Configuration Management

Luciano Baresi
Politecnico di Milano

Credits: Leonardo Mariani (University of Milano Bicocca)

CM: Some definitions

A discipline applying technical and administrative direction and
surveillance to: identify and document the functional and physical
characteristics of a configuration item, control changes to those
characteristics, record and report change processing and
implementation status, and verify compliance with specified
requirements. [IEEE Standard Glossary]

On any team project, a certain degree of confusion is inevitable.
The goal is to minimize this confusion so that more work can get
done. The art of coordinating software development to minimize
this particular type of confusion is called configuration
management. Configuration management is the art of identifying,
organizing, and controlling modifications to the software being built
by a programming team. The goal is to maximize productivity by
minimizing mistakes. [W. Babich]

System building

Version
management
system

System
builder

Build
script

Compilers

Source code
component
versions

Object code Executable
components system

Configuration Management

B

* CM is concerned with managing evolving
software systems:

— control the costs and effort

e procedures + standards
* part of the quality process

System families

HP
version

Desktop
version

Wind ow s XP
version

Server
version

Initial
system

PC version

Linux
version

Sun
version

from Sommerville “Software Engineering”

CM standards

* based on a set of standards which are applied
within an organisation

— how items are identified,
— how changes are controlled
— how new versions are managed

e Standards may be based on external CM
standards (e.g., IEEE standard for CM)
* Products to be managed?

— specifications, designs, programs, test data, user
manuals...

The CM plan

Defines the types of documents to be managed and a
document naming scheme

Defines who takes responsibility for the CM procedures
and creation of baselines

Defines policies for change control and version
management

Defines the CM records which must be maintained

Describes the tools which should be used to assist the CM
process and any limitations on their use

Defines the process of tool use

Defines the CM database used to record configuration
information

Configuration item identification

Large projects typically produce thousands of
documents which must be uniquely identified

Some of these documents must be maintained
for the lifetime of the software

Document naming scheme should be defined
so that related documents have related names

A hierarchical scheme with multi-level names is
probably the most flexible approach

— PCL-TOOLS/EDIT/FORMS/DISPLAY/AST-INTERFACE/
CODE

Configuration hierarchy

PCL-TOOILS
COM PILE BIND EDIT MA KE-GEN
/]\ /I\/I\/\
FORM STRUCTU RES HELP
/\ /I\ /\
DISP LAY QUERY
FORM-SPECS ASTINTERFACE FORM-IO

OB]JECTS CODE TESTS

from Sommerville “Software Engineering”

Traceability

From A. van Lamsweerde
“Requirements Engineering”

Features, revisions, variants

 Feature = change unit
— functional/non-functional: sets of functional/non-functional reqgs

— environmental: assumptions, constraints, work procedures, etc

* Feature changes yield new system version
— revision: to correct, improve single-product version

— variant: to adapt, restrict, extend multi-product version
=> commonalities + variations at variation points

A
space
Variant A Revision A1 Revision A2
(usor olass A) N T— " T — O > meeting date
Variant B Revision B1 Revision B2
arnan Y YOO WU VRS, meeting date
(user class B) ‘ ‘ ‘ > + loce?tion
| [[
1 1 1

A wide variety of changes

Cause Change type Version type
errors & flaws corrective revision
better understanding corrective extension revision

new functionality
improved feature

new users/usage
other ways of doing
new regulation
alternative regulation
organizational change
new priority/constraint

extension
ameliorative
adaptative
adaptative
adaptative
adaptative
adaptative
adaptative

revision, variant
revision
variant
variant
revision
variant
revision
revision

Evolution support requires
traceability management

 Anitem is traceable if we can fully figure out
— WHERE it comes from, WHY it is there
— WHAT it will be used for, HOW it will be used

* Traceability management (TM), roughy

— identify, document, retrieve the rationale &
impact of items

* Objectives of traceability
— assess impact of proposed changes
— easily propagate changes to maintain consistency

TM relies on traceability links
among items

 To be identified, recorded, retrieved

* Bidirectional: for accessibility from
— source to target (forward traceability)
— target to source (backward traceability)

* Within same phase (horizontal) or among phases (vertical)

Objectives, domain concepts, %r E \)a e
requirements, assumptions
horizontal

Architectural components vertical
& connectors

Source code Test data User manual

A taxonomy of traceability link
types

Dependency link

Inter-version link Intra-version link
/ \ / \ Subtype
Variant Revision Derivation Use

What are the types of links traced by Configuration Management?

Inter-version traceability: variant, revision links

B has all features of A + specific ones

@ 'Variant
— master variantOf

\

common reqgs for /% spec;lflc regs for handling
meeting scheduling v important participants

B overrides features of A, adds/removes some, keeps all others

@\ ~~~~~~~ Revision
N previous next

reqs for optimal date SR regs for optimal date
to fit exclusion constraints W to fit exclusion & preference constraints

+ link annotation with
configuration management info:

date, author, status, rationale

Qur focus: how to (semi-)automatically
trace inter-version links

Intra-version traceability: use, derivation links

changing A makes B incomplete, inconsistent, inadequate or ambiguous

(A (®
usedBy uses

~ .
N 7’
N
N\

regs for o { def of what a patron is
loan management o

Bis bqi/f from A under constraint that A must be met

@“ ------- Derivation
metBy derivedFrom

7
7

ObjéCtive of /5% re s for SMS notification
anywhere anytime notification v 9

When the Information About
Revisions and Variants is Useful?

A
space
Variant A Revision A1 Revision A2
arian .
(user class A) O O O > meeting date
Variant B Revision B1 Revision B2 -
arnan Y YOO WU VRS, meeting date
(user class B) ‘ ‘ ‘ > + loce?tion
| [1
1 1 |

CASE for CM

Let’s start by thinking of a world
without version control...

Version Management

& C:h\a\oH\WCVS stuffyWeb_Project 0] x|
| Flle Edt Yiew Favorites Tools Help |ﬁ

| ¥Back v = ~ | Qsearch 4Folders (BHistory | S 2 X = »
| Address (1 web_Project

v
-—

Name / Type Comment
web_Project_FINAL File Folder
CJweb_Project_old File Folder
—Iweb_Project_old2 File Folder
Cweb_Project_current File Folder
—lweb_Project_foo File Folder
Cdweb_Project_Janil File Folder
—lweb_Project_Jan1s File Folder
Clweb_Project_Jan22 File Folder
—Jweb_Project_Feb3 File Folder
=] web_Project_test.tar.gz Z File
=] Web_Project_demoFebS.zip ZIP Fie

4 | i
11 object(s) 338 bytes & My Computer p

Version Management

or this?

Coordination

* How to coordinate the activity of multiple
developers?

— Use one PC?
— Send emails?
— Use a shared folder?

General Scenario

synchronize G[.
————

(AL LA

\.

Repo

Single User Scenario

produce the initial

version

ComputeTaxes

Single User Scenario

Repos

v1.0

ComputeTaxes

y

ComputeTaxes

Single User Scenario

Repos

v1.0

ComputeTaxes

extend!

ComputeTaxes

Single User Scenario

v2.0

ComputeTaxes

w

ComputeTaxes

Single User Scenario

Repos

v2.0

ComputeTaxes

extend!

ComputeTaxes

Single User Scenario

§

%
. ComputeTaxes

v3.0

ComputeTaxes

Single User Scenario

v3.0

ComputeTaxes

First release!

ComputeTaxes

Single User Scenario

Reposit

v3.0 —rel 1

ComputeTaxes

cvs tag “rel 1”

First release!
0

u,

b, = m—

ComputeTaxes

Single User Scenario

Extend and
produce 2
release
Repository
cvs commit
v4.0 —rel 2 <«— cvstag “rel 2” ComputeTaxes

ComputeTaxes

Single User Scenario

Repository v3.0.1

ComputeTaxes

ComputeTaxes
|

v5.0 B

Extend both
rel 1erel 2

ComputeTaxes

Single User Scenario

Repository v3.0.2
ComputeTaxes

v6.0 —

ComputeTaxes

Further develop both
branches

/ ComputeTaxes

Reposi

Multi User Scenario

ComputeTaxes

y

%a
it
v1.0 B

ComputeTaxes

Multi User Scenario

ComputeTaxes

cvs checkout

v1.0 —

ComputeTaxes

v1.0 —

ComputeTaxes

Multi User Scenario

ComputeTaxes

cvs commit

v2.0 —

ComputeTaxes

v1.0 —

ComputeTaxes

Multi User Scenario

When starting a new working session, the user has to execute an update first!

v2.0 —

ComputeTaxes

Reposit

v2.0

ComputeTaxes

v2.0 T

ComputeTaxes

Multi User Scenario

Developers work in parallel

ComputeTaxes

v3.0 T

ComputeTaxes

v3.0 T

ComputeTaxes

Multi User Scenario

ComputeTaxes

cvs commit

v3.0 T

ComputeTaxes

v3.0 T

ComputeTaxes

Multi User Scenario

There is an attempt to overwrite the changes
implemented by another developer — operation

forbidden!!!!
Repository \
v3.0
cVvS commit ComputeTaxes
v3.0
ComputeTa

ComputeTaxes

Multi User Scenario

ComputeTaxes

cvs update

v3.0 T

ComputeTaxes

v3.0 T

ComputeTaxes

ComputeTaxes

Multi User Scenario

v3.0

ComputeTaxes

Manual resolution of
the conflicts

ComputeTaxes

v3.0 i
v4.0 omputeTaxes
ComputeTaxes

ComputeTaxes

5)
T
v3.0 B

Multi User Scenario

ComputeTaxes

cvs commit

v4.0 i

ComputeTaxes

v3.0 T

ComputeTaxes

Structure of the Repository

* A same file occurs in multiple revisions

file1.dat

file2.dat

file3.dat

1.1

1.2

1.3

1.1

1.2

1.4

1.3

1.1

1.2

1.3

1.4

1.5

Structure of the Repository

* A coherent and consistent collection of files existing at
a given time might be relevant

— Versions identify these collections of files

— Each version has a name (tag)

file1.dat

file2.dat

file3.dat

1.1

1.1

— | 1.2

-
-
”
-

v

app-rel-1-0

1.2

1.3

v
-
w

|

|

1
app-rel-2-0

Structure of the Repository

* A projectis usually organized into multiple
development branches

— The main branch is usually called head or trunk or

master
— Branches can be created and merged
Branching
flet.dat | 11 |— | 12 |— | 18 |— | 14
}
1221 —|1222|—|1223
Merging

13 |— | 14 | — | 15 |/ | 16

1222 |7 1223 — | 1224

(free) Tools

CVS

CVS

* CVS = Concurrent Version System
— To trace versions of documents (and files), and
— To support concurrent and distributed activity
* File (revision)
* Module (version)
* Repository

« Working/local copy

Concurrent Development

* Concurrent activity might generate conflicts
 Update before Commit to reveal conflicts

— Conflicts must be resolved by the developer who
has to commit changes

— This rule might affect the behavior of the
developers...

* When a change (e.g., to code) can be
committed?

Subversion

Subversion

More recent than CVS

Simpler than CVS

Overcome some limitations of CVS
There are anyway pros and cons

Subversion vs CVS

* Pros SVN
— Atomic commit

— SVN implementations perform typically better than CVS
implementations

— SVN efficiently stores binary files

* Pros CVS

— SVN has a unique version number for the whole
repository, while CVS assigns version numbers to the
individual files

— SVN “simulates” tags

— in case of “disasters”, the CVS repository is easily readable
(text files), while SVN is not

Git

Git

* Efficient, modern, distributed version control
system

— Advanced branching mechanisms
* Many hosting services available online
e GitHub (github.com)

— Hosting service

— Developers community

— Web-based interface

— Access control

— Collaboration features (including wikis, etc.)

Git uses a distributed model

Centralized Model

Computer A

Checkout

Central VCS Server

Computer B

Checkout

Version Database

Distributed Model

Server Computer

Version Database

version 2

version 1

Computer A

(CVS, Subversion, Perforce)

Version Database

Computer B

A
\ 4

Version Database

(Git, Mercurial)

Result: Many operations are Iocal58

A Local Git project has three areas

Local Operations

workmg stagmg
directory area

Unmodified/modified Staged Committed
Files Files Files

Basic Workflow

e Basic Git workflow
— Modify files in your working directory
— Stage files, adding snapshots of them to your staging area

— Do a commit, which takes the files as they are in the
staging area and stores that snapshot permanently to your
Git directory

* Notes:

— |If a particular version of a file is in the git directory, it is
considered committed

— If it is modified but has been added to the staging area, it
is staged

— If it was changed since it was checked out but has not
been staged, it is modified

Aside: So what is github?

GitHub.com is a site for online storage of Git repositories
Many open source projects use it, such as the Linux kernel

You can get free space for open source projects or you can
pay for private projects

Question: Do | have to use github to use Git?
Answer: No!

you can use Git completely locally for your own purposes,
or you or someone else could set up a server to share files,
or you could share a repo with users on the same file
system

From Version Control

to Continuous Integration

 When a new version is ready, a number of
qguality control activities can be executed
— Testing
— Analysis

* Why not executing them regularly?
— Or after every commit?

Continuous Integration Policy

A time (say 5pm) for delivery of system
components is agreed

A new version of a system is built from these
components by compiling and linking them

This new version is tested using pre-defined tests

— See the second part of the lecture for information
about testing and analysis
Faults that are discovered during testing are

documented and returned to the system
developers

Maven

Project management and
comprehension tool

Build Tools Retrospective

* One level above ant
e Make =2 ant 2 Maven
* (Assembly 2 C 2 C++)

Make makefile target

Ant build.xml| target

Maven project.xml goals
maven.xml

Desired Features

Dependency management

Versioning

Compile Java code, build jars

Execute tests and report results, fail build on failed tests
Run quality-check tools (PMD, Findbugs, Checkstyles)
File generation (XmIBeans, Xsl, Velocity, Aspect))
Property expansion / token substitution

Build vs. deploy vs. release

Full control when needed

Cross-platform

IDE Support

Documentation / Support

Objectives

Make the development process visible or transparent

Provide an easy way to see the health and status of a
project

Decreasing training time for new developers
Bringing together the tools required in a uniform way
Preventing inconsistent setups

Providing a standard development infrastructure
across projects

Focus energy on writing applications

