
Introduction to CINECA HPC
Environment

23nd Summer School on Parallel Computing

8-19 September 2014

m.cestari@cineca.it, i.baccarelli@cineca.it, m.cremonesi@cineca.it

Goals

You will learn:

� The basic overview of CINECA HPC systems

� how to login to the school HPC system (PLX)

� basic concepts of the system architecture and user environment that
directly affects your work

� how to explore and interact with the software installed on the system

� how to compile a parallel code

2

Contents

3

Systems overview (Fermi, Eurora, PLX)

A first step
login
file transfer

Introduction to the environment
accounting
disk systems
module system

Programming environment
compilation
compiling/linking issues

Production environment
job script
PBS commands

For further info...
useful links and documentation

4

Fermi characteristics

Model: IBM-BlueGene /Q

Architecture: 10 BGQ Frame with 2
MidPlanes each

Front-end Nodes OS: Red-Hat EL 6.2

Compute Node Kernel: lightweight Linux-like
kernel

Processor Type: IBM PowerA2, 1.6 GHz

Computing Nodes: 10.240 with 16 cores
each

Computing Cores: 163.840

RAM: 16GB / node; 1GB/core
Internal Network: Network interface

with 11 links ->5D Torus
Disk Space: more than 2PB of scratch space
Peak Performance: 2.1 PFlop/s

ranked #7 in the top 500 supercomputer sites list (June 2012)

#12 in the top 500 (June 2013)

5

EURORA characteristics

Model: Eurora prototype

Architecture: Linux Infiniband Cluster

Processors Type:

- Intel Xeon (Eight-Core SandyBridge) E5-2658 2.10 GHz (Compute)

- Intel Xeon (Eight-Core SandyBridge) E5-2687W 3.10 GHz (Compute)

- Intel Xeon (Esa-Core Westmere) E5645 2.4 GHz (Login)

Number of nodes: 64 Compute + 1 Login

Number of cores: 1024 (compute) + 12 (login)

Number of accelerators: 114 nVIDIA Tesla K20 (Kepler) + 14 Intel Xeon Phi (MIC)

RAM: 1.1 TB (16 GB/Compute node + 32GB/Fat node)
OS: CentOS release 6.3, 64 bit

ranked #1 in the Green 500 chart – The world’s most energy-efficient
supercomputers (June 2013), 3210 MFlops/s per Watt

6

PLX system performance

Peak performance: 32 Tflops (3288 cores at
2.40GHz)

Peak performance: 565 TFlops SP or 283 TFlops DP
(548 Nvidia M2070)

Model: IBM iDataPlex DX360M3

Architecture: Linux Infiniband Cluster

Processor Type:
• Intel Xeon (Esa-Core Westmere) E5645 2.4 GHz
(Compute)
• Intel Xeon (Quad-Core Nehalem) E5530 2.66 GHz
(Service and Login)

Number of nodes: 274 Compute + 1 Login + 1 Service
+ 8 Fat + 6 RVN + 8 Storage + 2 Management

Number of cores: 3288 (Compute)

Number of GPUs: 548 nVIDIA Tesla M2070 + 20 nVIDIA
Tesla M2070Q

RAM: 14 TB (48 GB/Compute node + 128GB/Fat node)

PLX characteristics

7

Infiniband connection

Compute nodes

Access credentials

� You will be provided with the credentials (USERNAME a08traXX) to
log into PLX front-end, login.plx.cineca.it: open a shell (or a putty
session on Windows) and establish a secure (ssh) connection to PLX
front-end:

ssh a08traXX@login.plx.cineca.it

On windows you can download and use puttyputtyputtyputty ssh client
(http://www.putty.org/)

This account will grant you access to PLX from September 8th September 8th September 8th September 8th to
November 18thNovember 18thNovember 18thNovember 18th. After this period the account will expire and the
password will be reset.

8

PLX: how to log in

9

•After having established a ssh connection

ssh <username>@login.plx.cineca.it

•Please check:

– important messages that can be found in the message of the day
– the user guide! http://www.hpc.cineca.it/content/ibm-plx-gpu-user-guide-0

PLX: file transfer

10

•sftp / scp (always available if sshd is running)

$ sftp -r <my_dir> <user>@login.plx.cineca.it:/path/to/

$ scp -r <my_dir> <user>@login.plx.cineca.it:/path/to/

•rsync: allows incremental transfer

$ rsync -avzr --progress <my_dir> <user>@login.plx.cineca.it:

•Filezilla, WinSCP: recommended for Windows users

https://filezilla-project.org/

http://winscp.net/it/

Remark: who uses PLX?

� 8 nodes are dedicated to the Summer School via the “private” queue

� But: PLX is a resource shared among different type users:
academic, industrial, and special agreement users

� Please be responsible when you use it: if you crash the login node all
the users will be affected

11

Work Environment

$HOME:

�Permanent, backed-up,and local to PLX.

�Quota = 4GB.

�For source code or important input files.

$CINECA_SCRATCH:

�Large, parallel filesystem (GPFS).

�Temporary (files older than 30 days automatically deleted), no backup.

�No quota. Run your simulations and calculations here.

12

Disks and filesystems

please use “cindata” command to get info on your disk occupation

13

IBM-FERMI

Accounting: saldo

14

The accounting mechanism is based on the cpus allocated for the amount of
elapsed time of the batch job:

cost = no. of cores allocated x job duration

It is possible to have more than 1 budget (“account”) The accounts available to
your UNIX username can be found from the saldo command.

[a06trn50@node342 ~]$ saldo -b

--

account start end total localCluster totConsumed totConsumed

(local h) Consumed(local h) (local h) %

--

cin_visual 20120619 20131231 50000 21546 21546 43.1

train_czss2013 20130523 20130622 20000 1 1 0.0

train_scM2014 20140908 20151119 20000 0 0 0.0

module, my best friend

15

� all the optional software on the system is made available through
the "module" system
�provides a way to rationalize software and its env variables

� modules are divided in 3 profiles
�profile/base (stable and tested modules)
�profile/advanced (software not yet tested or not well optimized)
�profile/engineering (for industrial users)

� each profile is divided in 4 categories
�compilers (Intel, GNU, PGI, OpenMPI, IntelMPI, CUDA)
�libraries (e.g. LAPACK, BLAS, FFTW, ...)
�tools (e.g. Totalview, Valgrind, cmake, VNC, python,...)
�applications (software for chemistry, physics, ...)

� CINECA’s work environment is organized in modules, a set of
installed libs, tools and applications available for all users.

Modules
� “loading” a module means that a series of (useful) shell environment
variables wil be set

� e.g. after a module is loaded, an environment variable of the form
“<MODULENAME>_HOME” is set

[ibaccare@node342 ~]$ module load nwchem

WARNING: nwchem/6.1.1 cannot be loaded due to missing prereq

HINT: the following modules must be loaded first: IntelMPI/4.0--binary

[ibaccare@node342 ~]$ module load IntelMPI/4.0--binary

[ibaccare@node342 ~]$ module load nwchem

[ibaccare@node342 ~]$ echo $NWCHEM_HOME

/cineca/prod/applications/nwchem/6.1.1/IntelMPI—4.0—binary/

[ibaccare@node342 ~]$ module load autoload nwchem

auto-loading IntelMPI/4.0--binary

[ibaccare@node342 ~]$ echo $NWCHEM_HOME

/cineca/prod/applications/nwchem/6.1.1/IntelMPI—4.0—binary/

� you can make your life easier by loading the “autoload” module,
which will load all the requested modules

Module commands

> module available (or just “> module av”)
Shows the full list of the modules available in the profile you have loaded,
divided by: environment, libraries, compilers, tools, applications

> module (un)load <module_name>

(Un)loads a specific module

> module show <module_name>
Shows the environment variables set by a specific module

> module help <module_name>
Gets all informations on how to use a specific module

> module purge
Gets rid of all the loaded modules

Compiling on PLX

On PLX you can choose between three different compiler families: gnu,
intel and pgi

You can take a look at the versions available with “module av” and then
load the module you want. Defaults are: gnu 4.1.2, intel 11.1, pgi 12.8

module load intel # loads default intel compilers suite

module load intel/co-2011.6.233--binary # loads specific compilers suite

Get a list of the

compilers flags with

the command man

GNU INTEL PGI

Fortran gfortran ifort pgf77

C gcc icc pgcc

C++ g++ icpc pgCC

Parallel compiling on PLX

Two families of MPI libraries are available: openmpi and intelmpi.

They provide also the parallel compiler wrappers

There are different versions of openmpi, depending on which compiler

has been used for creating them. Default is openmpi/1.4.5--gnu--4.1.2

module load openmpi # loads default openmpi compilers suite

module load openmpi/1.4.5--intel--11.1--binary # loads specific

compilers suite

Warning: openmpi needs to be loaded after the corresponding basic compiler

suite: you can use “autoload” to load both compilers at the same time

Parallel compiling on PLX

If another type of compiler was previously loaded, you may get a

“conflict error”. Unload the previous module with “module unload”

[ibaccare@node342 ~]$ module load openmpi

WARNING: openmpi/1.4.5—gnu—4.1.2 cannot be loaded due to missing prereq

HINT: the following modules must be loaded first: gnu/4.1.2

[ibaccare@node342 ~]$ module load autoload openmpi

auto-loading modules gnu/4.1.2

Compiler flags are the same of the basic compiler (they are basically
MPI wrappers of those compilers)

$ mpicc -show # to get the explicit list of arguments

OpenMP is provided with following compiler flags:

gnu: -fopenmp intel : -openmp pgi: -mp

Parallel compiling on PLX

OPENMPI

INTELMPI

Fortran mpif90

C mpicc

C++ mpiCC

Undefined references

� Many compilation errors are due to wrong or incomplete library linking
� (undefined reference): don't panic!

� Remember to load your modules (module avail, module load):

module load library/version

(fftw/3.2.2—gnu--4.5.2, lapack/3.3.1—intel--co-2011.6.233--binary, ecc.)

� all library paths are in the form $LIBRARY_LIB (e.g., $LAPACK_LIB…) ;
� include paths are in the form $LIBRARY_INC

$ module load hdf5

$ ls $HDF5_LIB

libhdf5.a libhdf5_cpp.la libhdf5_fortran.la libhdf5_hl_cpp.a

libhdf5hl_fortran.a libhdf5_hl.la libhdf5.settings libhdf5_cpp.a

libhdf5_fortran.a libhdf5_hl.a libhdf5_hl_cpp.la libhdf5hl_fortran.la

libhdf5.la

Undefined references

Use the command "nm" to find the reference and the right library to link:

$ for i in `ls $HDF5_LIB/*.a` ; do echo $i ; nm $i | grep H5AC_dxpl_id ; done

/cineca/prod/libraries/hdf5/1.8.7_ser/intel--co-2011.6.233--binary/lib/libhdf5.a

U H5AC_dxpl_id

U H5AC_dxpl_id

000000000000009c D H5AC_dxpl_id

Two ways to link a library:

-L$LIBRARY_LIB -lname --- or --- $LIBRARY_LIB/libname.a

1) mpicc_r -I$HDF5_INC input.c -L$HDF5_LIB -lhdf5 -L$SZIP_LIB -lsz

-L$ZLIB_LIB -lz

2) mpicc_r -I$HDF5_INC input.c $HDF5_LIB/libhdf5.a $SZiP_LIB/libsz.a

$ZLIB_LIB/libz.a

On PLX you can choose between dynamic and static linking (dynamic
is the default).

� Static linking means that the library references are resolved at
compile time, so the necessary functions and variables are already
contained in the executable produced. It means a bigger executable but
no need for linking the library paths at runtime.

� Dynamic linking means that the library references are resolved at
run time, so the executable searches for them in the paths provided. It
means a lighter executable and no need to recompile the program after
every library update, but environment variables have to be defined at
runtime (i.e. LD_LIBRARY_PATH)

To enable static linking: -static (gnu), -Bstatic (intel, pgi)

Static/Dynamic Linking

� Now that we have our executable, it’s time to learn how
to prepare a job for its execution

� PLX uses PBS scheduler. The job script scheme is:

#!/bin/bash

#PBS keywords

variables environment

execution lines

Launching jobs

PBS keywords

#PBS –N jobname # name of the job
#PBS -o job.out # output file
#PBS -e job.err # error file
#PBS -l select=1:ncpus=8:mpiprocs=8:mem=24gb # resources
#PBS -l walltime=1:00:00 # hh:mm:ss, max 144 hours in queue “private”
#PBS -q private # chosen queue
#PBS -A <my_account> # name of the account: train_scM2014

select = number of requested chunks

ncpus = number of cpus per requested chunk

mpiprocs = number of mpi tasks per chunk

mem = RAM memory per chunk

#PBS -A train_scM2014 # your “account” name

#PBS -q private # special queue used in this school

#PBS -W group_list=train_scM2014 # required primary group

private is a particular queue defined on 8 compute nodes (8 cores
each)

train_scM2014 is the cpu-hours budget that you need to set

REMINDER

When the school is over, you will not be able to acces the pivate queue
any more. You will need to use the queues reserved to all users (debug,
parallel, longpar)

PBS Keywords specific for the school

Environment setup and execution line

The execution line starts with mpirun: Given: ./myexe arg_1 arg_2

mpirun –n 24 ./myexe arg_1 arg_2

–n is the number of cores you want to use (<= cores allocated for the job)

arg_1 arg_2 are the normal arguments of myexe

In order to use mpirun, openmpi (or intelmpi) has to be loaded. Also, if
you linked dynamically, you have to remember to load every library
module you need (automatically sets the LD_LIBRARY_PATH variable).

The environment setting usually starts with “cd $PBS_O_WORKDIR”.
$PBS_O_WORKDIR points to the directory from where you’re submitting
the job.

Otherwise execution is launched on your home space and the executable
may not be found.

#!/bin/bash
#PBS -l walltime=1:00:00
#PBS -l select=1:ncpus=2:mpiprocs=2:mem=12gb
#PBS -o job.out
#PBS -e job.err
#PBS -q private
#PBS -W group_list=train_scM2014
#PBS -A train_scM2014

#PBS -m mail_events --> specify email notification:

(a=aborted,b=begin,e=end,n=no_mail)

#PBS -M user@email.com

cd $PBS_O_WORKDIR
module load autoload openmpi
module load somelibrary

mpirun ./myprogram < myinput

PLX job script example

PBS commands

qsub
qsub <job_script>

Your job will be submitted to the PBS scheduler and executed
when there will be nodes available (according to your priority and the
queue you requested)

qstat
qstat

Shows the list of all your scheduled jobs, along with their status (idle,
running, closing, …) Also, shows you the job id required for other qstat
options

qstat
qstat -f <job_id>

Provides a long list of informations for the job requested.
In particular, if your job isn’t running yet, you'll be notified about its
estimated start time or, if you made an error on the job script, you will
learn that the job won’t ever start

qdel

qdel <job_id>

Removes the job from the scheduled jobs by killing it

PBS commands

PRIVATE queue

$ qstat -Qf private

Queue: private

queue_type = Execution

total_jobs = 0

resources_max.ncpus = 64

resources_max.ngpus = 8

resources_max.walltime = 144:00:00

resources_default.ncpus = 8

resources_default.ngpus = 0

resources_default.place = free:shared

acl_group_enable = True

acl_groups = cin_staff,cinstaff,train_scR2013

enabled = True

started = True

……….

Documentation

Check out the User Guides on our website www.hpc.cineca.it

PLX:

Advanced topic

http://www.hpc.cineca.it/sites/default/files/PBSProUserGuide10.0.pdf

