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Motivations

» Software systems permeate (almost) every aspect of our life

— Software is buggy

— In 2002 the costs related to software errors are estimated
in 60 Billion USD
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Dijkstra (1972)

* Program testing can be used to show the
presence of bugs, but never to show their
absence



RUP: Rational Unified Process
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Quality

* Process Qualities
 Product Qualities

— Internal qualities (maintainability, ...)
— External qualities

* Performance
Usability
Correctness
Portability



Quality Process

 activities + responsibilities
— focused primarily on ensuring adequate quality
— concerned with project schedule

— integral part of the development process
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Key Principle of Quality Planning

cost of faults
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Verification Steps
for Intermediate Artifacts

* Internal consistency checks

— compliance with structuring rules that define
“well-formed” artifacts of that type

— prevent and/or ease detection of common errors
— e.g., compliance to MISRA rules

e External consistency checks
— consistency with related artifacts
— often conformance to a specification
— e.g., conformance to Example SRS v2.0



Strategies vs Plans
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Test and Analysis Strategy

e Lessons of past experience
— an organizational asset built and refined over time

* Body of explicit knowledge
— more valuable than islands of individual competence
— amenable to improvement

— reduces vulnerability to organizational change (e.g.,
loss of key individuals)

* Essential for
— avoiding recurring errors
— maintaining consistency of the process
— increasing development efficiency



Elements of a Strategy

Common quality requirements that apply to all or
most products

— unambiguous definition and measures

Set of documents normally produced during the
quality process

— contents and relationships
Activities prescribed by the overall process
— standard tools and practices

Guidelines for project staffing and assignment of
roles and responsibilities



What You Will See Today

Some practices and tools that you might want to
consider as part of your testing and analysis
strategy




Testing and Analysis
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 Why Static Analysis?

— corner cases hard to execute

* 1f ((currentHour>23) && (isLeapYear))
{..do something terribly wrong..}

— prevention
* check if variables are always initialized before use

* Why Dynamic Analysis?

— Easy to execute but hard to fail bugs
 Memory leak: allocate memory without freeing it

* Why Testing?
— Main approach to check correctness

— Most intuitive way to compare the behavior of a
program wrt an expectation



Our Plan

* Program Analysis
— Static Analysis
* cppCheck, metriculator
— Dynamic Analysis
e Valgrind
* Testing
— Unit testing
* Boost unit tests
— Mocking
* G(oogle)Mock
— Coverage
* gcov
— *Functional*



Why Program Analysis?

Exhaustively check properties that are difficult to test
— Faults that cause failures

* rarely
e under conditions difficult to control

Why Automated Analysis?

Manual program inspection effective in finding faults difficult
to detect with testing

But humans are not good at

— repetitive and tedious tasks

— maintaining large amounts of detail

Automated analysis replace human inspection for some
classes of faults



Static vs dynamic analysis

e Static analysis

— examine program source code
* examine the complete execution space
* but may lead to false alarms

* Dynamic analysis
— examine program execution traces

* no infeasible path problem
* but cannot examine the execution space exhaustively



Rule-Based Static Analysis
(of source code)

RULES
** correctness rules **

** stylistic rules **

4

" o

STATIC

=

ALARMS
** violations of
correctness rules**

** violations of stylistic

rules **

4

In some domains the code must comply to a standard set of rules

e.g., MISRA in the automotive domain



Example

* cppCheck
— open source static analysis tool for C/C++

* Poco C++ Library
— Library for building C++ network-applications



An Experience from a Real Case:
Checking MISRA Rules

214 rules dedicated to development
of better and more reliable
automotive software



36.850 rule violations

Distribution of the Violations per Rule
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Distribution by category
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Pareto Analysis

Top 11 Rules
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Top 11 Rules

MISRA2004-10_1_a Arithmetic type conversion
Avoid implicit conversions between signed and unsigned integer types

MISRA2004-16_10 Functions
If a function returns error information, then that error information shall be tested

MISRA2004-6_3 Types
typedefs that indicate size and signedness should be used in place of the basic types

MISRA2004-14 9 Control Flow
if' and 'else' should be followed by a compound statement

MISRA2004-2_4 Language Extensions
Sections of code should not be commented out

MISRA2004-13_2 Control Statement Extensions
Tests of a value against zero should be made explicit, unless the operand is effectively
Boolean



Top 11 Rules

MISRA2004-12_7 Expressions
Bitwise operators shall not be applied to operands whose underlying type is signed

MISRA2004-14 7 Control Flow
A function shall have a single point of exit at the end of the function

MISRA2004-23 Declarations and definitions
Make declarations at file scope static where possible

MISRA2004-12_5 Expressions
The operands of a logical && or | | shall be primary-expressions

MISRA2004-20_3 Standard Libraries
The validity of values passed to library functions shall be checked



Complexity Metrics
(static analysis)

* Code Complexity = how hard is to maintain,
test, debug, ... the software

* Thus do no write complex code!

How to Measure Complexity?



Code Complexity

* No single measure
— Cyclomatic complexity = complexity of decisions in
a function
e CC< 10 from McCabe

— LOCs = number of lines of code in a function
e Loc < 200 from the literature

— MaxDepth = the nesting level of code blocks in a
function
* MD < 5 from the literature



Example

* Metriculator
— Free open source metrics calculator
— LSLOC — logical source lines of code
— McCabe — cyclomatic complexity

— NbParams — number of parameters in a function/
method

— EfferentCoupling — number of types references
from a class

— NbMembers — number of attributes in a class
(recursive)



Program

Dynamic Analysis

Easy to execute
but hard to falil
cases:

- Memory Leak
- Data races



(Dynamic) Memory Analysis

* |nstrument program to trace memaory access
— record the state of each memory location

— detect accesses incompatible with the current state
e attempts to access unallocated memory
* read from uninitialized memory locations

— array bounds violations:

* add memory locations with state unallocated before and after
each array

e attempts to access these locations are detected immediately

allocat Unallocated
f (unwritable and unreadable)

deallocate
|
[ Allocated and initialized

(readable and writable)

Allocated and uninitialized
‘deallocate

(writable, but unreadable)

initialize




Data Race

e Serious problem in highly concurrent software



Dynamic Lockset Analysis

Lockset discipline: set of rules to prevent data races

— Every variable shared between threads must be protected by a
mutual exclusion lock

Dynamic lockset analysis detects violation of the locking
discipline
— ldentify set of mutual exclusion locks held by threads when
accessing each shared variable

— INIT: each shared variable is associated with all available locks
— RUN: thread accesses a shared variable
* intersect current set of candidate locks with locks held by the thread

— END: set of locks after executing a test = set of locks always held
by threads accessing that variable

* empty set for v= no lock consistently protects v



Simple lockset analysis: example

Thread Program trace Locks held Lockset(x)
{3 {lck1, lck2}
thread A | lock(lck1)
flck1}
X=X+1
flck1}
unlock(lck1}
U
tread B | lock{lck2}
{lck2}
X=X+1
U

INIT:all locks for x

lck1 held

Intersect with
locks held

lck2 held

Empty intersection
potential
race



Testing
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Test Case Implementation

* To automate testing we

need
— driver

— stubs g
— oracles interactic‘;x ‘/ﬁ'eraction :©
* *Unit (e.g., Gunit, Boot ndor test e
unit testing, QTUnit):
framework that supports reque/ Wlt |
development of | :
— drivers and e G i
— Oracles ‘ i




A Sample BOOST Test Case

int add(inti, intj){returni+j;}

BOOST AUTO_TEST CASE( my_test)

{

// seven ways to detect and report the same error:
BOOST_CHECK(add(2,2)==4); // #1 continues on error
BOOST_REQUIRE(add(2,2)==4); // #2 throws on error
if(add(2,2)!=4)

BOOST_ERROR( "Ouch..." ); // #3 continues on error
if(add(2,2)!=4)

BOOST_FAIL( "Ouch..." ); // #4 throws on error
if(add( 2,2 ) !=4) throw "Ouch..."; // #5 throws on error
BOOST_CHECK_MESSAGE( add( 2,2 ) ==4, // #6 continues on error

"add(..) result: " << add( 2,2) );
BOOST CHECK_EQUAL(add(2,2),4); // #7 continues on error

}



*Unit does not support stubs
— testers must manually develop
them

— create stubs that provide different
results to different test cases may
be complex and time-consuming

— faulty stubs reduce productivity
and quality of your testing

*Unit allows to specify conditions
on values returned from the  MOCK__ ____
object under test, but does not
allow to specify the expected
interactions

— e.g., we want to verify that a
ShoppingCart removes 2 items
from a warehouse when a cart
with 2 items is purchased (note
that you do not have the
warehouse)

interacti:)x

‘/{t'eraction

component
undet test




Regression

* Yesterday it worked, today it doesn’ t
— | was fixing X, and accidentally broke Y
— That bug was fixed, but now it’ s back
e Tests must be re-run after any change
— Adding new features
— Changing, adapting software to new conditions
— Fixing other bugs
* Regression testing can be a major cost of
software maintenance
— Sometimes much more than making the change



Basic Problems of Regression Test

* Maintaining test suite

— If I change feature X, how many test cases must be
revised because they use feature X?

— Which test cases should be removed or replaced?
Which test cases should be added?

* Cost of re-testing
— Often proportional to product size, not change size

— Big problem if testing requires manual effort

* Possible problem even for automated testing, when the test
suite and test execution time grows beyond a few hours



The Oracle Problem

* |tis not always possible to predict the result of
a test

* E.g., what is the expected result of an

HPC system that simulates and plan delivery of millions
of items for FedEx?

HPC system that processes billion of transactions for
NASDAQ stock exchange?

HPC Graphic technology used at Dreamworks?

HPC fluid dynamics simulations carried on at Whirpool?



Weak Oracles

* You do not know the precise result of a
simulation but you may know the properties that
must hold for the simulation

— Every item must be part of a travel plan

— The total money in the stock does not change as a
consequence of stock exchanges

— Items hit by a light cannot be darker than the original
item

— The results obtained assuming fluid incompressibility
must not be ... than the results obtained with the
simulation



Metamorphic Testing

* You do not know the precise result of a
simulation but you may know properties that
relate the result of a simulation with the result of

another simulation

— If all the items have been scheduled for shipping in
simulation X, all the items must be also scheduled for
shipping in all the simulations consistent with X that

have to ship a smaller number of items
— Given the brightness of an item in simulation X, the

same item cannot be darker in any simulation
consistent with X that uses a stronger light



Executable Models

* You have an executable model of your
implementation that can be used as an oracle

— E.g., MatLab or Mathematica model
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Did | Write Enough Test Cases?



Why structural testing?

P - | Judging test suite thoroughness based on
g the structure of the program itself

* |If part of a program is not executed by any test case in the
suite, faults in that part cannot be exposed

e Butwhat'sa “part’?

— Typically, a control flow element or combination: e.g., Statements,
Branches



No guarantees

The state may not be corrupted when the statement is
executed with some data values

— E.g., a/b generates a failureonly if b==0

Corrupt state may not propagate through execution to
eventually lead to failure

— E.g., trainSpeed = 3 X 1078 m/s generates a problem only if the
speed of the train is used in a computation

What is the value of structural coverage?

— Increases confidence in thoroughness of testing by removing
obvious inadequacies



Structural testing in practice

Infeasible
coverage data paths
run test d et _ Interpret the
un tests and get = - results
coveragedata = = = b

Flaws in

| add test cases the test
suite

e Attractive because automated
— coverage measurements are convenient progress indicators
— sometimes used as a criterion of completion




Statement testing

* Adequacy criterion: each statement must be
executed at least once

* Coverage:

— # executed statements/ # statements

e Rationale: a fault in a statement can only be
revealed by executing the faulty statement



int cgi__decode (char *encoded , char *decoded )
v
har * = encoded ;
Example Eta— T
intok = 0;
Tp= T
1“7 “test”, [ whie ():eptr){ B)-
“test+case%1Dadequacy”} e s ©
17/18 = 94% Stmt Cov. (C= *eptr; J
if (c=="+"){
T _ fFaIseA True \v
P (o)
i if (c=="%' *dptr ="'
{“adequate+test [e'se'f (0= ~] 6 Q%
%ODGXGCUUOI’]%7U”} hFalseJ\ True \'
_ 0
18/18 = 100% Stmt Cov. else @ int digit _high = Hex_Values[*(++eptr)} @
*dptr = *eptr; int digit _low = Hex_Values [*(++eptr)];
T, = } if (digit_high ==-1 | digit_low == -1) {
‘“ » o ” o »” ﬁFalse;LTrue
{“%3D”, “%A”, “a+b”, - @@kf m
“test”} *dptr = 16 * digit_high + ) J
digit_low;
18/18 = 100% Stmt Cov. )
N y §
*dptr ="\0; @ ++dptr; <I;)‘
return ok ; —+ ++eptr;
} } J




“All statements’ can miss some cases

« Complete statement
coverage may not imply
executing all branches in
a program

 Example:

- Suppose block F were
mM1ssing
- Statement adequacy

would not require false
branch from D to L

T3 =
{“n, “+%OD+%4J”}

100% Stmt Cov.
No false branch from D

int cgi__decode (char *encoded , char *decoded )

v
( {char *eptr = encoded ; @/J

char *dptr = decoded ;
intok = 0;

L
< while (*eptr) { -

Fabe#ﬁueﬁ'
/ charc;
C = *eptr; /J
if (c=="+) {
False —A True .
(elseif (c=="%"){ (D) [*dptr =" (l%
}

hFaIseJ\ True 3
Else { C) fnt digit_high = Hex_Values [*(++eptr)]; @
| ]

“dptr = "eptr; int digit_low = Hex_Values [*(++eptr)];
f (digit_high == -1 || digit_low ==-1) {

V/—Falsey&'ﬂ’ue
3

else {

*dptr = 16 * digit_high +

digit_low;

}

*dptr ="\0; ++dptr; @
return ok ; 4# ++eptr;
) )




Branch testing

* Adequacy criterion: each branch (edge in the CFG)
must be executed at least once

* Coverage:
e # executed branches/# branches

182211

T,={"", “+%0D+%4)"}
100% Stmt Cov. 88% Branch Cov. (7/8 branches)

T2 — {“%3D”’ “%A”’ “a+b”’ “test”}
100% Stmt Cov. 100% Branch Cov. (8/8 branches)



Statements vs branches

Covering all
statements

Covering all
branches

e
G



Did | Write the Right Test Cases?



Functional testing

* Functional testing: Deriving test cases from
program specifications

 Functional refers to the source of information used in test
case design, not to what is tested

* Also known as:
— specification-based testing (from specifications)
— black-box testing (no view of the code)

* Functional specification = description of intended
program behavior

— either formal or informal



Systematic vs Random Testing

e Random (uniform):
— Pick possible inputs uniformly
e Systematic (non-uniform):
— Try to select inputs that are especially valuable

— Usually by choosing representatives of classes
that are likely to fail often or not at all

* Functional testing is systematic testing



Why Not Random?

e Non-uniform distribution of faults
e Example:

b= Vb2 — 4dac

T =
2a

Assume that fault is an incomplete implementation logic:
Program does not properly handle the case in which

b? - 4ac =0 and a=0
Failing values are sparse in the input space — needles in a

very big haystack. Random sampling is unlikely to choose
a=0.0 and b=0.0



The space of possible input values

(the haystack)

Systematic Partition Testing

Failures are sparse
in the space of
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Steps: From specification
to test cases

* 1. Decompose the specification

— If the specification is large, break it into independently testable
features to be considered in testing

e 2.Select representatives
— Representative values of each input, or
— Representative behaviors of a model

* 3. Form test specifications

— Typically: combinations of input values, or model behaviors

e 4. Produce and execute actual tests



Test environment

Data generator

—

Creation of
test data

Test driver

=

Control of

=l test data

supply

Control of

|  software

execution

Recording of

| software

responses

—

Analysis of tests

-f— Results analyzer

J

Coverage analyzer

Generation of

predicted . Comparison of actual

results

Prediction generator
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Error reporting




Some conclusions
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