239 Summer
School on
PARALLEL
COMPUTING

OpenMP Exercises

Paride Dagna - p.dagna@cineca.it
SuperComputing Applications and Innovation Department

\

CINECA

Summer
(School on

e PARALLEL
COMPUTING

Warm-up with OpenMP

@ Write a serial "Hello world!"

@ Add OpenMP directives to have each thread prompt his greeting

€ Add a conditionally compiled header to show if OpenMP was enabled
@ Experiment with the OMP_NUM_THREADS environment variable

€@ Write a program to replicate the scheduling plot seen in the lecture
@ Construct a Mipreads X Niterations Matrix to log who executed what
@ Write the information to the ASCII file ITterationMap. txt

@ Use the script draw. sh to plot your results

CINECA

Summer
' 4B School on

e PARALLEL
COMPUTING

The everyday duty

@ Parallelize the serial code pi . ¢ that computes the value of =

@ Parallelize the serial code 1aplace. c that solves a 2D Laplace equation

e start with an incremental approach
e try to include the while loop inside the parallel region

@ Find and correct the bugs in the sample programs

@ Try to explain what was causing the incorrect behavior

Summer
School on

Fibonacci with task ORI

The Fibonacci Sequence is the series of numbers:
0,1,1,2,3,5,8, 13, 21, 34, ...

The next number is found by adding up the two numbers before it.

The source code “fibonacci.c” or “fibonacci.f90” compute the Fibonacci sequence in a serial way using a
recursive function.

Try to parallelize the code using OpenMP directives

Check speed-up up to 8 threads computing for example fib(40). It’s near to ideal speed-up? If not try to
think about a possible optimization strategy.

Hint : try to reduce the number of tasks created at the low levels of the recursive tree

—

(Fini6)

N
)
e

(G G

--"/..--- \\‘*-,—-— e e

(Fis(4)) (FIn(3)) [Fin(3) | [Frag2) |

! —
. IN SN X
(Fin(3)) (P2) (Fn2)) (Fisc)] (Fise2)) (Faindl)) (Finchy) (Finio))

. — :
; \\ . / \ /‘ B /\
(Fne2)) (Fis()) (Fischy) (Fo®)) (Fisch) (Fsoy) (Fish) (Fiso))

/

[Frschy) (Pis(oy |

CINECA

Summer
(School on

e PARALLEL
COMPUTING

The insane teaser

@ Write an implementation for the two prototype functions:

e int get_num_threads()
e int get_thread_id()

@ You can’t use library calls or explicit locks

©® The implementation must work for nested parallel regions
@ You can use all the directives you want

@ Thread ID must be consistent with the OpenMP library

€@ Write first an implementation that works for a single level of parallelism
@ Exploit data sharing attributes to exchange information between threads

® Remember where barriers are implied

cl /NECA

