
Software engineering
for HPC

Paolo Ciancarini – paolo.ciancarini@unibo.it
Department of Informatics – University of Bologna

mailto:paolo.ciancarini@unibo.it

Agenda

 What is Software Engineering?

 The Software Development Lifecycle

 Software Development Activities

 Methods and tools

2

Using software in a research project

Your ProjectYour Project

?

Publications

Data

Software

v

v

?

Used by

other

projects

Other

software ?

What is the future of your software?

4

Typical software development in HPC

 Thrown away

 Kept on some systems, possibly in different versions

 Dumped on a code repository

Research

Project
Research

Questions

Develop

Software

Run

Software

Analyse

Data

Publish

Paper

Project

Ends ?

What happens to the software?

What happens when…

• You have a follow-on project?

• Someone wants to (re)use the code?

• Someone wants to reproduce your results?

• Maintenance or future reuse should be considered?

Beware of software aging!

Software can age
 Ill-conceived modifications

 Functional operation degrades over time

 It becomes unsustainable, unusable

 Lack of proper maintenance

 Infrastructure (os, libraries, language platform) evolves

 Some software types more susceptible

Enters Software Engineering

“Software engineering is the discipline concerned

with all aspects of software production from the

early stages of system specification to maintaining

the system after it has gone into use”

[Sommerville 2007]

7

Software Engineering

 “The establishment and use of sound

engineering principles in order to obtain

economically software that is reliable and

works efficiently on real machines.” [Naur &

Randell, 1968]

8

Software Engineering

 A definition and some issues

 “developing quality software on time and within

budget”

 Trade-off between a system perfectly

engineered and the available resources

 SwEng has to deal with real-world issues

 State of the art

 Community decides on “best practices” + life-long

education

9

What is Software Engineering?

A naive view:

Problem Specification Final Program

But ...

 Where did the problem specification come from?

 How do you know the problem specification corresponds to and

satisfies the user’s needs?

 How did you decide how to structure your program?

 How do you know the program actually meets the specification?

 How do you know your program will always work correctly?

 What do you do if the users’ needs change?

 How do you divide tasks up if you have more than a one person in

the developing team?

 How do you reuse exisiting software for solving similar problems?

coding

10

What is Software Engineering?

“multi-person construction of multi-version software”

— Parnas

 Team-work

 Scale issue (“program well” is not enough)

+ communication issues: Conway’s law

 Successful software systems must

evolve or perish

 Change is the norm, not the exception

11

Conway’s Law

 The law: Organizations that design systems

are constrained to produce designs that are

copies of the communication structures of

these organizations

 Example: "If you have four groups working on

a compiler, you'll get a 4-pass compiler”

 Several studies found significant differences

in modularity when software is outsourced,

consistent with a view that distributed teams

tend to develop more modular products

12

What is Software Engineering?

“software engineering is different from other
engineering disciplines”

— Sommerville

 It is not constrained by physical laws

 limit = human knowledge

 It is constrained by social forces

 Balancing stakeholders needs

 Consensus on functional and especially
non-functional requirements

13

Software Engineering for HPC

 Software engineering aims to designing,

implementing, and modifying software so that it is

faster to build, of higher quality, more maintainable

 In HPC there are all the general problems of software

development, and the specific problem that software

developers have scarce knowledge of software

engineering best practices

 In the following slides we will deal with some of these

problems and suggest some solutions

14

Roadmap

 What is Software Engineering?

 The Software Development Lifecycle

 Software Development Activities

 Methods and tools

15

Software: the product of a process

 Many kinds of software products many kinds of

development processes

 “Study the process to improve the product”

 A software development process can be

described according to some specific “model”

 Examples of process models: waterfall, iterative,

agile, explorative,…

 These models differ mainly in the roles and

activities that the stakeholders cover
16

Stakeholders

Typical stakeholders in a sw process
 Users

 Decisors

 Designers

 Management

 Technicians

 Funding people

 …

Each stakeholder has a specific viewpoint on
the product and its development process

17

HPC stakeholders attributes

18

V.Basili et al., Understanding the High-Performance-

Computing Community: A Software Engineer’s

Perspective, IEEE Software, 2008

The software development process

 Software process: set of roles,
activities, and artifacts necessary to
create a software product

 Possible roles: stakeholder, designer,
developer, tester, maintainer, ecc.

 Possible artifacts: source code,
executables, specifications, comments,
test suite, etc.

19

Activities

 Each organization differs in products it builds
and the way it develops them; however, most
development processes include:
 Specification

 Design

 Verification and validation

 Evolution

 The development activities must be modeled
to be managed and supported by automatic
tools

20

Software Development Activities

Requirements
Collection

Establish customer’s needs

Analysis Model and specify the requirements (“what”)

Design Model and specify a solution (“how”)

Implementation Construct a solution in software

Testing Validate the software against its requirements

Deployment Making a software available for use

Maintenance Repair defects and adapt the sw to new requirements

NB: these are ongoing activities, not sequential phases!

21

First development step: requirements

 The first step in any development

process consists in understanding the

needs of someone asking for a software

 The needs should be stated explicitly in

“requirements”, which are statements

requiring some function or property to

the final software system

22

The requirements pyramid
Some user has some need

Needs are answered by “features” that

some system must have

Each feature corresponds to a need and

is a collection of requirements

Features and requirements can be

aggregated in “scenarios” where testing

can prove that the features will satisfy the

needs

www.ibm.com/developerworks/rational/library/04/r-3217
23

24

Requirements and tests

User

requirements

Test reqs

Scenarios and

test cases

Test script

Models for the software process

 Waterfall (planned, linear)

 Spiral (planned, iterative)

 Agile (unplanned, test driven)

25

Waterfall characteristics

 Delays confirmation of

critical risk resolution

 Measures progress by

assessing work-products

that are poor predictors

of time-to-completion

 Delays and aggregates

integration and testing

 Precludes early

deployment

 Frequently results in

major unplanned

iterations

Code and unit test

Design

Subsystem integration

System test

Waterfall Process

Requirements
analysis

26

The Classical Software Lifecycle

The classical

software lifecycle

models the software

development as a

step-by-step

“waterfall” between

the various

development phases

The waterfall model is unrealistic for many reasons:

• Requirements must be frozen too early in the life-cycle

• Requirements are validated too late

• Risks in costructing wrongly the software are high

Design

Implementation

Testing

Maintenance

Analysis

Requirements
Collection

27

Problems with the waterfall lifecycle

1. “Real projects rarely follow the sequential flow that the

waterfall model proposes. Iteration always occurs and creates

problems in the application of the paradigm”

2. “It is often difficult for the customer to state all requirements

explicitly. The classic life cycle requires this and has difficulty

accommodating the natural uncertainty that exists at the

beginning of many projects.”

3. “The customer must have patience. A working version of the

program(s) will not be available until late in the project

timespan. A major blunder, if undetected until the working

program is reviewed, can be disastrous.”

— Pressman, SE, p. 26

28

Iterative Development

In practice, development is always iterative,

and most activities can progress in parallel

Requirements

Collection

Testing

Design

Analysis
Validation through prototyping

Testing based on requirements

Testing throughout implementation

Maintenance through iteration

Design through refactoring

If the waterfall

model is pure

fiction, why is it

still the dominant

software process?

Implementation

29

Iterative Development

 Plan to iterate your analysis, design and

implementation

 You will not get it right the first time, so

integrate, validate and test as frequently as

possible

 During software development, more than one

iteration of the software development cycle

may be in progress at the same time

 This process may be described as an

'evolutionary acquisition' or 'incremental build'

approach

30

Iterative development

Plan to incrementally develop (i.e.,

prototype) the system

 If possible, always have a running version

of the system, even if most functionality is

yet to be implemented

 Integrate new functionality as soon as

possible

 Validate incremental versions against user

requirements.

31

The Spiral Lifecycle (B.Bohem)

evolving system

initial requirements

first prototype

alpha demo

go, no-go decisioncompletion �����������	�

���	���
�����������������

Planning =determination

of objectives, alternatives

and constraints

Risk Analysis =Analysis of

alternatives and identification/

resolution of risks

Customer Evaluation =
Assessment of the

results of engineering

Engineering =
Development of the

next level product

Risk = something that

will delay project or

increase its cost

32

A process for HPC [Lugato 2010]

33

Risk Reduction

TimeTime

R
is

k
R

is
k

Waterfall Risk

Iterative Risk

Risk: waterfall vs iterative

34

Requirements,
models

and code

Tests

Iteration 1

Test Suite 1

Iteration 2

Test Suite 2

Iteration 4

Test Suite 4

Iteration 3

Test Suite 3

Test each iteration

35

Testing before designing

 What is software testing? an investigation

conducted to provide information about the

quality of some software product

 In planned process models testing happens

after the coding, and checks if the code

satisfies the requirements

 What happens if we define the tests before

the code they have to investigate?

36

Agile development processes

 There are many agile development methods;
most minimize risk by developing software in
short amounts of time

 The requirements are initially grouped in
stories and scenarios

 Then the tests for each scenario are agreed
with the user, before any code is written

 Each code is tested against its scenario tests,
and integrated after it passes its unit tests

37

Agile ethics

 www.agilemanifesto.org

 Management can tend to prefer the things on
the right over the things on the left

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we prefer the items on the left.

38

Working Software

Delivered

Requirements
Prioritised Requirements &
Features “Backlog”Requirements

Requirements

Requirements

Requirements

Prioritised

Iteration

Scope

Daily Scrum Meeting:

15 minutes
Each teams member answers 3 questions:

1) What did I do since last meeting?

2) What obstacles are in my way?

3) What will I do before next meeting?

Team-Level

Planning Every 24hrs

Every Iteration

4-6 weeks

Applying Agile:

Continuous integration; continuously monitored progress

SCRUM�

39

Roadmap

 What is Software Engineering?

 The Software Development Lifecycle

 Software Development Activities

 Methods and tools

40

Requirements Collection

User requirements are often expressed informally:

 They are grouped in features

 They are put in context in usage scenarios

Even if requirements are documented in written form,

they may be incomplete, ambiguous, or incorrect

41

Changing requirements

Requirements will change!

 inadequately captured or expressed in the first place

 user and business needs may change during the

project

Validation is needed throughout the software

lifecycle, not only when the “final system” is

delivered!

 build constant feedback into your project plan

 plan for change

 early prototyping [e.g., UI] can help clarify

requirements

42

Requirements Analysis

Analysis is the process of specifying what a
system will do

 The goal is to provide an understanding of what the
system is about and what its underlying concepts are

The result of analysis is a specification document

Does the requirements
specification correspond to the

users’ actual needs?

43

Object-Oriented Analysis

An object-oriented analysis results in models of
the system which describe:

 classes of objects that exist in the system
 responsibilities of those classes

 relationships between those classes

 use cases and scenarios describing
 operations that can be performed on the system

 allowable sequences of those operations

44

Design

Design is the process of specifying how the
specified system behaviour will be realized
from software components. The results are
architecture and detailed design documents.
Object-oriented design delivers models that describe:

 how system operations are implemented by
interacting objects

 how classes refer to one another and how they are
related by inheritance

 attributes and operations associated to classes

Design is an iterative process,
proceeding in parallel with

implementation!
45

Prototyping

A prototype is a software program developed to
test, explore or validate a hypothesis, i.e. to
reduce risks

An exploratory prototype, also known as a
throwaway prototype, is intended to validate
requirements or explore design choices
 UI prototype — validate user requirements

 rapid prototype — validate functional requirements

 experimental prototype — validate technical feasibility

46

Implementation and Testing

Implementation is the activity of
constructing a software solution to the
customer’s requirements.

Testing is the process of validating that
the solution meets the requirements.

 The result of implementation and testing is
a fully documented and validated solution.

47

Testing, Testing!

1

• Provide automated build process
• Far easier & quicker to validate changes

• e.g. Make, Ant, Maven

2

• Provide automated regression test suite - TDD
• Do changes break anything?

• JUnit, CPPUnit, xUnit, fUnit, …

3
• Join together: automated build & test

• A ‘fail-fast’ environment

4

• Infrastructure support
• Nightly builds – run build & test overnight, send reports

• Continuous integration - run build & test when codebase changes

Towards anytime releasable code!

Iterativity of design, Implementation and testing

Design, implementation and testing are iterative activities

 The implementation does not “implement the
design”, but rather the design document documents
the implementation!

 System tests reflect the requirements specification

 Testing and implementation go hand-in-hand

 Ideally, test case specification precedes design and
implementation

49

Maintenance

Maintenance is the process of changing a system after
it has been deployed.

 Corrective maintenance: identifying and repairing
defects

 Adaptive maintenance: adapting the existing solution
to new platforms

 Perfective maintenance: implementing new
requirements

 Preventive maintenance: repairing a software
product before it breaks

In a spiral lifecycle, everything after the
delivery and deployment of the first prototype
can be considered “maintenance”!

50

Maintenance activities

“Maintenance” entails:

 configuration and version management

 reengineering (redesigning and

refactoring)

 updating all analysis, design and user

documentation

Repeatable, automated

tests enable evolution

and refactoring

51

Maintenance costs

“Maintenance”

typically accounts for

70% of software costs!

Means: most

project costs

concern continued

development after

deployment

– Lientz 1979

52

Deployment

 Virtual Machines

 Software pre-installed, ready to run

 Often easiest

 Not enough in itself – documentation!

 Release software

 Prioritise & select requirements -> Develop -> Test ->
Commit changes to repository -> Test -> Release

 Documentation (minimum: quick start guide)

 Licencing

 Specify rights for using, modifying and redistributing

Configuration management

 Run your own CM system, if you have the resources
 Generally easy to set up
 Full control, but be sure to back it up!

 Some public solutions can offer most of these for free
 SourceForge, GoogleCode, GitHub, Codeplex, Launchpad,

Assembla, Savannah, …
 BitBucket for private code base (under 5 users)
 See (for hosting code and related tools)

http://software.ac.uk/resources/guides/choosing-repository-
your-software-project

 See (for hosted continuous integration)
http://www.software.ac.uk/blog/2012-08-09-hosted-
continuous-integration-delivering-infrastructure

“If you’re not using version control, whatever else you might be doing with a
computer, it’s not science” – Greg Wilson, Software Carpentry

http://software.ac.uk/resources/guides/choosing-repository-your-software-project
http://software.ac.uk/resources/guides/choosing-repository-your-software-project
http://software.ac.uk/resources/guides/choosing-repository-your-software-project
http://software.ac.uk/resources/guides/choosing-repository-your-software-project
http://software.ac.uk/resources/guides/choosing-repository-your-software-project
http://software.ac.uk/resources/guides/choosing-repository-your-software-project
http://software.ac.uk/resources/guides/choosing-repository-your-software-project
http://software.ac.uk/resources/guides/choosing-repository-your-software-project
http://software.ac.uk/resources/guides/choosing-repository-your-software-project
http://www.software.ac.uk/blog/2012-08-09-hosted-continuous-integration-delivering-infrastructure
http://www.software.ac.uk/blog/2012-08-09-hosted-continuous-integration-delivering-infrastructure
http://www.software.ac.uk/blog/2012-08-09-hosted-continuous-integration-delivering-infrastructure
http://www.software.ac.uk/blog/2012-08-09-hosted-continuous-integration-delivering-infrastructure
http://www.software.ac.uk/blog/2012-08-09-hosted-continuous-integration-delivering-infrastructure
http://www.software.ac.uk/blog/2012-08-09-hosted-continuous-integration-delivering-infrastructure
http://www.software.ac.uk/blog/2012-08-09-hosted-continuous-integration-delivering-infrastructure
http://www.software.ac.uk/blog/2012-08-09-hosted-continuous-integration-delivering-infrastructure
http://www.software.ac.uk/blog/2012-08-09-hosted-continuous-integration-delivering-infrastructure
http://www.software.ac.uk/blog/2012-08-09-hosted-continuous-integration-delivering-infrastructure
http://www.software.ac.uk/blog/2012-08-09-hosted-continuous-integration-delivering-infrastructure
http://www.software.ac.uk/blog/2012-08-09-hosted-continuous-integration-delivering-infrastructure
http://www.software.ac.uk/blog/2012-08-09-hosted-continuous-integration-delivering-infrastructure
http://www.software.ac.uk/blog/2012-08-09-hosted-continuous-integration-delivering-infrastructure
http://www.software.ac.uk/blog/2012-08-09-hosted-continuous-integration-delivering-infrastructure

Conclusions

Software engineering deals with

 the way in which software is made

(process),

 the languages to model and implement

software,

 the tools that are used, and

 the quality of the result (testing)

55

Self test questions

 How does Software Engineering differ from

programming?

 Why is the “waterfall” model unrealistic?

 What is the difference between analysis and design?

 Why plan to iterate? Why develop incrementally?

 Why is programming only a small part of the cost of a

“real” software project?

56

References: books

 Pressman, Software engineering a practictioner
approach, 7th ed., McGrawHill, 2009

 Ambler, Agile Modern Driven Development with
UML2 (The Object Primer 3ed.), Cambridge Univ.
Press, 2004

 Larman, Agile and Iterative Development: a
managers’ guide, Addison Wesley, 2003

 The Computer Society, Guide to the Software
Engineering Body of Knowledge, 2013
www.computer.org/portal/web/swebok

57

Reference: papers

 V.Basili et al., Understanding the High-Performance- Computing

Community: A Software Engineer’s Perspective, IEEE Software,

2008

 D.Lugato et al., Model-driven engineering for HPC applications,

Proc. Modeling Simulation and Optimization Focus on

Applications, Acta Press (2010): 303-308.

 M.Palyart et al, MDE4HPC: An Approach for Using Model-

Driven Engineering in High-Performance Computing, Proc. SDL,

LNCS 7083, 2011.

58

Useful sites

 software-carpentry.org Software carpentry

 software.ac.uk/resources/case-studies

 First Int. Workshop on Sw eng for HPC, 2013
sehpccse13.cs.ua.edu

59

Questions?

http://xkcd.com/844/

http://xkcd.com/844/

