
Introduction to MPI Part II

Collective Communications

and communicators
Paolo Ramieri - p.ramieri@cineca.it

SuperComputing Applications and Innovation Department

Collective communications

• Collective communications will not interfere with point-to-point

• All processes (in a communicator) call the collective function

• All collective communications are blocking (in MPI 2.0)

• No tags are required

• Receive buffers must match in size (number of bytes)

•Can only be used with MPI predefined datatypes -not with MPI Derived

datatypes

 It’s a safe communication mode

Communications involving a group of processes. They are called by all the

ranks involved in a communicator (or a group) and are of three types:

• Synchronization (e.g. Barrier)

• Data Movement (e.g. Broadcast or Gather/scatter)

• Global Computation (e.g. reductions)

MPI Barrier

It stops all processes within a communicator until they are synchronized

int MPI_Barrier(MPI_Comm comm);

MPI Broadcast

Int MPI_Bcast (void *buf, int count, MPI_Datatype datatype, int root,

MPI_Comm comm)

Note that all processes must specify the same root and same comm.

PROGRAM broad_cast

INCLUDE ’mpif.h’

INTEGER ierr, myid, nproc, root

INTEGER status(MPI_STATUS_SIZE)

REAL A(2)

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

root = 0

IF(myid .EQ. 0) THEN

 a(1) = 2.0

 a(2) = 4.0

END IF

CALL MPI_BCAST(a, 2, MPI_REAL, 0, MPI_COMM_WORLD, ierr)

WRITE(6,*) myid, ’: a(1)=’, a(1), ’a(2)=’, a(2)

CALL MPI_FINALIZE(ierr)

MPI Gather

Each process, root included, sends the content of its send buffer to the root

process. The root process receives the messages and stores them in the

rank order.

int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype,

 void *recvbuf, int recvcnt, MPI_Datatype recvtype,

 int root, MPI_Comm comm)

MPI Scatter

The root sends a message. The message is split into n equal segments,

the i-th segment is sent to the i-th process in the group and each process

receives this message.

int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype,

 void *recvbuf, int recvcnt, MPI_Datatype recvtype, int root,

 MPI_Comm comm)

There are possible combinations of collective functions.

For example,

MPI Allgather

is a combination of a gather + a broadcast

int MPI_Allgather(void *sendbuf, int sendcount, MPI_Datatype sendtype,

 void *recvbuf, int recvcount, MPI_Datatype recvtype,

 MPI_Comm comm)

For many collective functions there are extended functionalities.

For example it’s possible to define the length of arrays to be scattered or

gathered with

MPI_Scatterv

MPI_Gatherv

MPI All to all

This function makes a redistribution of the content of each process in a

way that each process know the buffer of all others. It is a way to

implement the matrix data transposition.

int MPI_Alltoall(void *sendbuf, int sendcount, MPI_Datatype sendtype,

 void *recvbuf, int recvcount, MPI_Datatype recvtype,

 MPI_Comm comm)

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

Reduction

Reduction operations permits us to

• Collect data from each process

• Reduce the data to a single value

• Store the result on the root process (MPI_Reduce) or

• Store the result on all processes (MPI_Allreduce)

Predefined reduction operations

PROGRAM scatter

INCLUDE ’mpif.h’

INTEGER ierr, myid, nproc, nsnd, i

REAL A(16), B(2)

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

root = 0

IF(myid .eq. root) THEN

DO i = 1, 16

a(i) = REAL(i)

END DO

END IF

nsnd = 2

CALL MPI_SCATTER(a, nsnd, MPI_REAL, b, nsnd, &

& MPI_REAL, root, MPI_COMM_WORLD, ierr)

WRITE(6,*) myid, ’: b(1)=’, b(1), ’b(2)=’, b(2)

CALL MPI_FINALIZE(ierr)

END

PROGRAM gather

INCLUDE ’mpif.h’

INTEGER ierr, myid, nproc, nsnd, i

REAL A(16), B(2)

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

root = 0

b(1) = REAL(myid)

b(2) = REAL(myid)

nsnd = 2

CALL MPI_GATHER(b, nsnd, MPI_REAL, a, nsnd,

& MPI_REAL, root, MPI_COMM_WORLD, ierr)

IF(myid .eq. root) THEN

DO i = 1, (nsnd*nproc)

WRITE(6,*) myid, ’: a(i)=’, a(i)

END DO

END IF

CALL MPI_FINALIZE(ierr)

END

PROGRAM reduce

INCLUDE ’mpif.h’

INTEGER ierr, myid, nproc, root

REAL A(2), res(2)

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

root = 0

a(1) = 2.0

a(2) = 4.0

CALL MPI_REDUCE(a, res, 2, MPI_REAL, MPI_SUM, root,

MPI_COMM_WORLD, ierr)

IF(myid .EQ. 0) THEN

WRITE(6,*) myid, ’: res(1)=’, res(1), ’res(2)=’, res(2)

END IF

CALL MPI_FINALIZE(ierr)

END

Performance issues

• Much hidden communication takes place with collective

communication.

• Hardware vendors work hard to provide optimized

collective calls but performances will vary according to

implementation.

• Because of forced synchronization, collective

communications may not always be the best solution.

19

MPI communicators and groups

Many users are familiar with the mostly used communicator:

MPI_COMM_WORLD

A communicator can be thought as a handle to a group.

 - a group is a ordered set of processes

 - each process is associated with a rank

 - ranks are contiguous and start from zero

Groups allow collective operations to be operated on a subset of processes

20

Typical usage:

1. Extract handle of global group from MPI_COMM_WORLD using

MPI_Comm_group

2. Form new group as a subset of global group using MPI_Group_incl

3. Create new communicator for new group using MPI_Comm_create

4. Determine new rank in new communicator using MPI_Comm_rank

5. Conduct communications using any MPI message passing routine

6. When finished, free up new communicator and group (optional) using

MPI_Comm_free and MPI_Group_free

Intracommunicators

are used for communications within a single group

Intercommunicators

are used for communications between two disjoint groups

22

Group management:

-All group operations are local

-Groups are not initially associated with communicators

-Groups can only be used for message passing within a communicator

-We can access groups, construct groups, destroy groups

23

Group accessors:

-MPI_GROUP_SIZE

This routine returns the number of processes in the group

-MPI_GROUP_RANK

This routine returns the rank of the calling process inside a given group

24

Group constructors

Group constructors are used to create new groups from existing ones (initially

from the group associated with MPI_COMM_WORLD; you can use

mpi_comm_group to get this).

Group creation is a local operation: no communication is needed

After the creation of a group, no communicator has been associated to this

group, and hence no communication is possible within the new group

25

-MPI_COMM_GROUP(comm,group,ierr)

This routine returns the group associated with the communicator comm

-MPI_GROUP_UNION(group_a, group_b, newgroup, ierr)

This returns the ensemble union of group_a and group_b

-MPI_GROUP_INTERSECTION(group_a, group_b, newgroup, ierr)

This returns the ensemble intersection of group_a and group_b

-MPI_GROUP_DIFFERENCE(group_a, group_b, newgroup, ierr)

This returns in newgroup all processes in group_a that rare not in group_b,

ordered as in group_a

26

-MPI_GROUP_INCL(group, n, ranks, newgroup, ierr)

This routine creates a new group that consists of all the n processes with ranks

ranks[0]... ranks[n-1]

Example:

group = {a,b,c,d,e,f,g,h,i,j}

n = 5

ranks = {0,3,8,6,2}

newgroup = {a,d,i,g,c}

27

-MPI_GROUP_EXCL(group,n,ranks,newgroup,ierr)

This routine returns a newgroup that consists of all the processes in the group

after removing processes with ranks: ranks[0]..ranks[n-1]

Example:

group = {a,b,c,d,e,f,g,h,i,j}

n = 5

ranks = {0,3,8,6,2}

newgroup = {b,e,f,h,j}

28

Communicator management

Communicator access operations are local, not requiring interprocess

communication

Communicator constructors are collective and may require interprocess

communications

We will cover in depth only intracommunicators, giving only some notions about

intercommunicators.

29

Communicator accessors

-MPI_COMM_SIZE(comm,size,ierr)

Returns the number of processes in the group associated with the comm

-MPI_COMM_RANK(comm,rank,ierr)

Returns the rank of the calling process within the group associated with the

comm

-MPI_COMM_COMPARE(comm1,comm2,result,ierr)

Returns:

 - MPI_IDENT if comm1 and comm2 are the same handle

 - MPI_CONGRUENT if comm1 and comm2 have the same group

attribute

 - MPI_SIMILAR if the groups associated with comm1 and comm2

have the same members but in different rank order

 - MPI_UNEQUAL otherwise

30

Communicator constructors

-MPI_COMM_DUP(comm, newcomm,ierr)

This returns a communicator newcomm identical to the communicator comm

-MPI_COMM_CREATE(comm, group, newcomm,ierr)

This collective routine must be called by all the process involved in the group

associated with comm. It returns a new communicator that is associated with

the group. MPI_COMM_NULL is returned to processes not in the group.

Note that group must be a subset of the group associated with comm!

31

A practical example:

CALL MPI_COMM_RANK (...)

CALL MPI_COMM_SIZE (...)

CALL MPI_COMM_GROUP (MPI_COMM_WORLD,wgroup,ierr)

define something..

CALL MPI_COMM_GROUP_EXCL(wgroup....., newgroup...)

CALL MPI_COMM_CREATE(MPI_COMM_WORLD,newgroup,newcomm,ierr)

32

-MPI_COMM_SPLIT(comm, color, key, newcomm, ierr)

This routine creates as many new groups and communicators as there are

distinct values of color.

The rankings in the new groups are determined by the value of the key.

MPI_UNDEFINED is used as the color for processes to not be included in any

of the new groups

33

int MPI_Comm_split(MPI_Comm old_comm, int color, int key, MPI_Comm *new_comm)

For a 2D logical grid, create subgrids of rows and columns

c**logical 2D topology with nrow rows and mcol columns

irow = Iam/mcol !! logical row number

jcol = mod(Iam, mcol) !! logical column number

comm2D = MPI_COMM_WORLD

call MPI_Comm_split(comm2D, irow, jcol, row_comm, ierr)

call MPI_Comm_split(comm2D, jcol, irow, col_comm, ierr)

http://scv.bu.edu/~kadin/alliance/communicators/MPI_Comm_split.html

Destructors

The communicators and groups from a process’ viewpoint are just handles.

Like all handles, there is a limited number available: you could (in principle) run

out!

-MPI_GROUP_FREE(group, ierr)

-MPI_COMM_FREE(comm,ierr)

37

Intercommunicators

Intercommunicators are associated with 2 groups of disjoint processes.

Intercommunicators are associated with a remote group and a local group

The target process (destination for send, source for receive) is its rank in the

remote group.

A communicator is either intra or inter, never both

38

