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Introduction
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• IO is a crucial issue in the modern high performance codes:

– deal with very large datasets while running massively parallel applications on 

supercomputers

– amount of data saved is increased 

– latency to access to disks is not trascurable 

– data portability (e.g. endianism) 

• Solution to avoid that IO became a bottleneck: 

– HW: parallel file-system available on all the HPC platform

– SW: high level libraries able to manage parallel accesses to the file in efficient 

way (e.g. MPI2-IO, HDF5, NetCDF, …)



CINECA IO System Configuration

Both IBM BlueGene/Q (FERMI) and PLX Linux Cluster IO are based on the

General Parallel File System (GPFS) 

technology (IBM propretary)

GPFS is:

• High performance 

• Scalable

• Reliable

• Ported on many platforms (in particular AIX and Linux)
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Computing node

Computing node

Computing node

Disks

Part of the computing node

is dedicated to the IO 

management

GPFS Architecture
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Blue Gene/Q IO architecture
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Switch RAID Storage & 

File Servers

compute nodes IO nodes

IB or 10GE

PCI_E

IB or 10GE

IO nodes: each one manages groups of compute nodes



There are two common different representations:

Big Endian

Byte3 Byte2 Byte1 Byte0

will be arranged in memory as follows:

Base Address+0 Byte3 

Base Address+1 Byte2 

Base Address+2 Byte1 

Base Address+3 Byte0 

Little Endian

Byte3 Byte2 Byte1 Byte0

will be arranged in memory as follows:

Base Address+0 Byte0 

Base Address+1 Byte1 

Base Address+2 Byte2 

Base Address+3 Byte3

PC (Windows/Linux)

Unix (IBM, SGI, SUN…)

Data Portability: Data Representation
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Parallel IO

Goals:

• Improve the performance

• Ensure data consistency

• Avoid communication

• Usability

Possible solutions:

1. Master-Slave

2. Distributed

3. Coordinated

4. MPI-IO or high level libraries
(e.g. HDF5, NetCDF use MPI-IO as the backbone)
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Solution 1: Master-Slave

Only 1 processor performs IO

Pe1

Pe2

Pe3

Pe0 Data File

Goals:

Improve the performance: NO

Ensure data consistency: YES

Avoid communication: NO

Usability: YES

Parallel IO
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Solution 2: Distributed IO

All the processors read/writes their own files

Pe1

Pe2

Pe3

Data File 0

Goals:

Improve the performance: YES

(but be careful)

Ensure data consistency: YES

Avoid communication: YES

Usability: NO

Pe0

Data File 3

Data File 2

Data File 1

Warning: avoid to parametrize with

processors!!!

Parallel IO
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Solution 3: Distributed IO on single file

All the processors read/writes on a single ACCESS = DIRECT file

Pe1

Pe2

Pe3

Goals:

Improve the performance: YES for read,

NO for write

Ensure data consistency: NO

Avoid communication: YES

Usability: YES (portable !!!)
Pe0

Data File

Parallel IO
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Solution 4: MPI2 IO

MPI functions performs the IO. Asyncronous IO is supported.

Pe1

Pe2

Pe3

Goals:

Improve the performance: YES 

(strongly!!!)

Ensure data consistency: NO

Avoid communication: YES

Usability: YES
Pe0

Data File

MPI2

Parallel IO
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I/O Patterns in Parallel applications:

• Different from those in sequential programs, which usually 

access data in contiguous chunks

• In many parallel programs, each program may need to access 

several noncontiguous pieces of data from a file

• In addition, groups of processes may need to access the file 

simulataneously, and theaccesses of different processes may 

be interleaved in the file 

Pe1

Pe2

Parallel IO
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MPI2-IO



MPI-2.x features for Parallel IO

• MPI-IO: introduced in MPI-2.x standard(1997)

– Non contiguous access in both memory and file

– reading/writing a file is like send/receive a message from a MPI buffer

– optimized access to non-contiguous data

– collective / non-collective access operations with communicators

– blocking / non-blocking calls

– data portability (implementation/system independent)

– good performance in many implementations

• Why do we start to use it??? 

– syntax and semantic are very simple to use

– performance : 32 MPI processes (4x8) with local grid 100002 (dp)

• MPI-IO:  48sec vs Traditional-IO:  3570sec     (dimension of 

written file is 24Gb)
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Starting with MPI-IO

• MPI-IO provides basic IO operations:

– open, seek, read, write, close  (ecc.)

• open/close are collective operations on the same file

– many modalities to access the file (combinabili: |,+)

• read/write are similar to send/recv of data to/from a buffer

– Each MPI process has own local pointer to the file

(individual file pointer) by seek,read,write operations

– offset variable is a particular kind of variable and it is given in elementary unit 

(etype) of access to file (default in byte)

• error:  declare offset as an integer

– it is possible to know the exit status of each subroutine/function
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Open/close a file 1/3

 Collective operations across processes within a communicator. 

 Filename must reference the same file on all processes.

 Process-local files can be opened with MPI_COMM_SELF.

 Initially, all processes view the file as a linear byte stream, and each process views
data in its own native representation. The file view can be changed via the 
MPI_FILE_SET_VIEW routine.

 Additional information can be passed to MPI environment vie the MPI_Info handle. 
The info argument is used to provide extra information on the file access patterns. 
The constant MPI_INFO_NULL can be specified as a value for this argument. 
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MPI_FILE_OPEN(comm, filename, amode, info, fh) 
IN comm: communicator (handle)

IN filename: name of file to open (string)

IN amode: file access mode (integer)

IN info: info object (handle)

OUT fh: new file handle (handle)



Open/close a file 2/3

Each process within the communicator must specify the same filename and access

mode (amode): 

MPI_MODE_RDONLY read only

MPI_MODE_RDWR reading and writing

MPI_MODE_WRONLY write only

MPI_MODE_CREATE create the file if it does not exist

MPI_MODE_EXCL error if creating file that already exists

MPI_MODE_DELETE_ON_CLOSE delete file on close

MPI_MODE_UNIQUE_OPEN file will not be concurrently opened elsewhere

MPI_MODE_SEQUENTIAL file will only be accessed sequentially

MPI_MODE_APPEND set initial position of all file pointers to end of file
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Open/close a file 3/3

MPI_FILE_CLOSE(fh)

INOUT fh: file handle (handle) 

 Collective operation

 This function is called when the file access is finished, to free the file handle.
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Data Access 1/3 

MPI-2 provides a large number of routines to read and write data from a file.

There are three properties which differentiate the different data access routines.

Positioning: Users can either specify the offset in the file at which the data 
access takes place or they can use MPI file pointers: 

– Individual file pointers

• Each process has its own file pointer that is only altered on accesses of that
specific process

– Shared file pointer

• This file pointer is shared among all processes in the communicator used to 
open the file

• It is modified by any shared file pointer access of any process

• Shared file pointers can only be used if file type gives each process access to 
the whole file!

– Explicit offset

• No file pointer is used or modified

• An explicit offset is given to determine access position

• This can not be used with MPI MODE SEQUENTIAL!
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Data Access 2/3

Synchronisation:

MPI-2 supports both blocking and non-blocking IO routines:

– A blocking IO call will not return until the IO request is completed.

– A nonblocking IO call initiates an IO operation, but not wait for its

completition.  It also provides 'split collective routines' which are a restricted

form of non-blocking routines for collective data access. 

Coordination:

Data access can either take place from individual processes or 

collectively across a group of processes: 

– collective: MPI coordinates the reads and writes of processes

– independent: no coordination by MPI 
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Data Access 3/3
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Individual file pointers - Write

MPI_FILE_WRITE (fh, buf, count, datatype, status)

INOUT fh: file handle (handle)

IN buf: initial address of buffer (choice)

IN count: number of elements in buffer (integer)

IN datatype: datatype of each buffer elemnt (handle)

OUT status: status object (status)

– Write count elements of datatype from memory starting at buf to the file

– Starts writing at the current position of the file pointer

– status will indicate how many bytes have been written

– Updates position of file pointer after writing

– Blocking, independent. 

– Individual file pointers are used:

Each processor has its own pointer to the file

Pointer on a processor is not influenced by any other processor
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Individual file pointers - Read

MPI_FILE_READ (fh, buf, count, datatype, status) 

INOUT fh: file handle (handle)

OUT buf: initial address of buffer (choice)

IN count: number of elements in buffer (integer)

IN datatype: datatype of each buffer element (handle)

OUT status: status object (status)

– Read count elements of datatype from the file to memory starting at buf

– Starts reading at the current position of the file pointer

– status will indicate how many bytes have been read

– Updates position of file pointer after writing

– Blocking, independent.

– Individual file pointers are used:

Each processor has its own pointer to the file

Pointer on a processor is not influenced by any other processor
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Seeking to a file position

MPI_FILE_SEEK (fh, offset, whence) 

INOUT fh: file handle (handle)

IN offset: file offset in byte (integer)

IN whence: update mode (state)

– Updates the individual file pointer according to whence, which can have the 

following values:

– MPI_SEEK_SET: the pointer is set to offset

– MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset

– MPI_SEEK_END: the pointer is set to the end of the file plus offset

– offset can be negative, which allows seeking backwards

– It is erroneous to seek to a negative position in the view
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Querying the position

MPI_FILE_GET_POSITION (fh, offset)

IN fh: file handle (handle)

OUT offset: offset of the individual file pointer (integer)

– Returns the current position of the individual file pointer in offset

– The value can be used to return to this position or calculate a displacement

– Do not forget to convert from offset to byte displacement if needed
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#include “mpi.h”

#define FILESIZE(1024*1024)

int main(int argc, char **argv){

int *buf, rank, nprocs, nints, bufsize;

MPI_File fh; MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

bufsize = FILESIZE/nprocs;

nints =bufsize/sizeof(int);

buf = (int*) malloc(nints);

MPI_File_open(MPI_COMM_WORLD, “/pfs/datafile”, MPI_MODE_RDONLY, 

MPI_INFO_NULL,&fh);

MPI_File_seek(fh, rank*bufsize,MPI_SEEK_SET);

MPI_File_read(fh, buf, nints, MPI_INT, &status);

MPI_File_close(&fh);

free(buf);

MPI_Finalize();

return 0; 

}
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Using individual file pointers

File offset

determined by

MPI_File_seek



Using individual file pointers
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PROGRAM Output

USE MPI

IMPLICIT NONE

INTEGER :: err, i, myid, file, intsize

INTEGER :: status(MPI_STATUS_SIZE)

INTEGER, PARAMETER :: count=100

INTEGER DIMENSION(count) :: buf

INTEGER, INTEGER(KIND=MPI_OFFSET_KIND) :: disp

CALL MPI_INIT(err)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid,err)

DO i = 1, count

buf(i) = myid * count + i

END DO

CALL MPI_FILE_OPEN(MPI_COMM_WORLD, 'test', MPI MODE WRONLY + & 

MPI_MODE_CREATE, MPI_INFO_NULL, file, err)

CALL MPI_TYPE_SIZE(MPI_INTEGER, intsize,err)

disp = myid * count * intsize

CALL MPI_FILE_SEEK(file, disp, MPI_SEEK_SET, err)

CALL MPI_FILE_WRITE(file, buf, count, MPI_INTEGER, status, err)

CALL MPI_FILE_CLOSE(file, err)

CALL MPI_FINALIZE(err)

END PROGRAM Output

File offset

determined by

MPI_File_seek



MPI_FILE_WRITE_AT (fh, offset, buf, count, datatype, status) 

IN fh: file handle (handle)

IN offset: file offset in byte (integer)

IN buf: source buffer

IN count: number of written elements

IN datatype: MPI type of each element

OUT status: MPI status

Explicit offset – Write

–

An explicit offset is given to determine access position

– The file pointer is neither used or incremented or modified

– Blocking, independent.

– Writes COUNT elements of DATATYPE from memory BUF to the file

– Starts writing at OFFSET units of type from begin of view

– The sequence of basic datatypes of DATATYPE (= signature of DATATYPE) must 

match contiguous copies of the etype of the current view
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MPI_FILE_READ_AT (fh, offset, buf, count, datatype, status) 

IN fh: file handle (handle)

IN offset: file offset in byte (integer)

IN buf: destination buffer

IN count: number of read elements

IN datatype: MPI type of each element

OUT status: MPI status

Explicit offset – Read

–

An explicit offset is given to determine access position

– The file pointer is neither used or incremented or modified

– Blocking, independent.

– reads COUNT elements of DATATYPE from FH to  memory BUF

– Starts reading at OFFSET units of etype from begin of view

– The sequence of basic datatypes of DATATYPE (= signature of DATATYPE) must 

match contiguous copies of the etype of the current view
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Using explicit offsets

PROGRAM main

include 'mpif.h'

parameter (FILESIZE=1048576, MAX_BUFSIZE=1048576, INTSIZE=4)

integer buf(MAX_BUFSIZE), rank, ierr, fh, nprocs, nints

integer status(MPI_STATUS_SIZE), count

integer (kind=MPI_OFFSET_KIND) offset

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)

call MPI_FILE_OPEN(MPI_COMM_WORLD, '/pfs/datafile', 

MPI_MODE_RDONLY, MPI_INFO_NULL, &

fh, ierr)

nints = FILESIZE/(nprocs*INTSIZE)

offset = rank * nints * INTSIZE

call MPI_FILE_READ_AT(fh, offset, buf, nints, MPI_INTEGER, status, 

ierr)

call MPI_FILE_CLOSE(fh, ierr)

call MPI_FINALIZE(ierr)

END PROGRAM main
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Advanced features of MPI-IO

• Basic MPI-IO features are not useful when

– Data distibution is non contiguous in memory and/or in the file

• e.g., ghost cells

• e.g., block/cyclic array distributions

– Multiple read/write operations for segmented data generate poor 

performances

• MPI-IO allow to access to data in different way:

– non contiguous access on file: providing the access pattern to file (fileview)

– non contiguous access in memory: setting new datatype

– collective access: grouping multiple near accesses in one or more single 

accesses (decreasing the latency time)
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File view

• A file view defines which portion of a file is “visible” to a process

• File view defines also the type of the data in the file (byte, integer, float, …)

• By default, file is treated as consisting of bytes, and process can access (read or 

write) any byte in the file

• A default view for each participating process is defined implicitly while opening the 

file

– No displacement

– The file has no specific structure (The elementary type is MPI BYTE )

– All processes have access to the complete file (The file type is MPI BYTE)
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File View

A file view consists of three components

– displacement : number of bytes to skip from the beginning of file

– etype : type of data accessed, defines unit for offsets

– filetype : base portion of file visible to process same as etype or MPI derived

type consisting of etype

The pattern described by a filetype is repeated, beginning at the displacement, to 

define the view,  as it happens when creating MPI_CONTIGUOUS or when sending 

more than one MPI datatype element: HOLES are important!
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etype
filetype

displacement filetype filetype
and so on...

FILE
head of file

holes



File View
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• Define a file-view in order to have

– fundamental access unit (etype) is MPI_INT

– access pattern (fileytpe) is given by:

• first 2 fundamental units

• skips the next 4 fundamental units

– skips the first part (5 integers) of the file (displacement)

etype = MPI_INT

filetype = two MPI_INTs followed by

a gap of four MPI_INTs

displacement filetype filetype and so on...

FILEhead of file



File View

MPI_FILE_SET_VIEW(fh, disp, etype, filetype, datarep, info)

– INOUT fh: file handle (handle)

– IN disp: displacement from the start of the file, in bytes (integer)

– IN etype: elementary datatype. It can be either a pre-defined or a derived

datatype but it must have the same value on each process.(handle)  

– IN filetype: datatype describing each processes view of the file. (handle)

– IN datarep: data representation (string)

– IN info: info object (handle)

• It is used by each process to describe the layout of the data in the file 

• All processes in the group must pass identical values for datarep and provide an 

etype with an identical extent

• The values for disp, filetype, and info may vary
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Data Representation in File View

• Data representation: define the layout and data access modes (byte order, type

sizes, ecc)

– native: (default) use the memory layout with no conversion

– no precision loss or conversion effort

• not portable

– internal: layout  implementation-dependent

• portable for the same MPI implementation

– external32: standard defined by MPI (32-bit big-endian IEEE)

• portable (architecture and MPI implementation)

• some conversion overhead and precision loss

• not always implemented (e.g. Blue Gene/Q)

• Using or internal and external32, the portability is guaranteed only if usiing the 

correct MPI datatypes (not using MPI_BYTE)

• Note: to be portable the best and widespread choice is to use high-level 

libraries, e.g. HDF5 or NetCDF
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Passing hints to Filesystem

• MPI allows the user to provide information on the features of the File System 

employed

– optionals

– may improve performances

– depend on the MPI implementation

– default: use MPI_INFO_NULL if you are not very expert

• Infos are objects created by MPI_Info_create

– elements key-value

– use MPI_Info_set to add elements

• ... refer to standard for more information and to manuals

– e.g., consider ROMIO implemenation of MPICH

– specific infos for different file-systems (PFS, PVFS, GPFS, Lustre, ...)
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Devising the I/O strategy

• Three main tasks:

– let each process write to a different area without overlapping

– repeat (indefinitely?) a certain basic pattern

– write after an initial displacement

• Consider the following I/O pattern

to be replicated a certain amount of (unknown?) times

48

displacement base pattern base pattern and so on...

FILEhead of file

process 0 process 1 process 2



Strategy: data-type replication
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• If the whole amount of basic patterns is known (e.g. 10)

– define MPI vector with count=10, stride=6 and blocklength

depending on the process: 

• P0 has 2 elements, P1 has 3 elements, and P2 has 1 element

– define the file view using different displacements in addition to 

the base displacement dis: dis+0, dis+2 and dis+5

filetype 10 replicationsdis

FILEhead of file

process 0 process 1 process 2



Use data-type replication
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int count_proc[]={2,3,1};

int count_disp[]={0,2,5};

MPI_Datatype vect_t;

MPI_Type_vector(DIM_BUF, count_proc[myrank],6,MPI_INT, &vect_t);

MPI_Type_commit(&vect_t);

int size_int;

MPI_Type_size(MPI_INT,&size_int);

offset = (MPI_Offset)count_disp[myrank]*size_int;

MPI_File_set_view(fh,offset,MPI_INT,vect_t, "native",MPI_INFO_NULL);

MPI_File_write(fh, buf, my_dim_buf, MPI_INT, &mystatus);

displacement filetype and so on...



Non-contiguous access: 

with known replication pattern
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• Each process has to access small pieces of data scattered throughout a file

• Very expensive if implemented with separate reads/writes

• Use file type to implement the non-contiguous access

• Again, employ data-type replication mechanism

File written per row

2D-array distributed

column-wise



Non-contiguous access: 

with known replication pattern

57

... 

INTEGER :: count = 4

INTEGER, DIMENSION(count) :: buf

... 

CALL MPI_TYPE_VECTOR(4, 1, 4, MPI_INTEGER, filetype, err)

CALL MPI_TYPE_COMMIT(filetype, err)

disp = myid * intsize

CALL MPI_FILE_SET_VIEW(file, disp, MPI_INTEGER, filetype, 

“native”, MPI_INFO_NULL, err)

CALL MPI_FILE_WRITE(file, buf, count,MPI_INTEGER, status, err)

File written per row

2D-array distributed column-wise



Non-contiguous access:

distributed matrix
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• When distributing multi-dimensional arrays among processes, we

want to write files which are independent of the decomposition

– written according to a usual serial ordern, in row major order

(C) or column major order (Fortran)

• The datatype subarray may easily handle this situation

• 2D array, size (m,n) distributed 

among six processes

• cartesian layout 2x3

n columns

m

rows

P0

(0,0)

P1

(0,1)

P2

(0,2)

P3

(1,0)

P4

(1,1)

P5

(1,2)



Non-contiguous access:

distributed matrix

61

gsizes[0] = m;  /* no. of rows in global array */

gsizes[1] = n;  /* no. of columns in global array*/

psizes[0] = 2; /* no. of procs. in vertical dimension */

psizes[1] = 3; /* no. of procs. in horizontal dimension */

lsizes[0] = m/psizes[0]; /* no. of rows in local array */

lsizes[1] = n/psizes[1]; /* no. of columns in local array */

dims[0] = 2; dims[1] = 3;

periods[0] = periods[1] = 1;

MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm);

MPI_Comm_rank(comm, &rank);

MPI_Cart_coords(comm, rank, 2, coords);

/* global indices of first element of local array */

start_indices[0] = coords[0] * lsizes[0];

start_indices[1] = coords[1] * lsizes[1];

MPI_Type_create_subarray(2, gsizes, lsizes, start_indices, 

MPI_ORDER_C, MPI_FLOAT, &filetype);

MPI_Type_commit(&filetype);



Simple Benchmark
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I/O performances are strongly affected by file-system, storage

infra-structure, MPI implementation, network,...

• Traditional I/O: master process 

gathers data and perform I/O

• MPI-IO: use 

MPI_Type_create_subarray to 

define the view for each process 

and perform a collective call

• local grid (per process): 

10000x10000 double-precision

n columns

m

rows

P0

(0,0)

P1

(0,1)

P2

(0,2)

P3

(1,0)

P4

(1,1)

P5

(1,2)

processi 1 2 8 16 32

filesize (Mb) 763 1526 6103 12207 24414

Traditional-IO (s) 8 22 86 1738 3570

MPI-IO (s) 1 2 18 33 48



Collective, blocking IO
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IO can be performed collectively by all processes in a communicator

Same parameters as in independent IO functions (MPI_File_read etc)

– MPI_File_read_all                  

– MPI_File_write_all

– MPI_File_read_at_all

– MPI_File_write_at_all

– MPI_File_read_oredered

– MPI_File_write_ordered

All processes in communicator that opened file must call function

Performance potentially better than for individual functions

– Even if each processor reads a non-contiguous segment, in total the read is

contiguous



Collective, blocking IO

int MPI_File_write_all(MPI_File fh, void *buf, int count, MPI_Datatype datatype, 

MPI_Status *status) 

int MPI_File_read_all( MPI_File mpi_fh, void *buf, int count, MPI_Datatype

datatype, MPI_Status *status )

• With collective IO ALL the processors defined in a communicator

execute the IO operation

• This allows to optimize the read/write procedure

• It is particularly effective for non atomic operations
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Darray and collective IO 1/2
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/* int MPI_Type_create_darray (int size, int rank, int ndims, int array_of_gsizes[], 

int array_of_distribs[], int array_of_dargs[], int array_of_psizes[], int order,   

MPI_Datatype oldtype, MPI_Datatype *newtype) 

int gsizes[2], distribs[2], dargs[2], psizes[2];

gsizes[0] = m;    /* no. of rows in global array */

gsizes[1] = n;    /* no. of columns in global array*/

distribs[0] = MPI_DISTRIBUTE_BLOCK; 

distribs[1] = MPI_DISTRIBUTE_BLOCK;  

dargs[0] = MPI_DISTRIBUTE_DFLT_DARG; 

dargs[1] = MPI_DISTRIBUTE_DFLT_DARG; 

psizes[0] = 2; /* no. of processes in vertical dimension of process grid */

psizes[1] = 3; /* no. of processes in horizontal dimension of process grid */



Darray and collective IO 2/2
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MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Type_create_darray(6, rank, 2, gsizes, distribs, dargs, 

psizes, MPI_ORDER_C, MPI_FLOAT, &filetype);

MPI_Type_commit(&filetype);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", 

MPI_MODE_CREATE | MPI_MODE_WRONLY, 

MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native", 

MPI_INFO_NULL);

local_array_size = num_local_rows * num_local_cols;

MPI_File_write_all(fh, local_array, local_array_size, 

MPI_FLOAT, &status);

MPI_File_close(&fh);



Independent, nonblocking IO

This is just like non blocking communication.

Same parameters as in blocking IO functions (MPI_File_read etc)

– MPI_File_iread

– MPI_File_iwrite

– MPI_File_iread_at

– MPI_File_iwrite_at

– MPI_File_iread_shared

– MPI_File_iwrite_shared

MPI_Wait must be used for syncronization.

Can be used to overlap IO with computation
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For collective IO only a restricted form of nonblocking IO is supported, called Split

Collective.

MPI_File_read_all_begin( MPI_File mpi_fh, void *buf, int count, MPI_Datatype

datatype )

…computation…

MPI_File_read_all_end( MPI_File mpi_fh, void *buf, MPI_Status *status ); 

– Collective operations may be split into two parts

– Only one active (pending) split or regular collective operation per file handle at any

time

– Split collective operations do not match the corresponding regular collective

operation

– Same BUF argument in _begin and _end calls

Collective, nonblocking IO
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Use cases

1. Each process has to read in the complete file

 Solution: MPI_FILE_READ_ALL

 Collective with individual file pointers, same view 

(displacement, etype, filetype) on all processes

 Internally: read in once from disk by several processes 

(striped), then distributed broadcast

2. The file contains a list of tasks, each task requires a different amount of 

computing time

 Solution: MPI_FILE_READ_SHARED

• Non-collective with a shared  file pointer

• Same view on all processes (mandatory)
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Use cases

3. The file contains a list of tasks, each task requires the same amount of 

computing time

Solution A : MPI_FILE_READ_ORDERED

• Collective with a shared file pointer

• Same view on all processes (mandatory) 

Solution B : MPI_FILE_READ_ALL

• Collective with individual file pointers

• Different views: filetype with MPI_TYPE_CREATE_SUBARRAY

Internally: both may be implemented in the same way.
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Use cases

4. The file contains a matrix, distributed block partitioning, each process reads a block

Solution: generate different filetypes with MPI_TYPE_CREATE_DARRAY 

• The view of each process represents the block that is to be read by 
this process

• MPI_FILE_READ_AT_ALL with OFFSET=0

• Collective with explicit offset

• Reads the whole matrix collectively

• Internally: contiguous blocks read in by several processes 
(striped), then distributed with all-to-all.

5. Each process has to read the complete file

Solution: MPI_FILE_READ_ALL_BEGIN/END

• Collective with individual file pointers

• Same view (displacement, etype, filetype) on all processes

• Internally: asynchronous read by several processes (striped) 
started, data distributed with bcast when striped reading has 
finished
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Best Practices

• When designing your code, include I/O!

– maximize the parallelism

– if possible, use a single file as restart file and simulation output

– minimize the usage of formatted output (do you actually need it?)

• Minimize the latency of file-system access

– maximize the sizes of written chunks

– use collective functions when possible

– use derived datatypes for non-contiguous access

• If you are patient, read MPI standards, MPI-2.x or MPI-3.x

• Employ powerful and well-tested libraries based on MPI-I/O:

– HDF5 or NetCDF
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Useful links

• MPI – The Complete Reference vol.2, The MPI Extensions

(W.Gropp, E.Lusk et al. - 1998 MIT Press )

• Using MPI-2: Advanced Features of the Message-Passing Interface (W.Gropp, E.Lusk, 

R.Thakur - 1999 MIT Press)

• Standard MPI-2.x    (or the last MPI-3.x) 

( http://www.mpi-forum.org/docs )

• Users Guide for ROMIO (Thakur, Ross, Lusk, Gropp, Latham)

• ... a bit of advertising:

corsi@cineca.it  ( http://www.hpc.cineca.it )

• ...practice practice practice
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