data when receiving.

2. The actual performances depend on the MPI implementation

3. Derivec wf MPI-1/0.

Extra copy /'
Network

CINECA < 7

Summer
School on

COMPUTING

A general datatype is an opaque object able to describe a buffer layout in memory by
specifing:

. A sequence of basic datatypes
. A sequence of integer (byte) displacements.

Typemap = {(type 0, displ 0), ... (type n-1, displ n-1)}
- pairs of basic types and displacements (in byte)

Type signature = {type 0, type 1, ... type n-1}
- list of types in the typemap
- gives size of each elements
- tells MPI how to interpret the bits it sends and received

Displacement:

- tells MPI where to get (when sending) or put (when receiving)
CINECA 8

Summer
School on

COMPUTING

Example:

Basic datatype are particular cases of a general datatype, and are
predefined:

MPL_INT = {(int, 0)}

General datatype with typemap
Typemap = {(int,0), (double,8), (char,16)}

int -..char D
double) HHEE INENENEE
-..-. derived datatype

CINECA \ 9

Summer
School on

COMPUTING

General datatypes (differently from C or Fortran) are created
(and destroyed) at run-time through calls to MPI library routines.

Implementation steps are:

1. Creation of the datatype from existing ones with a datatype
constructor.

2. Allocation (committing) of the datatype before using it.

3. Usage of the derived datatype for MPI communications and/or
for MPI-1/0

4. Deallocation (freeing) of the datatype after that it is no longer
needed.

CINECA 10

CINECA

MPI_TYPE_CONTIGUOUS
MPI_TYPE_VECTOR
MPI_TYPE_CREATE_HVECTOR

MPI_TYPE_INDEXED
MPI_TYPE_CREATE_HINDEXED

MPI_TYPE_CREATE_INDEXED_BLOCK
MPI_TYPE_CREATE_SUBARRAY

MPI_TYPE_CREATE_DARRAY

MPI_TYPE_CREATE_STRUCT

Summer
School on

COMPUTING

contiguous datatype
regularly spaced datatype
like vector, but the stride is
specified in bytes
variably spaced datatype
like indexed, but the stride is
specified in byte
particular case of the previous one
subarray within a
multidimensional array

distribution of a ndim-array into
a grid of ndim-logical processes

fully general datatype

11

Summer
School on

COMPUTING

MPI_TYPE_COMMIT (datatype)
INOUT datatype: datatype that is committed (handle)

« Before it can be used in a communication or /0 call, each derived datatype has to
be committed

MPI_TYPE_FREE (datatype)
INOUT datatype: datatype that is freed (handle)

« Mark a datatype for deallocation
« Datatype will be deallocated when all pending operations are finished

CINECA \ 12

Summer
School on

COMPUTING

MPI_TYPE_CONTIGUOUS (count, oldtype, newtype)
IN count: replication count (non-negative integer)
IN oldtype: old datatype (handle)
OUT newtype: new datatype (handle)

« MPI_TYPE_CONTIGUOUS constructs a typemap consisting of the replication of a
datatype into contiguous locations.

« newtype is the datatype obtained by concatenating count copies of oldtype.

—

oldtype

N S
—

newtype

CINECA 13

CINECA

count = 4;

1.0

2.0

3.0

4.0

13.0

14.0

15.0

16.0

MPI_Send(&a[2][0], 1, rowtype, dest, tag, comm);

Summer

MPI Type contignous(count, MPI FLOAT, &rowtype);

Schoolon
COMPUTING
a[4][4]
1 element of
rowtype
14

Summer
School on

COMPUTING

MPI_TYPE_VECTOR (count, blocklength, stride, oldtype, newtype)
IN count: Number of blocks (non-negative integer)
IN blocklen: Number of elements in each block
(non-negative integer)

IN stride: Number of elements (NOT bytes) between start of

each block (integer)
IN oldtype: Old datatype (handle)
OUT newtype: New datatype (handle)

« Consist of a number of elements of the same datatype repeated with a certain
stride

oldtype

\ L
X
N

newtype

blocklength = 3 elements

N— _
—

stride = 5 el.s between block starts

N— g
——

count = 2 blocks
CINECA 15

Summer
School on

COMPUTING

count = 4; blocklength = 1; stride =4;
MPI_Type vector(count, blocklength, stride, MPI FLOAT,

&columntype);
1.0 3.0 4.0
5.0 7.0 8.0
a[4][4]
9.0 11.0 12.0
13.0 15.0 16.0

MPI_Send(&a[0][1], 1, columntype, dest, tag, comm);

1 element of
columntype

CINECA 16

Summer
School on

COMPUTING

MPI_TYPE_CREATE_HVECTOR (count, blocklength, stride, oldtype, newtype)

IN count: Number of blocks (non-negative integer)

IN blocklen: Number of elements in each block (non-negative integer)
IN stride: Number of bytes between start of each block (integer)

IN oldtype: Old datatype (handle)

OUT newtype: New datatype (handle)

« It’s identical to MPI_TYPE_VECTOR, except that stride is given in bytes,
rather than in elements

« “H” stands for heterogeneous

CINECA 17

Summer
School on

COMPUTING

MPI_TYPE_INDEXED (count, array_of_blocklengths, array_of_displacements,

oldtype, newtype)
IN count: number of blocks — also number of entries in
array_of blocklenghts and array_of displacements
(non-negative integer)
IN array_of blocklengths: number of elements per block
(array of non-negative integers)
IN array_of_displacements: displacement for each block, in multiples of oldtype extent
(array of integer)
IN oldtype: old datatype (handle)
OUT newtype: new datatype (handle)

« Creates a new type from blocks comprising identical elements
« The size and displacements of the blocks can vary

oldtype

newtype

count=3, array_of_blocklengths=(/2,3,1/), array_of_displacements=(/0,3,8/)

CINECA 18

CINECA

count = 2; blocklengths[0] = 4;
displacements[0] = 5;

blocklengths[1] = 2;

displacements[1] = 12;

1.0

/\

11.0

120

A

15.0

16.0

MPI Type indexed(count, blocklengths, displacements, MPI FLOAT, &indextype);

a[16]

MPI Send(&a, 1, indextype, dest, tag, comm);

1 element of

indextype

Summer
School on

COMPUTING

19

Summer
School on

CINECA \ 20

COMPUTING

[* upper triangular matrix */
double a[100][100];
int displ[100], blocklen[100], int i;
MPI1_Datatype upper;
[* compute start and size of the rows */
for (i=0; i<100; i++){

displ[i] = 100*i+i;

blocklen[i] = 100-i;
}
[* create and commit a datatype for upper triangular matrix */
MPI_Type_indexed (100, blocklen, disp, MPI_DOUBLE, &upper);
MPI_Type_commit (&upper);
/*...sendit..”/
MPI_Send (a, 1, upper, dest, tag, MPI_COMM_WORLD);
MPI_Type_free (&upper);

Summer
School on

COMPUTING

MPI_TYPE_CREATE_HINDEXED (count, array_of_blocklengths,
array_of displacements, oldtype, newtype)

IN count: number of blocks — also number of entries in array_of blocklengths and
array_of displacements (non-negative integer)

IN array_of blocklengths: number of elements in each block
(array of non-negative integers)

IN array_of displacements: byte displacement of each block (array of integer)

IN oldtype: old datatype (handle)

OUT newtype: new datatype (handle)

« This function is identical to MPI_TYPE_INDEXED, except that block displacements in
array_of_displacements are specified in bytes, rather that in multiples of the
oldtype extent

CINECA 21

Summer
School on

COMPUTING

MPI_TYPE_CREATE_INDEXED_ BLOCK (count, blocklengths,
array of displacements, oldtype, newtype)

IN count: length of array of displacements (non-negative integer)

IN blocklengths: size of block (non-negative integer)

IN array_of displacements: array of displacements (array of integer)
IN oldtype: old datatype (handle)

OUT newtype: new datatype (handle)

« Similar to MPI_TYPE_INDEXED, except that the block-length is the same for all
blocks.

« There are many codes using indirect addressing arising from unstructured grids
where the blocksize is always 1 (gather/scatter). This function allows for constant
blocksize and arbitrary displacements.

CINECA 22

Summer
School on

COMPUTING

MPI_TYPE_CREATE_SUBARRAY (ndims, array_of_sizes, array_of_subsizes,
array of starts, order, oldtype, newtype)

IN ndims: number of array dimensions (positive integer)

IN array_of_sizes: number of elements of type oldtype in each
dimension of the full array (array of positive integers)

IN array_of_subsizes: number of elements of type oldtype in each
dimension of the subarray (array of positive integers)

IN array_of_starts: starting coordinates of the subarray in each
dimension (array of non-negative integers)

IN order: array storage order flag
(state: MPI_ORDER_C or MPI_ORDER_FORTRAN)

IN oldtype: array element datatype (handle)

OUT newtype: new datatype (handle)

« The subarray type constructor creates an MPI datatype describing an n-dimensional
subarray of an n-dimensional array. The subarray may be situated anywhere within
the full array, and may be of any nonzero size up to the size of the larger array as
long as it is confined within this array.

CINECA 23

- Process 1

CINECA

[Proces 2

Summer
School on

COMPUTING

MPI_TYPE_CREATE_SUBARRAY (ndims, array_of_sizes,
array_of subsizes, array_of_starts, order, oldtype, newtype)

double subarray[100][25];
MPI_Datatype filetype;

int sizes[2], subsizes[2], starts[2];
int rank;

MPI_Comm_rank(MPl_COMM_WORLD, &rank);
sizes[0]=100; sizes[1]=100;
subsizes[0]=100; subsizes[1]=25;

starts[0]=0; starts[1]=rank*subsizes[1];

MPI_Type create_subarray(2, sizes, subsizes, starts,
MPI_ORDER_C, MPI_DOUBLE, &filetype);

MPI_Type_commit(&filetype);

24

Summer
School on

COMPUTING

MPI_TYPE_CREATE_DARRAY (size, rank, ndims, array_of gsizes,
array of _distribs, array_of _dargs, array_of psizes,
order, oldtype, newtype)

IN size: size of process group (positive integer)
IN rank: rank in process group (non-negative integer)
IN ndims: number of array dimensions as well as process grid dimensions(positive integer)
IN array_of_gsizes: number of elements of type oldtype in each dimension of global array (array of positive integers)
IN array_of_distribs: distribution of array in each dimension (array of state,
MPI_DISTRIBUTE_BLOCK - Block distribution, MPI_DISTRIBUTE_CYCLIC -

Cyclic distribution, MP1_DISTRIBUTE_NONE - Dimension not distributed.)
IN array_of dargs: distribution argument in each dimension (array of positive integers,
MPI_DISTRIBUTE_DFLT_DARG specifies a default distribution argument)

IN array_of psizes: size of process grid in each dimension (array of positive integers)

IN order: array storage order flag (state, i.e. MPI_ORDER_C or MPI_ORDER_FORTRAN)
IN oldtype: old datatype (handle)

OUT newtype: new datatype (handle)

CINECA 25

Summer
School on

COMPUTING

Distribution scheme: (CYCLIC(2), BLOCK)

Cyclic distribution in first dimension with strips of length 2

Block distribution in second dimension

distribution of global garray onto the larray in each of the 2x3 processes .

garray on the file: « e.g., larray on process (0.1):
(1,1) £

CINECA \ 26

Summer
School on

COMPUTING

int MPI_Type_create_darray (int size, int rank, int ndims, int array_of gsizes[], int array_of distribs[],

int array_of _dargs|], int array_of psizes|], int order, MP|_Datatype oldtype, MPI_Datatype *newtype)

array_of gsize[2] = (/20,30/)

array_of distribs[2] = (/MPI_DISTRIBUTE_CICLIC, MPI_DISTRIBUTE_BLOCK)/)
array_of dargs[2] = (/12, MPI_DISTRIBUTE_DFLT DARG/)

array_of psize[2] = (/2,3/)

CINECA

Summer
School on

COMPUTING

int MPI_Type_create_darray (int size, int rank, int ndims,
int array_of gsizes[], int array_of _distribsf],
int array_of _dargs[], int array_of psizes|], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

Creates a data type corresponding to a distributed, multidimensional array
N-dimensional distributed/strided sub-array of an N-dimensional array
Fortran and C order allowed

Fortran and C calls expect indices starting from 0

An example is provided in the MPI2-1/0 presentation.

CINECA 28

Summer
School on

COMPUTING

The MPI datatype for structures - MPI_TYPE_CREATE_STRUCT - requires dealing with
memory addresses and further concepts:

Typemap: pairs of basic types and displacements

Extent: The extent of a datatype is the span from the lower to the
upper bound (including “holes”)

Size: The size of a datatype is the net number of bytes to be transferred
(without “holes”)

int [N char [
BN EEEE LESESEEE

double HEHEEEEEN derived datatype

CINECA \ 29

Summer
School on

COMPUTING

Basic datatypes:
« size = extent = number of bytes used by the compiler

Derived datatypes:
« extent include holes but...
« beware of the type vector: final holes are a figment of our imagination

old type

new type

« size = 6 x size of “old type”
« extent = 10 x extent of “old type”

CINECA

Summer
School on

COMPUTING

« Returns the total number of bytes of the entry datatype

MPI_TYPE_SIZE (datatype, size)
IN datatype: datatype (handle)
OUT size: datatype size (integer)

« Returns the lower bound and the extent of the entry datatype

MPI_TYPE_GET_EXTENT (datatype, |b, extent)
IN datatype: datatype to get information on(handle)
OUT Ib: lower bound of datatype (integer)

OUT extent: extent of datatype (integer)

CINECA 31

Summer
School on

COMPUTING

« Extent controls how a datatype is used with the count field in a send and similar
MPI operations

« Consider

call MPI_Send(buf,count,datatype,...)

« What actually gets sent?

do i=0,count-1
call MPI_Send(bufb(1+i*extent(datatype)),1,datatype,...)
enddo

where bufb is a byte type like integer*1

e extent is used to decide where to send from (or where to receive to in MPI_Recv)
for count>1

- Normally, this is right after the last byte used for (i-1)

CINECA 32

Summer
School on

COMPUTING

MPI_TYPE_CREATE_STRUCT (count, array_of blocklengths,

array_of displacements, array_of oldtypes, newtype)

IN count: number of blocks (non-negative integer) -- also number of entries the following arrays
IN array_of _blocklenghts: number of elements in each block
(array of non-negative integer)
IN array_of displacements: byte displacement of each block
(array of integer)
IN array_of oldtypes: type of elements in each block
(array of handles to datatype objects)
OUT newtype: new datatype (handle)

CINECA

This subroutine returns a new datatype that represents count blocks. Each block is defined
by an entry in array_of blocklengths, array of displacements and array_of types.

Displacements are expressed in bytes (since the type can change!)
To gather a mix of different datatypes scattered at many locations in space into one
datatype that can be used for the communication.

33

Summer
School on

COMPUTING

struct {
float x, v, z, velocity;
int n, type;
MPI_Type_extent(MPI_FLOAT, &extent); } Particle;

count = 2; Particle particlesINELEM];
blockcounts[0] = 4; blockcount[1] = 2;
oldtypes[0]= MPI_FLOAT; oldtypes[1] = MPI_INT,
displ[0] = O; displ[1] = 4*extent;

particles[INELEM]

MPI_Type_struct (count, blockcounts, displ, oldtypes, &particletype);
MPI_Type_commit(&particletype);

CINECA

struct {
float X, y, z, velocity;
int n, type;

} Particle;

Particle particlesINELEM];

Summer
School on

COMPUTING

CINECA

int count, blockcounts[2];
MPI1_Aint displ[2];
MPI_Datatype particletype, oldtypes|[2];

count = 2;
blockcounts[0] = 4; blockcount[1] = 2;
oldtypes[0]= MPI_FLOAT; oldtypes[1] = MPI_INT;

MPI_Type_extent(MPI_FLOAT, &extent);
displ[0] = O; displ[1] = 4*extent;

MPI_Type_ create_struct (count, blockcounts, displ, oldtypes,
&particletype);

MPI_Type_commit(&particletype);

MPI_Send (particles, NELEM, particletype, dest, tag,
MPI_COMM_WORLD);

MPI_Free(&particletype);

35

Summer
School on

COMPUTING

C struct may be automatically padded by the compiler, e.g.

struct mystruct {

struct mystruct { char a;
char a; char gap_0O[3];
int b; :> int b;
char c; char c;
} x char gap_1[3];
1 x

Using extents to handle structs is not safe! Get the addresses

MPI_GET_ADDRESS (location, address)
IN location: location in caller memory (choice)
OUT address: address of location (integer)

The address of the variable is returned, which can then be used to determine the
correct relative dispacements

Using this function helps wrt portability

CINECA Ny, 36

Summer
School on

MPI_Datatype ParticleType; - G

struct PartStruct {
char class;
double d[6];
int b[7];

} particle[100];

* handles inner
padding...

* but not trailing padding
(important when
sending more than one
struct)

CINECA

int count = 3;

MPI1_Datatype type[3] = {MPI_CHAR, MPI_DOUBLE, MPI_INT};
int blocklen[3] ={1, 6, 7};

MPI1_Aint disp[3];

MPI_Get_address(&particle[0].class, &disp[0]);
MPI_Get_address(&particle[0].d, &disp[1]);
MPI_Get_address(&particle[0].b, &disp[2]);

[* Make displacements relative */

disp[2] -= disp[0]; disp[1] -= disp[0]; disp[0] = O;

MPI_Type_create_struct (count, blocklen, disp, type,
&ParticleType);

MPI_Type_commit (&ParticleType);

MPI_Send(particle,100,ParticleType,dest,tag,comm);
MPI_Type_free (&ParticleType);

37

Summer
School on

COMPUTING

« Using addresses, is still unsafe for arrays of struct because of possible alignments of
the last member of the structure

MPI_TYPE_CREATE_RESIZED (oldtype, newlb, newextent, newtype)

IN oldtype: input datatype (handle)
IN newlb: new lower bound of datatype (integer, in terms of bytes)

IN newextent: new extent of datatype (integer, in term of bytes)
OUT newtype: output datatype (handle)

« Returns in newtype a handle to a new datatype that is identical to oldtype, except
that the lower bound of this new datatype is set to be “lb”, and its upper bound is

set to be “lb + extent”.
* Modifying extent is useful to handle alignments of the last items of structs

« crucial when communicating more than one derived data-type
* Modifying also the lower bound can be confusing, use with particular care

CINECA 38

Summer
School on

COMPUTING

[* Sending an array of structs portably */
struct PartStruct particle[100];
MPI_Datatype ParticleType;

[* check that the extent is correct */

MPI_Type get_extent(ParticleType, &lb, &extent);

If (extent != sizeof(particle[0])) {
MPI1_Datatype old = ParticleType;
MPI_Type_create resized (old, 0, sizeof(particle[0]), &ParticleType);
MPI_Type_free(&old);

}
MPI_Type_commit (&ParticleType);

CINECA

Summer
School on

COMPUTING

According to the standard the memory layout of Fortran derived data is much more
liberal

An array of types, may be implemented as 5 arrays of scalars!

type particle tyssq%ifrt]igée
real :: x,y,z,velocity :>
integer :: n _real - x,}/,z,velocity
end type particle Integer ::n -
type(particle) :: particles(Np) teynpdeggreti?:?erglﬁl;articles(Np)

The memory layout is guaranteed using sequence or bind(C) type attributes
— Or by using the (old style) commons...

With Fortran 2003, MPI_Type create_struct may be applied to common blocks,
sequence and bind(C) derived types

— itis implementation dependent how the MPI implementation computes the
alignments (sequence, bind(C) or other)

The possibility of passing particles as a type depends on MPI implementation: try

pm'cle%x and/or study the MPI standard and Fortran 2008 constructs
CINECA 40

Summer
School on

~~a? _ PARALLEL
COMPUTING

call MPI_GET_ADDRESS(foo%i, disp(1), ierr)

call MPI_GET_ADDRESS(foo%x, disp(2), ierr)

call MPI_GET_ADDRESS(foo%d, disp(3), ierr)

call MPI_GET_ADDRESS(foo%l, disp(4), ierr)

base = disp(1)

disp(1) = disp(1) — base ; disp(2) = disp(2) - base

disp(3) = disp(3) — base ; disp(4) = disp(4) - base

blocklen(1) =1 ; blocklen(2) =1

blocklen(3) =1 ; blocklen(4) =1

type(1l) = MPI_INTEGER ; type(2) = MPI_REAL
type(3) = MPI_DOUBLE_PRECISION ; type(4) = MPI_LOGICAL
call MPI_TYPE_CREATE_STRUCT(4, blocklen, disp, type, newtype, ierr)
call MPI_TYPE_COMMIT(newtype, ierr)

call MPI_SEND(foo%i, 1, newtype, dest, tag, comm, ierr)

Ior

call MPI_SEND(foo, 1, newtype, dest, tag, comm, ierr)

I expects that base == address(foo%i) == address(foo)

call MPI_GET_ADDRESS(fooarr(1), disp(1), ierr)

call MPI_GET_ADDRESS(fooarr(2), disp(2), ierr)

extent =disp(2) - disp(1) ; Ib =0

call MPI_TYPE_CREATE_RESIZED(newtype, Ib, extent, newarrtype, ierr)
call MPI_TYPE_COMMIT(newarrtype, ierr)

call MPI_SEND(fooarr, 5, newarrtype, dest, tag, comm, ierr)

CINECA 41

Summer
School on

COMPUTING

. Performance depends on the datatype - more general datatypes
are often slower

. some MPI implementations can handle important special cases: e.g., constant
stride, contiguous structures

« Overhead is potentially reduced by:

. Sending one long message instead of many small
messages

. Avoiding the need to pack data in temporary buffers

. Some implementations are slow

CINECA 42

Summer

' 4B School on
' upirine
QUESTIONS ???
CINECA 43

§1iis

