
Introduction to UML

Paolo Ciancarini – paolo.ciancarini@unibo.it
Department of Informatics – University of Bologna

Software models

• A model is a description of a system

• A model is always an abstraction at “some

level”: it captures the essential aspects of

a system and ignores some details

UML is a modeling language

• A modeling language allows the specification,
the visualization, and the documentation of the
development of a software system

• The models are descriptions which users and
developers can use to communicate ideas
about the software

• UML 1.* is a modeling language

• UML 2.* is still a modeling language, but it is so
“detailed” that can be used also as a
programming language (see OMG’s Model
Driven Architecture)

Evolution of UML
• OO languages appear, since mid 70’s to late 80’s
• Between ’89 and ’94, OO methods increased from 10 to 50
• Unification of ideas began in mid 90’s

• 1994 Rumbaugh joins Booch at Rational
– 1995 v0.8 draft Unified Method

• 1995 Jacobson joins Rational (Three Amigos)
– 1996 June: UML v0.9 published

– 1997 Jan: UML 1.0 offered to OMG
– 1997 Jul: UML 1.1 OMG standard
– 1998: UML 1.2
– 1999: UML 1.3
– 2001: UML 1.4

• 2003 Feb: IBM buys Rational

– 2003: UML 1.5
– 2004: UML 1.4.2 becomes the standard ISO/IEC 19501

– 2005: UML 2.0
– 2007: UML 2.1.2
– 2009: UML 2.2
– 2010: UML 2.3
– 2011: UML 2.4
– 2013: UML 2.5

pre-UML

UML 1.x

UML 2.0

UML

includes

several

visual

notations

Deployment diagram

Three modeling axes

Functional

DynamicStatic

Use case diagram

(System sequence diagram)

(Activity diagram)

State diagram

Collaboration diagram

(Sequence diagram)

(Activity diagram)

Class diagram

(Object diagram)

Component diagram

(Deployment diagram)

Example

• A chess program could be “stand-alone”,

“client-server”, “agent based”, etc.

• Its behavior should always be coherent

with the rules of chess

• What is its goal? To play and win a chess

game against an opponent

Goals and responsibilities

• The very same chess program, with identical structure

and behavior, could be used with a different goal?

• For instance, could it be used to learn to play chess?

Responsibility of the program: teach chess

• Or to write a chess book, like a chess game editor?

Responsibility of the program: write chess texts

• Or to play a game of loser’s chess (where who is

checkmated wins)? Responsibility: play games with rules

slightly different from chess

Each responsibility corresponds to (at least) a use case

From responsibilities to use cases

Play

Teach

Write

Play with other rules

<<extend>>

User

Use Case diagram

– A UC diagram describes the observable
behavior of a system

– It describes the main interactions between the
system and external entities, including users
and other systems

– It is a summary of the main scenarios where the
system will be used

– It describes the main user roles

– It is a visual summary of the requirements of the
system

Example

Insurance SalespersonCustomer

Negotiate policy

Sales statistics

Customer statistics

Use Case: elements

Check

Grades

Registeractor

system

boundary

use case

Validate User

<<include>>

Student

association

Elements of a Use Case Diagram

• Actor:
– Represents a role played by external entities (humans,

systems) that interact with the system

• Use case:
– Describes what the system does (i.e., functionality)

– Scenario: sequence of interactions between the
actors and the system

• Relationships:
– Association between actors and use cases

– Extension (or generalization) among actors

– Dependency among use cases: include and extend

Example

<<include>>

User

Student

Faculty
Enter Grades

Validate User

Check Grades

Get Roster

Register

<<include>>

<<extend>>

User

Student Faculty

Use Case Scenario

Use Case: Check Grades

Description: View the grades of a specific year and semester

Actors: Student

Precondition: The student is already registered

Main scenario:

User System

3. The user enters the year and

semester, e.g., Fall 2013.

1. The system carries out “Validate User”, e.g.,

for user “miner” with password “allAs”.

2. The system prompts for the year and semester.

4. The system displays the grades of the courses

taken in the given semester, i.e., Fall 2013.

Alternative:

The student enters “All” for the year and semester, and the system displays

grades of all courses taken so far.

Exceptional:

The “Validate User” use case fails; the system repeats the validation use case.

Exercise

Draw a use case diagram and a related scenario for the

following situation:

• A user can borrow a book from a library;

– extend it with borrowing a journal

• a user can give back a book to the library

– including the use case when the user is identified

18

Modeling (parallel, distributed) processes

• Processes and process descriptions

• Activity diagram notation

• Activity diagram execution model

• Making activity diagrams

Processes and their description

A process is a collection of related tasks that

transforms a set of inputs into a set of outputs.

A process is a collection of related tasks that

transforms a set of inputs into a set of outputs.

Process description notations describe
workflow processes as well as the
computational processes we design.

An activity diagram shows actions and the flow

of control and data between them.

An activity diagram shows actions and the flow

of control and data between them.

20

Activities and actions

An activity is a non-atomic task or
procedure decomposable into actions.

An action is a task or procedure that
cannot be broken into parts.

An activity is a non-atomic task or
procedure decomposable into actions.

An action is a task or procedure that
cannot be broken into parts.

21

Elements of an activity diagram

activity sy mbol

action node

activity edge

initial node

activity final node

22

Execution model

• The “execution” of an activity diagram is modeled
by tokens that are produced by action nodes,
travel over action edges, and are consumed by
action nodes.

• When there is a token on every incoming edge of
an action node, it consumes them and begins
execution.

• When an action node completes execution, it
produces tokens on each of its outgoing edges.

• An initial node produces a token on each outgoing
edge when an activity begins.

• An activity final node consumes a token available
on any incoming edge and terminates the activity.

23

Branching nodes

guards

merge
node

decision
node

24

Branching execution

• If a token is made available on the

incoming edge of a decision node, the

token is made available on the

outgoing edge whose guard is true.

• If a token is available on any incoming

edge of a merge node, it is made

available on its outgoing edge.

• Guards must be mutually exclusive

25

Deadlock

RunDrier cannot

execute: when the

activity begins,

there is a token on

the edge from the

initial node but not

on the other

incoming edge.

26

Forking and Joining Nodes

fork node

join node

27

Forking and Joining Execution

• A token available on the incoming edge

of a fork node is reproduced and made

available on all its outgoing edges.

• When tokens are available on every

incoming edge of a join node, a token is

made available on its outgoing edge.

• Concurrency can be modeled without

these nodes.

28

Object Nodes

Data and objects are shown as object nodes.

object node

object
node
state

29

Control and Data Flows

• Control tokens do not contain data, data tokens

do.

• A control flow is an activity edge that is a
conduit for control tokens.

• A data flow is an activity edge that is a
conduit for data tokens.

• Rules for token flow through nodes apply
to both control and data tokens, except
that data is extracted from consumed
tokens and added to produced tokens.

30

Control and Data Flow Example

control flow

control flow

data flow s

31

Activity parameters

• Activity parameters are object nodes

placed on activity symbol boundaries to

indicate data or object inputs or outputs.

• Activity parameters contain the data or

object name.

• Activity parameter types are specified in

the activity symbol beneath the activity

name.

32

Activity Parameter Example

output
activity
parameter

input
activity

parameter

activity
parameter

ty pes

33

Pragmatics of activity diagrams

• Flow control and objects down the page and left
to right

• Name activities and actions with verb phrases.

• Name object nodes with noun phrases.

• Don’t use both control and data flows when a
data flow alone can do the job.

• Make sure that all nodes entering an action node
can provide tokens concurrently.

• Use the [else] guard at every branch.

Exercises

Draw an activity diagram for the following situations:

• A user borrows a book from a library and after reading it

she gives back the book to the library

• A user asks to buy a book, it is bought, added to the

catalog and finally borrowed to the user

Object-Oriented Modeling

• A software system can be modeled as a set of objects
that interact by exchanging messages

• UML models describe structures of objects and their
dynamic behavior

• No semantic gap, seamless development process

Data-oriented

Conceptual/computational world

Real world
Abstraction

Interpretation

Object-oriented

Key Ideas of OO Modeling

• Abstraction

– hide minor details so to focus on major details

• Encapsulation

– Modularity: principle of separation of functional concerns

– Information-hiding: principle of separation of design decisions

• Relationships

– Association: relationship between objects or classes

– Inheritance: relationship between classes, useful to represent

generalizations or specializations of objects

• Object-oriented language model

= object (class) + inheritance + message send

Main idea

• With UML we model systems made of

objects which have some relationships

among them

• Objects are instances of classes

• Classes define the structure of objects and

their relationships

Class

• A class is the description of a set of objects

• Defines the structure of the states (attributes)

and the behaviors (methods) shared by all the

objects of the class (also called instances)

• Defines a template for creating instances

– Names and types of all fields

– Names, signatures, and implementations of all

methods

Notation for classes

• The notation for classes is a rectangular box

with three compartments

ClassName

field1

……

fieldn

method1

…

methodn

The top compartment shows the class

name

The middle compartment contains the

declarations of the fields, or attributes, of

the class

The bottom compartment contains the

declarations of the methods of the class

Example

Point

- x: int

- y: int

+ move(dx: int, dy: int): void

Point

x

y

Move

Point

A point class at three different abstraction levels

Exercise

Draw a class diagram for the following Java code

class Person {

private String name;

private Date birthday;

public String getName() {

// …

}

public Date getBirthday() {

// …

}

}

A counter class

class Counter{

private counter: integer;

public integer display()

{return counter};

public void tic()

{counter = counter + 1};

public void reset()

{counter = 0};

}

Counter

- counter: integer

+ display: integer

+ tic: void

+ reset: void

c3:Counter p:Printer

A class in UML
A corresponding class

in a programming language

Using an object of type class

in an object oriented system

Class diagram: example

dateReceived: Date[0..1]

isPrepaid: Boolean[1]

number: String[1]

price: Money

contactName

creditRating

creditLimit

Employee

Order line

Product

quantity: Integer

price: Money

Customer

name[1]

address[0..1]

getCreditRating(): String

*

* {ordered}

*

*

1

0..1salesRep

lineItems

1

1

creditCardNumber

Personal Customer

{getCreditRating()==“poor”}

{if

Order.customer.getCreditRating

is “poor” then Order.isPrepaid

must be true}

Order

generalization

association

role name

constraint

attributes

operationclass

multiplicity

class name

Corporate Customer

Example

• A university is an organization where some

persons work, some other study

• There are several types of roles and

grouping entities

• We say nothing about behaviors, for the

moment

A class diagram

Person

Professor

Employee

Male

Female

Foreigner

Citizen

Student

PhD

student

Masters

student

Undergraduate

student

Administrative Associate

professor

Full professor

Research

fellow

Technician

Object diagram

• An object diagram represents a “snapshot” of a

system composed by set of objects

• An object diagram looks like a class diagram

• However, there is a difference: values are

allocated to attributes and method parameters

• While a class diagram represents an abstraction

on source code, an object diagram is an

abstraction of running code

Example (object diagram)

r:Robot

w:World

a1:Area a2:Area

w1: Wall

width = 36

w2: Wall

width = 96

d1: Door

width = 36

w3: Wall

width = 96

[moving]

48

Example: chemical elements

(class diagram)

Hydrogen

Element

Carbon

<<covalent>>

C <<covalent>>

C

C H

49

Example: molecule

(object diagram)

:Carbon :Carbon

:Hydrogen

:Hydrogen

:Hydrogen

:Hydrogen

:Hydrogen:Hydrogen

Objects vs. Classes

Interpretation in the

real world

Representation in the

model

Object An object is anything in the

real world that can be

distinctly identified

An object has an identity, a

state, and a behavior

Class A class is a set of objects

with similar structure and

behavior. These objects are

called instances of the class

A class defines the structure

of states and behaviors that

are shared by all of its

instances

AZ611:Flight Boston:City
from to

Roma:City

Flight City

from

to

Class diagrams denote systems of objects

Object diagram instantiating a class diagram

Author

name: string

age: integer

Computer

name: string

screen: integer

Paolo:Author

name= “Paolo”

age= 19

JobMac:Computer

name= “MacBook”

screen=27

HomeMac:Computer

name= “MacBook”

screen= 21

0..1 1..*

writeswith
Class diagram

Object diagram

that is an instance

of the class

diagram above

Roles and multiplicity

• An association line may have a role name and a
multiplicity specification

• The multiplicity specifies an integer interval, e.g.,
– l..u closed (inclusive) range of integers

– i singleton range

– 0..* nonnegative integer, i.e., 0, 1, 2, …

Student Faculty
advisee advisor

10..*

Association example

• A Student can take up to five Courses

• Every Student has to be enrolled in at least one course

• Up to 300 students can enroll in a course

• A class should have at least 10 students

Student Course
takes

10..300 1..5

Example

class Persona {

private String nome;

private String cognome;

private Date dataNascita;

private static int numPersone;

public Persona marito;

public Persona moglie;

public boolean siSposa(Persona p) {

…

}

public boolean compieAnni(Date d) {

…

}

}

Aggregations

• They are specialized associations that stress

the containment between the two classes

• We have a part-of relationship

Course Curriculum
1..* 0..*

Composites

• Composites are heavy aggregations

– The contents is subordinated to the container

– For example, deleting the container means deleting
the contents as well

Slider
Panel Button

Window

scrollbar body close
2

1
1

1

1

1

Inheritance (Generalization)

• Makes common properties
explicit

• Inheritance is an elegant
modeling means, but
– It is not mandatory

– Maybe we must add
properties

– Maybe we must
refine/modify other
properties

• We can work
– Bottom-up (Generalization)

– Top-down (Specialization)

Person

Student Professor

Conclusions

• UML is a modeling language born for

object oriented (software) systems

• It especially effective for describing

complex systems and reusing design

ideas

• Next lecture deals with the topic of reusing

design ideas expressed in UML

