239 Summer

' School on

~auyd PARALLEL
COMPUTING

Introduction to Standard
OpenMP 3.1

Paride Dagna - p.dagna@cineca.it
SuperComputing Applications and Innovation Department

\

CINECA

Outline

@ ntroduction

"~

Summer
School on
PARALLEL
COMPUTING

Summer
School on

~am?d PARALLEL
COMPUTING

Distributed and shared memory

Memory Memory Memory Shared Memory

= | = E 1 = EHE
Caches Caches Caches

CPUs CPUs CPUs
E_)_< T — i3

Caches Caches

CPUs CPUs

Network

CINECA

Summer
School on
PARALLEL

COMPUTING

UMA and NUMA systems

CPU

CPU

Memory

CPU

CPU

CINECA

CPU

CPU

Memory

I

Router

CPU

CPU

Memory

Summer
School on

COMPUTING

Multi-threaded processes

Process memaory space

Process memory space

L (meaih

Program Countar (PC) N

CINECA

Summer
School on

~am PARALLEL
COMPUTING

Execution model

Initial Thread

Initial Thread

CINECA

Summer
' & School on

MSAM™DAL L £~
\ PARALLEL

COMPUTING

Why should | use OpenMP?

© Standardized
e enhance portability

® Lean and mean @ Performance
e |imited set of directives e may be non-portable
o fast code parallelization e increase memory traffic
© Ease of use ® Limitations
e parallelization is incremental e shared memory systems
e coarse / fine parallelism e mainly used for loops

O Portability

e C, C++and Fortran API
o part of many compilers

CINECA

Summer
chhool on

Structure of an OpenMP program COMPUTING

@ Execution model

the program starts with an initial thread
when a parallel construct is encountered a team is created
parallel regions may be nested arbitrarily

worksharing constructs permit to divide work among threads

® Shared-memory model

e all threads have access to the memory

e each thread is allowed to have a temporary view of the memory
e each thread has access to a thread-private memory

e two kinds of data-sharing attributes: private and shared

e data-races trigger undefined behavior

©® Programming model
e compiler directives + environment variables + run-time library

CINECA

Summer
School on

OpenMP core elements COMPUTING

OpenMP language
extensions

runtime
synchronization functions, env.
variables

data
environment

parallel control
structures

work sharing

governs flow of distributes work scopes coordinates thread runtime environment
control in the among threads variables execution
program
omp_set_num_threads ()
do/parallel do shared and critical and omp get thread num()
parallel directive and private atomic directives OMP NUM THREADS

section directives clauses barrier directive OMP SCHEDULE

CINECA

SShum:ner
P~ PARALLEL
OpenMP releases COMPUTING

October 1997 Fortran 1.0
October 1998 c and c++ 1.0
November 2000 Fortran 2.0
March 2002 c and c++ 2.0
May 2005 Fortran, C and C++ 2.5
May 2008 Fortran, C and Cc++ 3.0
July 2011 Fortran, C and C++ 3.1
July 2013 Fortran, C and C++ 4.0

CINECA

Outline

@ Directives

"~

Summer
School on
PARALLEL

COMPUTING

Summer
' 4B School on

e PARALLEL
COMPUTING

Conditional compilation

#ifdef _ OPENMP
printf ("OpenMP support:%d'",_OPENMP) ;

#else
printf ("Serial execution.");

#endif
!S print x, "OpenMP support"

© The macro _OPENMP has the value yyyymm
® rortran 77 supports !'$, x$ and c$ as sentinels

® Fortran 90 supports !'$ only

Summer
| 4B School on

Directive format COMPUTING

fpragma omp directive-name [clause...]

sentinel directive—name [clause...]

@ Follows conventions of ¢ and c++ compiler directives
@® From here on free-form directives will be considered

PTéde
CINECA

$18i3

Summer
School on

parallel construct COMPUTING

Parallel Task | Parallel Task Il Parallel Task Il

L

Master Thread

Parallel Task | Parallel Task Il Parallel Task Il
Master Thread;’?-_él g

N £
. Lo L
ra . . LY , .
¢ . . % ; -
i : : " poe
r ' ' \ f - '
. . -
4 ¥ L
5 ! N

© The encountering thread becomes the master of the new team
® All threads execute the parallel region
® There is an implied barrier at the end of the parallel region

CINECA

Summer
School on

COMPUTING

Nested parallelism

PARALLEL
PARALLEL PARALLEL
fool() foo() bar()

@ Nested parallelism is allowed in OpenMP 3.1
® Most constructs bind to the innermost parallel region

CINECA

Summer
' 4B School on

e PARALLEL
COMPUTING

OpenMP: Hello world

Iint main () {

printf ("Hello world\n");

return 0;

PTéde
CINECA

Summer

' 4B School on

e PARALLEL
COMPUTING

OpenMP: Hello world

int main () {
/* Serial part =*/

#pragma omp parallel
{

}

printf ("Hello world\n");

/* Serial part =/
return 0;

Summer
(School on

e PARALLEL
COMPUTING

OpenMP: Hello world

PROGRAM HELLO

Print «x, "Hello World!!!"

END PROGRAM HELLO

. 1 JPy
K I I J
CINECA
$7272

Summer
f School on

e PARALLEL
COMPUTING

OpenMP: Hello world

PROGRAM HELLO

! Serial code

!SOME_’ PARALLEL
Print x, "Hello World!!!"
!SOMP END PARALLEL

| Resume serial code

END PROGRAM HELLO

CINECA

Summer
(School on

e PARALLEL
COMPUTING

OpenMP releases

int main() {
int ii;
#pragma omp parallel

{
for (ii = 0; ii < 10; ++ii)
printf ("iteration %d\n", 1i);
}
return 0;

Summer
School on

COMPUTING

Worksharing constructs

© Distribute the execution of the associated region

® A worksharing region has no barrier on entry

® An implied barrier exists at the end, unless nowait is present
O A nowait clause may omit the implied barrier

® Each region must be encountered by all threads or none at all
0 Every thread must encounter the same sequence of:

e worksharing regions e barrier regions
@ The OpenMP API defines four worksharing constructs:
e |oop construct e single construct

e sections construct e workshare contruct

CINECA

Summer
| 4B School on

e PARALLEL
COMPUTING

Loop construct: syntax

#pragma omp for [clause[[,] clause] ...]
for—loops

'Somp do [clause[[,] clause] ...]
do—loops
[!Somp end do [nowait]]

PPéde
CINECA

§i3is

Loop construct: restrictions

Summer
' 4B School on

e PARALLEL
COMPUTING

for (init-expr; test—-expr; 1incr—expr)
structured-block

init—-expr:

Cest—expr:

incr—expr:

var = 1b
integer—-type var = 1Db

relational expr.

addition or subtraction expr.

Summer
School on

Loop construct: the rules

@ The iteration variable in the for loop

e if shared, is implicitly made private
e must not be modified during the execution of the loop
e has an unspecified value after the loop

® The schedule clause:
e may be used to specify how iterations are divided into chunks

©® The collapse clause:

e may be used to specify how many loops are parallelized
e valid values are constant positive integer expressions

CINECA

Summer
| 4B School on

e PARALLEL
COMPUTING

Loop construct: scheduling

#pragma omp for schedule(kind[, chunk_ sizel)
for—loops

!'Somp do schedule(kind[, chunk_sizel])
do—loops
[!Somp end do [nowait]]

PPéde
CINECA

§i3is

Summer
School on

Loop construct: schedule kind COMPUTING

@ Static

e iterations are divided into chunks of size chunk_size
e the chunks are assigned to the threads in a round-robin fashion
e must be reproducible within the same parallel region
® Dynamic
e iterations are divided into chunks of size chunk_size

e the chunks are assigned to the threads as they request them
e the default chunk _sizeis 1

©® Guided

e iterations are divided into chunks of decreasing size
e the chunks are assigned to the threads as they request them
e chunk_size controls the minimum size of the chunks

O Run-time
e controlled by environment variables

CINECA

Summer
School on

Loop construct: schedule kind " COMPUTING

3
2
1
0
3
2
1
0
3
P
1
0

0 200 400 600 800 1000

~igure: Different scheduling for a 1000 iterations loop with 4 threads:
guided (top), dynamic (middle), static (bottom)

CINECA

Summer
School on

| ~~m? _ PARALLEL
COMPUTING

Loop construct: nowait clause

void nowait_example(int n, int m, float =xa,
float xb, float xy, float xz) {
#pragma omp parallel
{
#pragma omp for nowait
for (int i=1; i<n; i++)
b[i] = (a[i] + a[i-1]) / 2.0;
#pragma omp for nowait
for (int i=0; i<m; i++)
y[i] = sqgrt(z[i]);

}

CINECA

Summer
School on

| s _ PARALLEL
COMPUTING

Loop construct: nowait clause

void nowait_ example2 (int n, float =xa,
float xb, float xc, float xy) {
#pragma omp parallel
{
#pragma omp for schedule(static) nowait
for (int i=0; i<n; i++)
c[i] = (a[i] + b[i]) / 2.0f;
#pragma omp for schedule(static) nowait
for (int i=1; i<=n; i++)
y[i] = sqgrtf(c[i-1]) + al[i];

}

CINECA

Summer
f School on

e PARALLEL
COMPUTING

Loop construct: nested loops

#pragma omp parallel
{
#pragma omp for
for(int ii = 0; ii < n; ii++) {
#pragma omp for
for (int jj = 0; jj < m; Jjj ++) {
A[ii][3J3J] = ii*m + 3j3J;

}

CINECA

Summer
School on

p PARALLEL
COMPUTING

Loop construct: collapse clause

#pragma omp parallel
{
#pragma omp for collapse(2)
for(int ii = 0; ii < n; ii++) {
for(int jj = 0; jj < m; 3Jjj ++) {
A[ii][33] = 1i*m + 3JJ;
}

© The collapsed loops must be perfectly nested

CINECA

Sections construct: syntax

Summer

' 4B School on

e PARALLEL
COMPUTING

PP
CINECA
3¢ 3¢

4
p |
SO @D
111
(53)»(};@(,)
L I BN B!

fpragma omp sections

{

fpragma omp section
structured-block

fpragma omp section
structured-block

[clause| [,]

clause] .. .]

Sections construct: syntax

Summer
School on
PARALLEL
COMPUTING

!Somp sections [clausel[,]

'Somp section
structured-block

'Somp section
structured-block

'Somp end do [nowait]

PPL
CINECA

clause] ..

.]

3¢ 3¢
g:ﬁ.'v B G G

>l o d
L I BN B

Summer
School on

~ COMPUTING

Sections construct: some facts

@ scections is a hon-iterative worksharing construct

e it contains a set of structured-blocks
e each one is executed once by one of the threads

® Scheduling of the sections is implementation defined
® There is an implied barrier at the end of the construct

CINECA

Summer
| 4B School on

e PARALLEL
COMPUTING

Single construct: syntax

#fpragma omp single [clause[[,] clause]...]
structured-block

'Somp single ([clause[[,] clause] ...]
structured-block
[!Somp end single [nowait]]

PPéde
CINECA

§i3is

Summer

School on
PARALLEL

Single construct: some facts COMPUTING

© The associated structured block is executed by only one thread
® The other threads wait at an implicit barrier
® The method of choosing a thread is implementation defined

CINECA

Summer
(School on

e PARALLEL
COMPUTING

Workshare construct: syntax

'Somp workshare

structured-block
'Somp end workshare [nowait]

Divides the following into shared units of work:
@ array assignments
@ FORALL statements or constructs
@ WHERE statements or constructs

ci ECA

Summer
| 4B School on

e PARALLEL
COMPUTING

Master construct: syntax

#pragma omp master
structured-block

!Somp master
structured-block
!'Somp end master

PPéde
CINECA

§i3is

Summer
School on

Master construct: some facts

@ The master construct specifies a structured block:

o that is executed by the master thread
o With no implied barrier on entry or exit

® Used mainly in:

e hybrid MPI-OpenMP programs
o progress/debug logging

CINECA

Summer
| 4B School on

e PARALLEL
COMPUTING

Critical construct: syntax

#pragma omp critical [name]
structured-block

!'Somp critical [name]
structured-block
!'Somp end critical [name]

PPéde
CINECA

§i3is

Summer
School on

Critical construct: some facts - COMPUTING

© The critical construct restricts the execution:

e to a single thread at a time (wait on entry)
e disregarding team information

® An optional name may be used to identify a region

® All critical without a name share the same unspecified tag

O InFortranthe names of critical constructs:

e are global entities of the program
o may conflict with other names (and trigger undefined behavior)

CINECA

Summer
(School on

e PARALLEL
COMPUTING

Critical construct: example

#fpragma omp parallel

{

#pragma omp critical (long_critical_name)
doSomeCriticalWork_1();

#pragma omp critical
doSomeCriticalWork_2 () ;

#pragma omp critical

doSomeCriticalWork 3();

Summer
| 4B School on

e PARALLEL
COMPUTING

Barrier construct: syntax

#pragma omp barrier

!Somp barrier

The barrier construct specifies an explicit barrier at the point
at which the construct appears

PPéde
CINECA

§i3is

Barrier construct: example

Summer
School on
PARALLEL

COMPUTING

int counter = 0;

#fpragma omp parallel

{

#fpragma omp master
counter = 1;

#fpragma omp barrier
printf ("%$d\n", counter);

Summer
' 4B School on

e PARALLEL
COMPUTING

Atomic construct: syntax

#pragma omp atomic \
[read | write | update | capture]
expression-stmt

tpragma omp atomic capture
structured-block

PTéde
CINECA

Summer
' 4B School on

e PARALLEL
COMPUTING

Atomic construct: syntax

'Somp atomic read

capture-statement
[!Somp end atomic]

'Somp atomic write
write—-statement
[!Somp end atomic]

PTéde
CINECA

Atomic construct: syntax

Summer
School on
PARALLEL

COMPUTING

PP
CINECA
'9¢ 3¢

YT
2ORBP®Y
<>Z:»l%;q_:>.;‘,;.
T K B

'Somp atomic [update]

update—-statement
[!Somp end atomic]

'Somp atomic capture
update—-statement
capture—statement

'Somp end atomic

Summer
School on

Atomic construct: some facts COMPUTING

© The atomic construct:
e ensures a specific storage location to be updated atomically
e does not expose it to multiple, simultaneous writing threads

® The binding thread set for an atomic region is all threads

€ The atomic construct with the clause:

read forces an atomic read regardless of the machine word size
write forces an atomic write regardless of the machine word size
update forces an atomic update (default)
capture same as an update, but captures original or final value

O Accesses to the same location must have compatible types

CINECA

Summer
School on

Data-sharing attributes: C/C++ e e

© The following are always private:

e variables with automatic storage duration
e |oop iteration variable in the loop construct

® The following are always shared:

e Objects with dynamic storage duration
e variables with static storage duration

©® Arguments passed by reference inherit the attributes

CINECA

Summer
School on

Data-sharing attributes: Fortran COMPUTING

© The following are always private:

e variables with automatic storage duration
e |oop iteration variable in the loop construct

® The following are always shared:

e assumed size arrays
e variables with save attribute
e variables belonging to common blocks or in modules

©® Arguments passed by reference inherit the attributes

CINECA

Summer
| 4B School on

e PARALLEL
COMPUTING

Data-sharing clauses: syntax

#pragma omp directive—name [clause[[,]clause]

!'Somp directive—name [clause[[,]clause]

!'Somp end directive—name [clause]

PPéde
CINECA

§i3is

Summer
School on

COMPUTING

Default/shared/private clauses

@ Theclause default:

e isvalidon parallel
accepts shared or none in C/C++ and Fortran

]
e accepts private and firstprivate In Fortran
e default (none) requires each variable to be listed in a clause

® Theclause shared(list):

e isvalidon parallel
e declares one or more list items to be shared

® Theclause private (1ist):

e isvalidon parallel, for, sections, single
e declares one or more list items to be private
o allocates a new item of the same type with undefined value

CINECA

Summer
' 4B School on

e PARALLEL
COMPUTING

Default/shared/private clauses

int g, w;

#fpragma omp parallel private(g) shared (w)

{
q = 0;

#fpragma omp single
w = 0;

#fpragma omp critical (stdout_critical)
printf ("%d %d\n", g, w);

Summer
School on

Subroutines and functions COMPUTING

Functions and subroutines may be called in a parallel region.
In such a case:

> All the activated threads will call the function

» Each variable declared in the function is private to the thread

» Dummy arguments keep their original state, i.e. are shared if they were shared

Fortran C/C++
!Somp parallel num threads(2) & #pragma omp parallel shared (i) \
!'Somp shared (i) num_threads (2)
call subl (i) {
!Somp end parallel subl (1) ;

}
subroutine subl (a)
integer :: a,b volid subl(int a) {
b = a**2 int b;
b = pow(a,2);

end subroutine

CINECA \

Firstprivate clause

Summer
' 4B School on

e PARALLEL
COMPUTING

int g = 3, w;
#pragma omp parallel firstprivate (g) shared (w)
{

#pragma omp single

w = 0;
#pragma omp critical (stdout_critical)
printf ("%d %d\n", g, w);

Same as private, but initializes items

Summer
' 4B School on

e PARALLEL
COMPUTING

Lastprivate clause

#pragma omp parallel
{

#pragma omp for lastprivate (i)

for(i = 0; i < (nl); ++1i)
ali] = b[i] + b[i + 1];
}
ali] = b[1];

@ validon for, sections
® the value of each new list item is the sequentially last value

Y P9
Tlooe

Summer
School on

Reduction clause: some facts COMPUTING

@ The reduction clause:

e isvalidonparallel, loop and sections constructs
e specifies an operator and one or more list item

® A listitem that appears in a reduction clause must be shared

® For each item In the list:

e a private copy is created and initialized appropriately
e at the end of the region the original item is updated

O Aggregate types may not appear in a reduction clause
@ ltems must not be const-qualified

CINECA

Summer
' 4B School on

e PARALLEL
COMPUTING

Reduction clause: example

int a = 5;

#fpragma omp parallel
{
#pragma omp for reduction(+:a)
for(int 1 = 0; 1 < 10; ++1)
++a;
}
printf ("%$d\n", a);

Reduction clause: example

Summer
School on
PARALLEL
COMPUTING

PROGRAM REDUCTION_ WRONG
MAX = HUGE (0)
M = 0
| SOMP PARALLEL DO REDUCTION (MAX: M)
DO I =1, 100
CALL SUB (M, I)
END DO
END PROGRAM REDUCTION_WRONG

Summer
' 4B School on

e PARALLEL
COMPUTING

Copyprivate clause

#tpragma omp single copyprivate (tmp)

{
tmp = (float %) malloc(sizeof (float));

} /+ copies the pointer only x/

@ Validonly on single
@ Broadcasts the value of a private variable

Summer
School on

Orphaned directives

Directives that would distribute work among threads but are not placed in parallel regions

are called orphaned directives.

> Are often written in functions, which could be called from within paralell regions or not,

if the directive does not occur in parallel regions, execution is carried on sequentially.

Fortran

integer ,parameter :: N=100,M=N*100
real, dimension :: a(N)
real, dimension :: b (M)
real :: x,vy
do i=1,N

a(i)=real (i)
end do
call somma (x,a,N)
!Somp parallel &
!Somp shared (b,N)é&
!Somp do private (i)
do i=1,M
b(i)=1/real (i+1)
end do
'Somp end do

CINECA \

COMPUTING

C/C++

int n,m;

n=100;

m=n*100;

float al[n],b[m];
float x,y;

for (i=1;i<n;i++)
ali]l=(float) i;
somma (X, a, n)
#fpragma omp parallel shared(b,n)
#pragma omp for private (i)
{
for (i=1;i<n;i++)
bli]=1/(float) (i+1);
}

Summer
School on

Orphaned directives

COMPUTING

Fortran C/IC++

y=0. y=0;
call somma (y,b,M) somma (y, b, m)
!'Somp end parallel }

subroutine somma (z,c,L) function somma(z,c, 1) {

integer :: 1i,L int 1i,1;
real, dimension :: c (L) float c[1l];
real:: z float z;
!Somp do reduction (+:2z) fpragma omp for reduction (+:2z)
do 1i=1,L {
z=z+c (1) for (i=1;i<1;i++)
end do z=z+c[1];
'Somp end do }
end }

At the first invocation of the function somma (call somma(x,a)) execution is carried on
sequentially, while the latter call (call somma(y,b)) is executed in parallel because it is

placed inside a parallel region.

CINECA

Summer
School on

Task parallelism COMPUTING

Main addition to OpenMP 3.0 enhanced in 3.1 and 4.0
> Allows to parallelize irregular problems
» Unbounded loop
» Recursive algorithms
» Producer/consumer schemes

» Multiblock grids, Adaptive Mesh Refinement

CINECA

Summer
School on

Pointer chasing in OpenMP 2.5

Fortran

!Somp parallel private (p)
p = head

do while (associated(

!Somp single nowait
call process (p)
p => p%next

end do

» Trasformation to a “canonical” loop can be very labour-intensive/expensive
» The main drawback of the single nowait solution is that it is not composable

» Remind that all worksharing construct can not be nested

CINECA \

P

)

)

COMPUTING

C/C++

#pragma omp parallel private (p)
p = head;
while (p) |
#pragma omp single nowait
process (p) ;
P = p—->next;

Summer
School on

Tree traversal in OpenMP 2.5 COMPUTING

Fortran C/C++

recursive subroutine preorder (p) voild preorder (node *p) {
type (node), pointer :: p process (p->data) ;

call process (p%data) #pragma omp parallel sections \
!Somp parallel sections num_threads (2)

!$omp num_ threads (2) {

!Somp section #pragma omp section

if (associated(p%left)) if (p->left)

call preorder (p%left) preorder (p->left) ;
end 1if #pragma omp section

!Somp section if (p->right)

if (associated(p%right)) preorder (p->right) ;
call preorder (p%right) }

end if }

!Somp end sections
end subroutine preorder

> You need to set OMP_NESTED to true, but stressing nested parallelism so much is not a

good idea ...

CINECA \

Summer
School on

New tasking construct COMPUTING

Fortran C/C++

'Somp task [clauses] #pragma omp task [clauses]
<structured block> {

!'Somp end task <structured block>

}

» Immediately creates a new task but not a new thread
» This task is “explicit”
> It will be executed by a thread in the current team
» It can be deferred until a thread is available to execute
» The data environment is built at creation time
» Variables inherit their data-sharing attributes but

> Private variables become firstprivate

CINECA \

Summer
School on

Pointer chasing using task

Fortran

!Somp parallel private (p)
!Somp single
p = head
do while (associated(p))
!Somp task
call process(p)
!Somp end task
P => p%next
end do
'Somp end single
'Somp end parallel

» One thread creates task

COMPUTING

C/C++

#pragma omp parallel private (p)
#pragma omp single
{
p = head;
while (p) {
#fpragma omp task
process (p) ;
P = p->next;
}
}

> It packages code and data environment
» Then it reaches the implicit barrier and starts to execute the task

» The other threads reach straight the implicit barrier and start to execute task

CINECA \

Summer
chhool on

Pointer chasing using task SRR

Fortran

!Somp parallel private (p)
!Somp single
p = head
do while (associated(p))
!Somp task
call process(p)
!Somp end task
P => p%next
end do
'Somp end single
'Somp end parallel

Thread 1 ([Thread 2| [Thread 3 Thread 4

Task queue

CINECA

Summer
School on

Load balancing on lists with task COMPUTING

Fortran C/C++
!Somp parallel #pragma omp parallel
'Somp do private (p) {
do i=1,num lists #pragma omp for private (p)
p => headl[i] for (i=0; i<num lists; i++) {
do while (associated(p)) p = head[i];
!Somp task while (p) {
call process (p) #fpragma omp task
!Somp end task process (p) ;
p => p%next p = p->next;
end do }
end do }
'Somp end do }

'Somp end parallel

> Assign one list per thread could be unbalanced
» Multiple threads create task

» The whole team cooperates to execute them

CINECA \

Summer
School on

Tree traversal with task COMPUTING

Fortran C/C++
recursive subroutine preorder (p) void preorder (node *p) {
type (node), pointer :: p process (p->data) ;
call process (p%data) if (p->left)
if (associated(p%left)) #pragma omp task
!Somp task preorder (p->left) ;
call preorder (p%left) if (p->right)
!Somp end task #pragma omp task
end 1f preorder (p->right) ;
if (associated(p%right)) }
!Somp task

call preorder (p%$right)
!Somp end task
end if
end subroutine preorder

» Tasks are composable
> It isn’t a worksharing construct

» Taskwait directive suspends parent task until children tasks are completed

CINECA \

Summer
| 4B School on

e PARALLEL
COMPUTING

Outlines

® Runtime library routines and environment variables

PTéde
CINECA

$18i3

Summer
f School on

e PARALLEL
COMPUTING

Runtime library routines

int omp_get_num_threads (void);// # of threads

int omp_get_thread_num(void);// thread id
double omp_get_wtime (void);// get wall-time

@ Prototypes for c/c++ runtime are provided in omp . h

® Interface declarations for Fort ran are provided as:

e aFortran include file named omp_1lib.h
e aFortran 90 module named omp_1lib

CINECA

Summer
" 4 School on

SYSAIDAIL | &)
)\ PARALLEL

COMPUTING

Environment variables

OMP_NUM _ THREAD sets the number of threads for parallel regions
OMP_STACKSIZE specifies the size of the stack for threads
OMP_SCHEDULE controls schedule type and chunk size of runtime

OMP_PROC _BIND controls whether threads are bound to processors
OMP_NESTED enables or disables nested parallelism

CINECA

