
Introduction to Standard
OpenMP 3.1

Paride Dagna – p.dagna@cineca.it
SuperComputing Applications and Innovation Department

Outline

Distributed and shared memory

UMA and NUMA systems

Testo slide

Multi-threaded processes

Execution model

Why should I use OpenMP?

Structure of an OpenMP program

OpenMP core elements

OpenMP releases

Outline

Conditional compilation

Directive format

parallel construct

Nested parallelism

OpenMP: Hello world

OpenMP: Hello world

OpenMP: Hello world

OpenMP: Hello world

OpenMP releases

Worksharing constructs

Loop construct: syntax

Loop construct: restrictions

Loop construct: the rules

Loop construct: scheduling

Loop construct: schedule kind

Loop construct: schedule kind

Loop construct: nowait clause

Loop construct: nowait clause

Loop construct: nested loops

Loop construct: collapse clause

Sections construct: syntax

Sections construct: syntax

Sections construct: some facts

Single construct: syntax

Single construct: some facts

Workshare construct: syntax

Master construct: syntax

Master construct: some facts

Critical construct: syntax

Critical construct: some facts

Critical construct: example

Barrier construct: syntax

Barrier construct: example

Atomic construct: syntax

Atomic construct: syntax

Atomic construct: syntax

Atomic construct: some facts

Data-sharing attributes: C/C++

Data-sharing attributes: Fortran

Data-sharing clauses: syntax

Default/shared/private clauses

Default/shared/private clauses

Subroutines and functions

Functions and subroutines may be called in a parallel region.

In such a case:

 All the activated threads will call the function

 Each variable declared in the function is private to the thread

 Dummy arguments keep their original state, i.e. are shared if they were shared

Fortran

!$omp parallel num_threads(2) &

!$omp shared(i)

call sub1(i)

!$omp end parallel

subroutine sub1(a)

integer :: a,b

b = a**2

... ...

end subroutine

C/C++

#pragma omp parallel shared(i) \

num_threads(2)

{

sub1(i);

}

void sub1(int a) {

int b;

b = pow(a,2);

... ...

}

Firstprivate clause

Lastprivate clause

Reduction clause: some facts

Reduction clause: example

Reduction clause: example

Copyprivate clause

Orphaned directives

Directives that would distribute work among threads but are not placed in parallel regions

are called orphaned directives.

 Are often written in functions, which could be called from within paralell regions or not,

if the directive does not occur in parallel regions, execution is carried on sequentially.

Fortran

integer ,parameter :: N=100,M=N*100

real, dimension :: a(N)

real, dimension :: b(M)

real :: x,y

.....

do i=1,N

a(i)=real(i)

end do

call somma (x,a,N)

!$omp parallel &

!$omp shared (b,N)&

!$omp do private(i)

do i=1,M

b(i)=1/real(i+1)

end do

!$omp end do

C/C++

int n,m;

n=100;

m=n*100;

float a[n],b[m];

float x,y;

...

for(i=1;i<n;i++)

a[i]=(float)i;

somma(x,a,n)

#pragma omp parallel shared(b,n)

#pragma omp for private(i)

{

for(i=1;i<n;i++)

b[i]=1/(float)(i+1);

}

Orphaned directives

At the first invocation of the function somma (call somma(x,a)) execution is carried on

sequentially, while the latter call (call somma(y,b)) is executed in parallel because it is

placed inside a parallel region.

Fortran

y=0.

call somma (y,b,M)

!$omp end parallel

....

subroutine somma(z,c,L)

integer :: i,L

real, dimension :: c(L)

real:: z

!$omp do reduction (+:z)

do i=1,L

z=z+c(i)

end do

!$omp end do

end

C/C++

y=0;

somma(y,b,m)

}

function somma(z,c,l){

int i,l;

float c[l];

float z;

#pragma omp for reduction(+:z)

{

for(i=1;i<l;i++)

z=z+c[i];

}

}

Task parallelism

Main addition to OpenMP 3.0 enhanced in 3.1 and 4.0

 Allows to parallelize irregular problems

 Unbounded loop

 Recursive algorithms

 Producer/consumer schemes

 Multiblock grids, Adaptive Mesh Refinement

...

Pointer chasing in OpenMP 2.5

 Trasformation to a “canonical” loop can be very labour-intensive/expensive

 The main drawback of the single nowait solution is that it is not composable

 Remind that all worksharing construct can not be nested

Fortran

!$omp parallel private(p)

p = head

do while (associated(p))

!$omp single nowait

call process(p)

p => p%next

end do

C/C++

#pragma omp parallel private(p)

p = head;

while (p) {

#pragma omp single nowait

process(p);

p = p->next;

}

Tree traversal in OpenMP 2.5

 You need to set OMP_NESTED to true, but stressing nested parallelism so much is not a

good idea ...

Fortran

recursive subroutine preorder(p)

type(node), pointer :: p

call process(p%data)

!$omp parallel sections

!$omp num_threads(2)

!$omp section

if (associated(p%left))

call preorder(p%left)

end if

!$omp section

if (associated(p%right))

call preorder(p%right)

end if

!$omp end sections

end subroutine preorder

C/C++

void preorder (node *p) {

process(p->data);

#pragma omp parallel sections \

num_threads(2)

{

#pragma omp section

if (p->left)

preorder(p->left);

#pragma omp section

if (p->right)

preorder(p->right);

}

}

New tasking construct

 Immediately creates a new task but not a new thread

 This task is “explicit”

 It will be executed by a thread in the current team

 It can be deferred until a thread is available to execute

 The data environment is built at creation time

 Variables inherit their data-sharing attributes but

 Private variables become firstprivate

Fortran

!$omp task [clauses]

<structured block>

!$omp end task

C/C++

#pragma omp task [clauses]

{

<structured block>

}

Pointer chasing using task

 One thread creates task

 It packages code and data environment

 Then it reaches the implicit barrier and starts to execute the task

 The other threads reach straight the implicit barrier and start to execute task

Fortran

!$omp parallel private(p)

!$omp single

p = head

do while (associated(p))

!$omp task

call process(p)

!$omp end task

p => p%next

end do

!$omp end single

!$omp end parallel

C/C++

#pragma omp parallel private(p)

#pragma omp single

{

p = head;

while (p) {

#pragma omp task

process(p);

p = p->next;

}

}

Pointer chasing using task

Task queue

Fortran

!$omp parallel private(p)

!$omp single

p = head

do while (associated(p))

!$omp task

call process(p)

!$omp end task

p => p%next

end do

!$omp end single

!$omp end parallel

Load balancing on lists with task

 Assign one list per thread could be unbalanced

 Multiple threads create task

 The whole team cooperates to execute them

Fortran

!$omp parallel

!$omp do private(p)

do i=1,num_lists

p => head[i]

do while (associated(p))

!$omp task

call process(p)

!$omp end task

p => p%next

end do

end do

!$omp end do

!$omp end parallel

C/C++

#pragma omp parallel

{

#pragma omp for private(p)

for (i=0; i<num_lists; i++) {

p = head[i];

while (p) {

#pragma omp task

process(p);

p = p->next;

}

}

}

Tree traversal with task

 Tasks are composable

 It isn’t a worksharing construct

 Taskwait directive suspends parent task until children tasks are completed

Fortran

recursive subroutine preorder(p)

type(node), pointer :: p

call process(p%data)

if (associated(p%left))

!$omp task

call preorder(p%left)

!$omp end task

end if

if (associated(p%right))

!$omp task

call preorder(p%right)

!$omp end task

end if

end subroutine preorder

C/C++

void preorder (node *p) {

process(p->data);

if (p->left)

#pragma omp task

preorder(p->left);

if (p->right)

#pragma omp task

preorder(p->right);

}

Outlines

Runtime library routines

Environment variables

