
Introduction to OpenCL

Piero Lanucara – p.lanucara@cineca.it
SuperComputing Applications and Innovation Department

Heterogeneous High Performance
Programming framework
• http://www.hpcwire.com/hpcwire/2012-02-

28/opencl_gains_ground_on_cuda.html

“As the two major programming frameworks for GPU computing, OpenCL and

CUDA have been competing for mindshare in the developer community for the

past few years. Until recently, CUDA has attracted most of the attention from

developers, especially in the high performance computing realm. But OpenCL

software has now matured to the point where HPC practitioners are taking a

second look.

Both OpenCL and CUDA provide a general-purpose model for data parallelism

as well as low-level access to hardware, but only OpenCL provides an open,

industry-standard framework. As such, it has garnered support from nearly all

processor manufacturers including AMD, Intel, and NVIDIA, as well as others

that serve the mobile and embedded computing markets. As a result,

applications developed in OpenCL are now portable across a variety of GPUs

and CPUs.”

http://www.hpcwire.com/hpcwire/2012-02-28/opencl_gains_ground_on_cuda.html
http://www.hpcwire.com/hpcwire/2012-02-28/opencl_gains_ground_on_cuda.html
http://www.hpcwire.com/hpcwire/2012-02-28/opencl_gains_ground_on_cuda.html
http://www.hpcwire.com/hpcwire/2012-02-28/opencl_gains_ground_on_cuda.html
http://www.hpcwire.com/hpcwire/2012-02-28/opencl_gains_ground_on_cuda.html
http://www.hpcwire.com/hpcwire/2012-02-28/opencl_gains_ground_on_cuda.html
http://www.hpcwire.com/hpcwire/2012-02-28/opencl_gains_ground_on_cuda.html
http://www.hpcwire.com/hpcwire/2012-02-28/opencl_gains_ground_on_cuda.html

Heterogeneous High Performance
Programming framework (2)

A modern computing

platform includes:

• One or more CPUs

• One of more GPUs

• DSP processors

• Accelerators

• … other?

E.g. Samsung® Exynos 5:

• Dual core ARM A15

1.7GHz, Mali T604 GPU

OpenCL lets Programmers write a single
portable program that uses ALL resources in

the heterogeneous platform

Microprocessor trends
Individual processors have many (possibly heterogeneous) cores.

The Heterogeneous many-core challenge:

 How are we to build a software ecosystem for the

 Heterogeneous many core platform?

Third party names are the property of their owners.

61 cores

16 wide SIMD

NVIDIA® Tesla® C2090

10 cores

16 wide SIMD

ATI™ RV770

16 cores

32 wide SIMD

Intel® Xeon Phi™

coprocessor

Industry Standards for Programming

Heterogeneous Platforms

OpenCL – Open Computing Language

Open, royalty-free standard for portable, parallel programming of heterogeneous
parallel computing CPUs, GPUs, and other processors

CPUs
Multiple cores driving performance

increases

GPUs
Increasingly general purpose data-

parallel computing

Graphics APIs and
Shading

Languages
Multi-processor

programming – e.g.
OpenMP

Emerging
Intersection

Heterogeneous
Computing

OpenCL Timeline

• Launched Jun’08 … 6 months from “strawman” to OpenCL 1.0

• Rapid innovation to match pace of hardware innovation

– 18 months from 1.0 to 1.1 and from 1.1 to 1.2

– Goal: a new OpenCL every 18-24 months

– Committed to backwards compatibility to protect software

investments

OpenCL 1.0 released.
Conformance tests released

Dec08

Dec08

Jun10

OpenCL 1.1
Specification and
conformance tests

released

Nov11

OpenCL 1.2
Specification and

conformance tests released

Within 6

months (depends

on feedback)

OpenCL 2.0
Specification finalized and
conformance tests released

Jul13

OpenCL 2.0
Provisional Specification

released for public review

OpenCL Working Group

within Khronos
• Diverse industry participation

– Processor vendors, system OEMs, middleware vendors,

application developers.

• OpenCL became an important standard upon release by virtue

of the market coverage of the companies behind it.

Third party names are the property of their owners.

http://www.codeplay.com/
http://www.amd.com/
http://www.umu.se/umu/index_eng.html
http://www.gshark.com/

OpenCL Platform Model

• One Host and one or more OpenCL Devices
– Each OpenCL Device is composed of one or more

Compute Units
• Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing

Element

OpenCL Device

…
…

…

…
… …

…
…

… …
…

…
… …

…

Host

Compute Unit

OpenCL Platform Example

(One node, two CPU sockets,

two GPUs) CPUs:

• Treated as one OpenCL

device

– One CU per core

– 1 PE per CU, or if PEs

mapped to SIMD lanes, n PEs

per CU, where n matches the

SIMD width

• Remember:

– the CPU will also have to be

its own host!

GPUs:

• Each GPU is a separate

OpenCL device

• One CU per Streaming

Multiprocessor

• Can use CPU and all GPU

devices concurrently through

OpenCL

CU = Compute Unit; PE = Processing Element

The BIG idea behind

OpenCL
• Replace loops with functions (a kernel) executing at each point in a problem

domain

– E.g., process a 1024x1024 image with one kernel invocation per pixel or

1024x1024=1,048,576 kernel executions

Traditional loops Data Parallel OpenCL

void

mul(const int n,

 const float *a,

 const float *b,

 float *c)

{

 int i;

 for (i = 0; i < n; i++)

 c[i] = a[i] * b[i];

}

__kernel void

mul(__global const float *a,

 __global const float *b,

 __global float *c)

{

 int id = get_global_id(0);

 c[id] = a[id] * b[id];

}

// many instances of the kernel,

// called work-items, execute

// in parallel

An N-dimensional domain

of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)

• Local Dimensions:

– 128x128 (work-group, executes together)

• Choose the dimensions that are “best” for your algorithm

1024

1
0

2
4

Synchronization between work-items

possible only within work-groups:

barriers and memory fences

Cannot synchronize between

work-groups within a kernel

OpenCL N Dimensional Range

(NDRange)

• The problem we want to compute should have some

dimensionality;

– For example, compute a kernel on all points in a cube

• When we execute the kernel we specify up to 3 dimensions

• We also specify the total problem size in each dimension – this is

called the global size

• We associate each point in the iteration space with a work-item

OpenCL N Dimensional

Range (NDRange)

• Work-items are grouped into work-groups; work-items within

a work-group can share local memory and can synchronize

• We can specify the number of work-items in a work-group –

this is called the local (work-group) size

• Or the OpenCL run-time can choose the work-group size for

you (usually not optimally)

OpenCL Memory model
• Private Memory

– Per work-item

• Local Memory
– Shared within a

 work-group

• Global Memory
/Constant Memory
– Visible to all

 work-groups

• Host memory
– On the CPU Memory management is explicit:

You are responsible for moving data from

 host → global → local and back

Context and

Command-Queues
• Context:

– The environment within which kernels
execute and in which synchronization
and memory management is defined.

• The context includes:

– One or more devices

– Device memory

– One or more command-queues

• All commands for a device (kernel
execution, synchronization, and memory
transfer operations) are submitted
through a command-queue.

• Each command-queue points to a single
device within a context.

Queue

Context

Device

Device Memory

Execution model

(kernels)
• OpenCL execution model … define a problem domain and execute an

instance of a kernel for each point in the domain

__kernel void times_two(

 __global float* input,

 __global float* output)

{

 int i = get_global_id(0);

 output[i] = 2.0f * input[i];

}

get_global_id(0)

10

Input

Output

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

__kernel void

horizontal_reflect(read_only image2d_t src,

 write_only image2d_t dst)

{

 int x = get_global_id(0); // x-coord

 int y = get_global_id(1); // y-coord

 int width = get_image_width(src);

 float4 src_val = read_imagef(src, sampler,

 (int2)(width-1-x, y));

 write_imagef(dst, (int2)(x, y), src_val);

}

Building Program

Objects
• The program object encapsulates:

– A context

– The program kernel source or binary

– List of target devices and build options

• The C API build process to create a program
object:

– clCreateProgramWithSource()

– clCreateProgramWithBinary()

OpenCL uses runtime compilation …

because in general you don’t know

the details of the target device when

you ship the program

Compile for GPU

Compile for CPU

GPU

code

CPU

code

Example: vector addition

• The “hello world” program of data parallel programming is a program to

add two vectors

C[i] = A[i] + B[i] for i=0 to N-1

• For the OpenCL solution, there are two parts

– Kernel code

– Host code

Vector Addition - Kernel

__kernel void vadd(__global const float *a,

 __global const float *b,

 __global float *c)

 {

 int gid = get_global_id(0);

 c[gid] = a[gid] + b[gid];

 }

Vector Addition – Host

• The host program is the code that runs on the host to:

– Setup the environment for the OpenCL program

– Create and manage kernels

• 5 simple steps in a basic host program:

1. Define the platform … platform = devices+context+queues

2. Create and Build the program (dynamic library for kernels)

3. Setup memory objects

4. Define the kernel (attach arguments to kernel functions)

5. Submit commands … transfer memory objects and execute kernels

Please, refer to he reference card. This will help you get used to the reference

card and how to pull information from the card and express it in code.

1. Define the platform
• Grab the first available platform:

err = clGetPlatformIDs(1, &firstPlatformId,

 &numPlatforms);

• Use the first CPU device the platform provides:

err = clGetDeviceIDs(firstPlatformId,

 CL_DEVICE_TYPE_CPU, 1, &device_id, NULL);

• Create a simple context with a single device:

context = clCreateContext(firstPlatformId, 1,

 &device_id, NULL, NULL, &err);

• Create a simple command-queue to feed our device:

commands = clCreateCommandQueue(context, device_id,

 0, &err);

Command-Queues
• Commands include:

– Kernel executions

– Memory object management

– Synchronization

• The only way to submit commands
to a device is through a command-
queue.

• Each command-queue points to a
single device within a context.

• Multiple command-queues can feed
a single device.

– Used to define independent
streams of commands that don’t
require synchronization

Queue Queue

Context

GPU

CPU

Command-Queue

execution details

Command queues can be configured in different ways to

control how commands execute

• In-order queues:

– Commands are enqueued and complete in the

order they appear in the program (program-order)

• Out-of-order queues:

– Commands are enqueued in program-order but

can execute (and hence complete) in any order.

• Execution of commands in the command-queue are

guaranteed to be completed at synchronization points

Queue Queue

Context

GPU

CPU

2. Create and Build the

program
• Define source code for the kernel-program as a string literal (great for toy

programs) or read from a file (for real applications).

• Build the program object:

program = clCreateProgramWithSource(context, 1

 (const char**) &KernelSource, NULL, &err);

• Compile the program to create a “dynamic library” from which specific

kernels can be pulled:

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

Error messages
• Fetch and print error messages:

if (err != CL_SUCCESS) {

 size_t len;

 char buffer[2048];

 clGetProgramBuildInfo(program, device_id,

 CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);

 printf(“%s\n”, buffer);

}

• Important to do check all your OpenCL API error messages!

• Easier in C++ with try/catch

3. Setup Memory

Objects
• For vector addition we need 3 memory objects, one each for

input vectors A and B, and one for the output vector C.

• Create input vectors and assign values on the host:

float h_a[LENGTH], h_b[LENGTH], h_c[LENGTH];

for (i = 0; i < length; i++) {

 h_a[i] = rand() / (float)RAND_MAX;

 h_b[i] = rand() / (float)RAND_MAX;

}

• Define OpenCL memory objects:

d_a = clCreateBuffer(context, CL_MEM_READ_ONLY,

 sizeof(float)*count, NULL, NULL);

d_b = clCreateBuffer(context, CL_MEM_READ_ONLY,

 sizeof(float)*count, NULL, NULL);

d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

 sizeof(float)*count, NULL, NULL);

Memory Objects:

• A handle to a
reference-counted
region of global
memory.

Creating and

manipulating buffers

• Buffers are declared on the host as type: cl_mem

• Arrays in host memory hold your original host-side data:

float h_a[LENGTH], h_b[LENGTH];

• Create the buffer (d_a), assign sizeof(float)*count bytes from “h_a” to the buffer

and copy it into device memory:

cl_mem d_a = clCreateBuffer(context,

 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

 sizeof(float)*count, h_a, NULL);

Creating and manipulating

buffers
• Other common memory flags include:

CL_MEM_WRITE_ONLY, CL_MEM_READ_WRITE

• These are from the point of view of the device

• Submit command to copy the buffer back to host memory at “h_c”:

– CL_TRUE = blocking, CL_FALSE = non-blocking

clEnqueueReadBuffer(queue, d_c, CL_TRUE,

 sizeof(float)*count, h_c,

 NULL, NULL, NULL);

4. Define the kernel

• Create kernel object from the kernel function “vadd”:

kernel = clCreateKernel(program, “vadd”, &err);

• Attach arguments of the kernel function “vadd” to memory objects:

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);

err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);

err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);

err |= clSetKernelArg(kernel, 3, sizeof(unsigned int),

 &count);

5. Enqueue commands

• Write Buffers from host into global memory (as non-blocking operations):

err = clEnqueueWriteBuffer(commands, d_a, CL_FALSE,

 0, sizeof(float)*count, h_a, 0, NULL, NULL);

err = clEnqueueWriteBuffer(commands, d_b, CL_FALSE,

 0, sizeof(float)*count, h_b, 0, NULL, NULL);

• Enqueue the kernel for execution (note: in-order so OK):

err = clEnqueueNDRangeKernel(commands, kernel, 1,

 NULL, &global, &local, 0, NULL, NULL);

5. Enqueue commands

• Read back result (as a blocking operation). We have an in-order queue which

assures the previous commands are completed before the read can begin.

err = clEnqueueReadBuffer(commands, d_c, CL_TRUE,

 sizeof(float)*count, h_c, 0, NULL, NULL);

Vector Addition –

Host Program
// create the OpenCL context on a GPU device

cl_context context = clCreateContextFromType(0,

 CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);

clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

 CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |

 CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcb, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

 sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1,

 &program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],

 sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1],

 sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2],

 sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,

 global_work_size, NULL,0,NULL,NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2],

 CL_TRUE, 0,

 n*sizeof(cl_float), dst,

 0, NULL, NULL);

Define platform and queues

Define memory objects

Create the program

Build the

program

Create and setup kernel

Execute the kernel

Read results on the host

It’s complicated, but most of this is “boilerplate” and not as bad as it looks.

OpenCL C for

Compute Kernels
• Derived from ISO C99

– A few restrictions: no recursion, function pointers, functions in C99 standard

headers ...

– Preprocessing directives defined by C99 are supported (#include etc.)

• Built-in data types

– Scalar and vector data types, pointers

– Data-type conversion functions:

• convert_type<_sat><_roundingmode>

– Image types:

• image2d_t, image3d_t and sampler_t

OpenCL C for Compute

Kernels

• Built-in functions — mandatory

– Work-Item functions, math.h, read and write image

– Relational, geometric functions, synchronization functions

– printf (v1.2 only, so not currently for NVIDIA GPUs)

• Built-in functions — optional (called “extensions”)

– Double precision, atomics to global and local memory

– Selection of rounding mode, writes to image3d_t surface

OpenCL C Language

Highlights
• Function qualifiers

– __kernel qualifier declares a function as a kernel

• I.e. makes it visible to host code so it can be enqueued

– Kernels can call other kernel-side functions

• Address space qualifiers

– __global, __local, __constant, __private

– Pointer kernel arguments must be declared with an address space qualifier

• Work-item functions

– get_work_dim(), get_global_id(), get_local_id(), get_group_id()

• Synchronization functions

– Barriers - all work-items within a work-group must execute the barrier function

before any work-item can continue

– Memory fences - provides ordering between memory operations

Host programs can

be “ugly”
• OpenCL’s goal is extreme

portability, so it exposes everything

– (i.e. it is quite verbose!).

• But most of the host code is the

same from one application to the

next – the re-use makes the

verbosity a non-issue.

• You can package common API

combinations into functions or even

C++ or Python classes to make the

reuse more convenient.

The C++ Interface

• Khronos has defined a common C++ header file containing a high level interface

to OpenCL, cl.hpp

• This interface is dramatically easier to work with1

• Key features:

– Uses common defaults for the platform and command-queue, saving the

programmer from extra coding for the most common use cases

– Simplifies the basic API by bundling key parameters with the objects rather

than requiring verbose and repetitive argument lists

– Ability to “call” a kernel from the host, like a regular function

– Error checking can be performed with C++ exceptions

1
 especially for C++ programmers…

OpenCL Memory model
• Private Memory

– Per work-item

• Local Memory
– Shared within a

 work-group

• Global/Constant
Memory
– Visible to all

 work-groups

• Host memory
– On the CPU

Memory management is explicit:

You are responsible for moving data from

 host → global → local and back

OpenCL Memory model
• Private Memory

– Fastest & smallest: O(10) words/WI

• Local Memory

– Shared by all WI’s in a work-group

– But not shared between work-groups!

– O(1-10) Kbytes per work-group

• Global/Constant Memory

– O(1-10) Gbytes of Global memory

– O(10-100) Kbytes of Constant

memory

• Host memory

– On the CPU - GBytes

Memory management is explicit:

O(1-10) Gbytes/s bandwidth to discrete GPUs for

 Host <-> Global transfers

Private Memory

• Managing the memory hierarchy is one of the most important things to get

right to achieve good performance

• Private Memory:

– A very scarce resource, only a few tens of 32-bit words per Work-Item

at most

– If you use too much it spills to global memory or reduces the number of

Work-Items that can be run at the same time, potentially harming

performance*

– Think of these like registers on the CPU

* Occupancy on a GPU

Local Memory*
• Tens of KBytes per Compute Unit

– As multiple Work-Groups will be running on each CU, this means only a

fraction of the total Local Memory size is available to each Work-Group

• Assume O(1-10) KBytes of Local Memory per Work-Group

– Your kernels are responsible for transferring data between Local and

Global/Constant memories … there are optimized library functions to help

• Use Local Memory to hold data that can be reused by all the work-items in a

work-group

• Access patterns to Local Memory affect performance in a similar way to

accessing Global Memory

– Have to think about things like coalescence & bank conflicts

* Typical figures for a 2013 GPU

Local Memory

• Local Memory doesn’t always help…

– CPUs don’t have special hardware for it

– This can mean excessive use of Local Memory might slow down kernels on

CPUs

– GPUs now have effective on-chip caches which can provide much of the

benefit of Local Memory but without programmer intervention

– So, your mileage may vary!

The Memory Hierarchy

Private memory
O(10) words/WI

Local memory
O(1-10) KBytes/WG

Global memory
O(1-10) GBytes

Host memory
O(1-100) GBytes

Private memory
O(2-3) words/cycle/WI

Local memory
O(10) words/cycle/WG

Global memory
O(100-200) GBytes/s

Host memory
O(1-100) GBytes/s

Speeds and feeds approx. for a high-end discrete GPU, circa 2011

Bandwidths Sizes

Memory Consistency
• OpenCL uses a relaxed consistency memory model; i.e.

– The state of memory visible to a work-item is not guaranteed to be consistent

across the collection of work-items at all times.

• Within a work-item:

– Memory has load/store consistency to the work-item’s private view of

memory, i.e. it sees its own reads and writes correctly

• Within a work-group:

– Local memory is consistent between work-items at a barrier.

• Global memory is consistent within a work-group at a barrier, but not

guaranteed across different work-groups!!

– This is a common source of bugs!

• Consistency of memory shared between commands (e.g. kernel invocations) is

enforced by synchronization (barriers, events, in-order queue)

Consider N-dimensional domain

of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)

• Local Dimensions:

– 128x128 (work-group, executes together)

Synchronization: when multiple units of execution (e.g. work-items) are brought to a known point in their execution. Most

common example is a barrier … i.e. all units of execution “in scope” arrive at the barrier before any proceed.

1024

1
0

2
4

Synchronization between work-items

possible only within work-groups:

barriers and memory fences

Cannot synchronize between

work-groups within a kernel

Work-Item

Synchronization
• Within a work-group

void barrier()

– Takes optional flags

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE

– A work-item that encounters a barrier() will wait until ALL work-items in its work-

group reach the barrier()

– Corollary: If a barrier() is inside a branch, then the branch must be taken by

either:

• ALL work-items in the work-group, OR

• NO work-item in the work-group

• Across work-groups

– No guarantees as to where and when a particular work-group will be executed

relative to another work-group

– Cannot exchange data, or have barrier-like synchronization between two

different work-groups! (Critical issue!)

– Only solution: finish the kernel and start another

Ensure correct order of memory operations to local

memory (with flushes or queuing a memory fence)l or

global

• Targets a broader range of CPU-like and GPU-like

devices than CUDA

– Targets devices produced by multiple vendors

– Many features of OpenCL are optional and may not

be supported on all devices

• OpenCL codes must be prepared to deal with much

greater hardware diversity

• A single OpenCL kernel will likely not achieve peak

performance on all device types

Performance????

Portable performance in

OpenCL
• Portable performance is

always a challenge, more so

when OpenCL devices can be

so varied (CPUs, GPUs, …)

• But OpenCL provides a

powerful framework for writing

performance portable code

• The following slides are

general advice on writing

code that should work well on

most OpenCL devices

• Tremendous amount of computing power available

1170

GFLOPs

peak

1070

GFLOPs

peak

Optimization issues
• Efficient access to memory

– Memory coalescing

• Ideally get work-item i to access data[i] and work-item j to access data[j] at the

same time etc.

– Memory alignment

• Padding arrays to keep everything aligned to multiples of 16, 32 or 64 bytes

• Number of work-items and work-group sizes

– Ideally want at least 4 work-items per PE in a Compute Unit on GPUs

– More is better, but diminishing returns, and there is an upper limit

• Each work item consumes PE finite resources (registers etc)

• Work-item divergence

– What happens when work-items branch?

– Actually a SIMD data parallel model

– Both paths (if-else) may need to be executed (branch divergence), avoid where possible

(non-divergent branches are termed uniform)

Memory layout is critical to

performance
• “Structure of Arrays vs. Array of Structures” problem:

 struct { float x, y, z, a; } Point;

• Structure of Arrays (SoA) suits memory coalescence on GPUs

• Array of Structures (AoS) may suit cache hierarchies on CPUs

x x x x … y y y y … z z z z … a a a a …

x y z a … x y z a … x y z a … x y z a …

Adjacent work-items like to

access adjacent memory

Individual work-items like to

access adjacent memory

Advice for performance

portability
• Optimal Work-Group sizes will differ between devices

– E.g. CPUs tend to prefer 1 Work-Item per Work-Group, while GPUs prefer lots of

Work-Items per Work-Group (usually a multiple of the number of PEs per Compute

Unit, i.e. 32, 64 etc.)

• From OpenCL v1.1 you can discover the preferred Work-Group size multiple for a kernel

once it’s been built for a specific device

– Important to pad the total number of Work-Items to an exact multiple of this

– Again, will be different per device

• The OpenCL run-time will have a go at choosing good EnqueueNDRangeKernel

dimensions for you

– With very variable results

• Your mileage will vary, the best strategy is to write adaptive code that makes decisions at

run-time

Tuning Knobs

some general issues
• Tiling size (work-group sizes, dimensionality etc.)

– For block-based algorithms (e.g. matrix multiplication)

– Different devices might run faster on different block sizes

• Data layout

– Array of Structures or Structure of Arrays (AoS vs. SoA)

– Column or Row major

• Caching and prefetching

– Use of local memory or not

– Extra loads and stores assist hardware cache?

• Work-item / work-group data mapping

– Related to data layout

– Also how you parallelize the work

• Operation-specific tuning

– Specific hardware differences

– Built-in trig / special function hardware

– Double vs. float (vs. half)

Auto tuning

• Q: How do you know what the best parameter values for your program are?

– What is the best work-group size, for example

• A: Try them all! (Or a well chosen subset)

• This is where auto tuning comes in

– Run through different combinations of parameter values and optimize the

runtime (or another measure) of your program.

Hydro is a simplified version of RAMSES (CEA, France astrophysics code to study large scale

structure and galaxy formation)

Hydro main features:

 regular cartesian mesh (no AMR)

 solves compressible Euler equations of hydrodynamics

 finite volume method, second order Godunov scheme

 it uses a Riemann solver numerical flux at the interfaces

How much fast? The

Hydro benchmark

Hydro is about 1K lines of code and has been ported to different programming

environment and architectures, including accelerators. In particular:

 initial Fortran branch including OpenMP, MPI, hybrid MPI+OpenMP

 C branch for CUDA, OpenCL, OpenACC, UPC

The Hydro benchmark

56

Device/version Elapsed time (sec.)

without initialization

EfficiencyLoss (with

respect to the best

timing)

CUDA K20C 52.37 0.24

OpenCL K20C 42.09 0

MPI (1 process) 780.8 17.5

MPI+OpenMP (16

OpenMP threads)

109.7 1.60

MPI+OpenMP MIC

(240 threads)

147.5 2.50

OpenACC (Pgi) N.A. N.A.

More than 16

Intel Xeon

SandyBridge

cores are needed

to compare

OpenCL 1 K20

device

OpenAcc run it

fails using Pgi

compiler

performances of OpenCL code are

very good (better than CUDA!)

Hydro run

comparison

Intel MIC preliminary run

on CINECA prototype.
240 threads, vectorized
code,KMP_AFFINITY=bal
anced

57

Number of K20 devices Elapsed time (sec.)

without initialization

Speed-Up

1 42.0 1.0

2 23.5 1.7

4 12.2 3.4

8 8.56 4.9

16 5.70 7.3

OpenCL+MPI run,

varying the number

of NVIDIA Tesla

K20
device,4091x4091

domain,100

iterations

performances are good. Scalability is

limited by domain size

Hydro OpenCL

scaling

The EuroBen Benchmark Group provides benchmarks for the evaluation of the performance for

scientific and technical computing on single processor cores and on parallel computers systems using

standard parallel tool (OpenMP, MPI, ….) but also emerging standard (OpenCL, Cilk, …)

 Programs are available in Fortran and C

 The benchmark codes range from measuring the performance of basic operations and

mathematical functions to skeleton applications.

 Cineca started a new activity in the official PRACE framework to test and validate EuroBen

benchmarks on Intel MIC architecture (V. Ruggiero-C.Cavazzoni).

How much fast? The

EuroBen Benchmark

MOD2F benchmark
16 OpenMP

threads, size=𝟐𝟐𝟐

Host: Intel Xeon

SandyBridge cores

16 MPI process, size=𝟐𝟏𝟗

MOD2F benchmark

Host: Intel Xeon

SandyBridge cores

OpenCL, kernel only,

size=𝟐𝟐𝟑

MOD2F benchmark

Host: Intel Xeon

SandyBridge cores

240 OpenMP threads,

size=𝟐𝟐𝟐

MOD2F benchmark

Native: Intel MIC, up to

240 hw threads

16 MPI process, size=𝟐𝟐𝟑

MOD2F benchmark

Native: Intel MIC, up to

240 hw threads

OpenCL, kernel only,

size=𝟐𝟐𝟑

MOD2F benchmark

Native: Intel MIC, up to

240 hw threads

• OpenCL performances are quite good (better than expected) both on host and device. OpenCL

test is faster than MPI for native runs.

• Host<->device memory transfers are a potential bottlenecks for OpenCL.

 There is room for improvement…..OpenCL performance portability is always a challenge.

How much fast? The

EuroBen Benchmark

results

OpenCL live@Eurora

• Eurora CINECA-Eurotech

prototype

• 1 rack

• Two Intel SandyBridge and

• two NVIDIA K20 cards per

node or:

• Two Intel MIC card per

node

• Hot water cooling

• Energy efficiency record

(up to 3210 MFLOPs/w)

• 100 TFLOPs sustained

Eurora

NVIDIA Tesla K20

• 13 Multiprocessors

• 2496 CUDA Cores

• 5 GB of global memory

• GPU clock rate 760MHz

Intel MIC Xeon Phi

• 236 compute units

• 8 GB of global memory

• CPU clock rate 1052 MHz

Running

environment

Setting up OpenCL on Eurora
• Login on front-end.

Then:

>module load profile/advanced

> module load intel_opencl/none--intel--cs-xe-2013--binary

It defines:

INTEL_OPENCL_INCLUDE

and

INTEL_OPENCL_LIB

environmental variables that can be used:

>cc –I$INTEL_OPENCL_INCLUDE -L$INTEL_OPENCL_LIB –lOpenCL vadd.c –o vadd

 Intel OpenCL

platform found and

3 devices (cpu and

Intel MIC card)

 Intel MIC device was selected

Results are OK no matter

what performances

Running on Intel
PROFILE=FULL_PROFILE

VERSION=OpenCL 1.2 LINUX

NAME=Intel(R) OpenCL

VENDOR=Intel(R) Corporation

EXTENSIONS=cl_khr_fp64 cl_khr_global_int32_base_atomics

cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics

cl_khr_local_int32_extended_atomics cl_khr_byte_addressable_store

--0--

DEVICE NAME= Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz

DEVICE VENDOR=Intel(R) Corporation

DEVICE VERSION=OpenCL 1.2 (Build 67279)

DEVICE_MAX_COMPUTE_UNITS=16

DEVICE_MAX_WORK_GROUP_SIZE=1024

DEVICE_MAX_WORK_ITEM_DIMENSIONS=3

DEVICE_MAX_WORK_ITEM_SIZES=1024 1024 1024

DEVICE_GLOBAL_MEM_SIZE=16685436928

--1--

DEVICE NAME=Intel(R) Many Integrated Core Acceleration Card

DEVICE VENDOR=Intel(R) Corporation

DEVICE VERSION=OpenCL 1.2 (Build 67279)

DEVICE_MAX_COMPUTE_UNITS=236

DEVICE_MAX_WORK_GROUP_SIZE=1024

DEVICE_MAX_WORK_ITEM_DIMENSIONS=3

DEVICE_MAX_WORK_ITEM_SIZES=1024 1024 1024

DEVICE_GLOBAL_MEM_SIZE=6053646336

--2--

DEVICE NAME=Intel(R) Many Integrated Core Acceleration Card

DEVICE VENDOR=Intel(R) Corporation

DEVICE VERSION=OpenCL 1.2 (Build 67279)

DEVICE_MAX_COMPUTE_UNITS=236

DEVICE_MAX_WORK_GROUP_SIZE=1024

DEVICE_MAX_WORK_ITEM_DIMENSIONS=3

DEVICE_MAX_WORK_ITEM_SIZES=1024 1024 1024

DEVICE_GLOBAL_MEM_SIZE=6053646336

Computed sum = 549754961920.0.

Check passed.

Exercise 1
• Goal:

– To inspect and verify that you can run an OpenCL kernel on Eurora machines

• Procedure:

– Take the provided C vadd.c and vadd.cl source programs from VADD

directory

– Compile and link vadd.c

– Run on NVIDIA or Intel platform.

• Expected output:

– A message verifying that the vector addition completed successfully

– Some useful info about OpenCL environment (Intel and NVIDIA)

Matrix multiplication:

sequential code
void mat_mul(int Mdim, int Ndim, int Pdim,

 float *A, float *B, float *C)

{

 int i, j, k;

 for (i = 0; i < Ndim; i++) {

 for (j = 0; j < Mdim; j++) {

 for (k = 0; k < Pdim; k++) {

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

 }

 }

 }

}

We calculate C=AB, dimA = (N x P), dimB=(P x M), dimC=(N x M)

= + x

C(i,j)
A(i,:)

B(:,j)

C(i,j)

Dot product of a row of A and a column of B for each element of C

Matrix multiplication:

sequential code
void mat_mul(int Mdim, int Ndim, int Pdim,

 float *A, float *B, float *C)

{

 int i, j, k;

 for (i = 0; i < Ndim; i++) {

 for (j = 0; j < Mdim; j++) {

 for (k = 0; k < Pdim; k++) {

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

 }

 }

 }

} We turn this into an OpenCL kernel!

get_

local_

size(1)

OpenCL mapping

Index Space

• In OpenCL:
get_global_size(0)

get_

global_

size(1)

Work

Group

(0, 0)

Work

Group

(1, 0)

Work

Group

(2, 0)

Work

Group

(0, 1)

Work

Group

(1, 1)

Work

Group

(2, 1)

get_local_size(0)

Work

Item

(0, 0)

Work Group (0,0)

Work

Item

(1, 0)

Work

Item

(2, 0)

Work

Item

(3, 0)

Work

Item

(4, 0)

Work

Item

(0, 1)

Work

Item

(1, 1)

Work

Item

(2, 1)

Work

Item

(3, 1)

Work

Item

(4, 1)

Work

Item

(0, 2)

Work

Item

(1, 2)

Work

Item

(2, 2)

Work

Item

(3, 2)

Work

Item

(4, 2)

Image from http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx

OpenCL mapping

(again)

Matrix multiplication: OpenCL

kernel (1/2)

void mat_mul(int Mdim, int Ndim, int Pdim,

 float *A, float *B, float *C)

{

 int i, j, k;

 for (i = 0; i < Ndim; i++) {

 for (j = 0; j < Mdim; j++) {

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 for (k = 0; k < Pdim; k++) {

 C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

 }

 }

 }

}

__kernel void mat_mul(

 const int Mdim, const int Ndim, const int Pdim,

 __global float *A, __global float *B, __global float *C)

Mark as a kernel function and specify memory

qualifiers

__kernel void mat_mul(

 const int Mdim, const int Ndim, const int Pdim,

 __global float *A, __global float *B, __global float *C)

{

 int i, j, k;

 for (i = 0; i < Ndim; i++) {

 for (j = 0; j < Mdim; j++) {

 for (k = 0; k < Pdim; k++) {

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

 }

 }

 }

}

Matrix multiplication: OpenCL

kernel (2/2)

i = get_global_id(0);

j = get_global_id(1);

Remove outer loops and set work-item co-

ordinates

__kernel void mat_mul(

 const int Mdim, const int Ndim, const int Pdim,

 __global float *A, __global float *B, __global float *C)

{

 int i, j, k;

 i = get_global_id(0);

 j = get_global_id(1);

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 for (k = 0; k < Pdim; k++) {

 C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

 }

}

Matrix multiplication: OpenCL

kernel

__kernel void mat_mul(

 const int Mdim,

 const int Ndim,

 const int Pdim,

 __global float *A,

 __global float *B,

 __global float *C)

Matrix multiplication: OpenCL

kernel improved

{

 int k;

 int i = get_global_id(0);

 int j = get_global_id(1);

 float tmp = 0.0f;

 for (k = 0; k < Pdim; k++)

 tmp += A[i*Ndim+k]*B[k*Pdim+j];

 }

 C[i*Ndim+j] += tmp;

}

Rearrange and use a local scalar for intermediate C element values (a common optimization in Matrix

Multiplication functions)

Exercise 2
• Goal:

– To inspect and verify that you can run the first mat_mul OpenCL kernels

• Procedure:

– Take the provided C mat_mul.c.1 source program.

– Look at the host code and identify the API calls in the host code.

Compare them against the vadd source code.

– Try to understand regions where timing the execution, profiling and error

checks.

– Compile and link mat_mul.c on front-end.

– Run both mat_mul.cl.1 and mat_mul.cl.1.1 kernels.

– Compare results

• Expected output:

– A message verifying that the matrix multiply succeeded, GFLOPS and

time results (if activated)

Optimizing matrix

multiplication
• MM cost determined by FLOPS and memory movement:

– 2*n3 = O(n3) FLOPS

– Operates on 3*n2 = O(n2) numbers

• To optimize matrix multiplication, we must ensure that for every memory

access we execute as many FLOPS as possible.

• Outer product algorithms are faster, but for pedagogical reasons, let’s stick

to the simple dot-product algorithm.

• We will work with work-item/work-group sizes and the memory model to optimize matrix

multiplication

= + x

C(i,j)
A(i,:)

B(:,j)

C(i,j)

Dot product of a row of A and a column of B for each element of C

Optimizing matrix

multiplication

• There may be significant overhead to manage work-items and work-groups.

• So let’s have each work-item compute a full row of C

= + x

C(i,j)
A(i,:)

B(:,j)

C(i,j)

Dot product of a row of A and a column of B for each element of C

An N-dimension domain of

work-items
• Global Dimensions: 1024 (1D)

 Whole problem space (index space)

• Local Dimensions: 16 (work-items per work-group)

 1024/64 = 64 work-groups in total

1

0
2

4

6
4

__kernel void mmul(

 const int Mdim, const int Ndim, const int Pdim,

 __global float *A, __global float *B, __global float *C)

{

 int k, j;

 int i =

 float tmp;

 for (j = 0; j < Mdim; j++) {

 // Mdim is width of rows in C

 tmp = 0.0f;

 for (k = 0; k < Pdim; k++)

 tmp += A[i*Ndim+k] * B[k*Pdim+j];

 C[i*Ndim+j] += tmp;

 }

}

Reduce work-item overhead

Do a whole row of C per work-item

 int i = get_global_id(0);

Exercise 3

• Goal:

– To inspect and verify that you can run the second mat_mul
OpenCL kernel

• Procedure:

– Take the provided C mat_mul.c.0 host program and
compare against the previous mat_mul source code.

– Take the mat_mul.cl.0 kernel from SKEL directory.

– Insert the correct call, compile and link.

– Run on NVIDIA and Intel plaform.

• Expected output:

– A message verifying that the mat_mul completed
successfully

Optimizing matrix

multiplication

• Notice that, in one row of C, each element reuses the same row of A.

• Let’s copy that row of A into private memory of the work-item that’s (exclusively)

using it to avoid the overhead of loading it from global memory for each C(i,j)

computation.

= + x

C(i,j)
A(i,:)

B(:,j)

C(i,j)

Private memory of each work-item

Matrix multiplication: OpenCL

kernel (3/3)
__kernel void mat_mul(

 const int Mdim,

 const int Ndim,

 const int Pdim,

 __global float *A,

 __global float *B,

 __global float *C)

{

 int k, j;

 int i = get_global_id(0);

 float tmp;

 for (k = 0; k < Pdim; k++)

 for (j = 0; j < Mdim; j++) {

 tmp = 0.0f;

 for (k = 0; k < Pdim; k++)

 tmp += Awrk[k]*B[k*Pdim+j];

 C[i*Ndim+j] += tmp;

 }

}

Setup a work array for A in private memory and

copy into it from global memory before we start

with the matrix multiplications.

(Actually, this is using far more private memory than we’ll have and so Awrk[] will be spilled to global memory)

for (k = 0; k < Pdim; k++)

 Awrk[k] = A[i*Ndim+k];

 float Awrk[1024];

Exercise 4

• Goal:

– To inspect and verify that you can run the third mat_mul OpenCL kernel

• Procedure:

– Take the provided C mat_mul.c.00 host program.

– Take the mat_mul.cl.00 kernel from SKEL directory.

– Insert the correct calls, compile and link.

– Run on NVIDIA and Intel plaform.

• Expected output:

– A message verifying that the mat_mul completed successfully

Matrix Multiplication:

using Local Memory

A

B

C

1. Move a block from A
2. Move a block from B
3. Calculate block * block
4. If no finished, goto Step 1.

Memory Access

#define BLOCK_SIZE 16

__kernel void mat_mul(

 const int wA, const int wB, const int hA,

 __global float *A, __global float *B, __global float *C)

{

 // Block index

 int tx = get_local_id(0);

 int ty = get_local_id(1);

 int bx = get_group_id(0);

 int by = get_group_id(1);

 // Index of the first sub-matrix of A processed

 // by the block

//Coalesced

 int indexA=by*BLOCK_SIZE*wA+ty*wA+tx;

 int indexB=bx*BLOCK_SIZE+ty*wB+tx;

 float Csub=0.0f;

// Loop over all the sub-matrices of A and B

 // required to compute the block sub-matrix

 for (int m =0;m<wA/BLOCK_SIZE;m++)

 {

 // Declaration of the local memory array As

 // used to store the sub-matrix of A

 …

 // Declaration of the local memory array Bs

 // used to store the sub-matrix of B

 …

 // Load the matrices from global memory

 // to local memory; each thread loads

 // one element of each matrix

 …

 ….

 indexA+=BLOCK_SIZE;

 indexB+=wB*BLOCK_SIZE;

 // Synchronize to make sure the matrices

 // are loaded

 barrier(CLK_LOCAL_MEM_FENCE);

 __local float As[BLOCK_SIZE][BLOCK_SIZE];

 __local float Bs[BLOCK_SIZE][BLOCK_SIZE];

As[ty][tx] = A[indexA];

Bs[ty][tx] = B[indexB];

MM using Local Memory (2)

1. Move a block from A.

2. Move a block from B.

// Multiply the two matrices together;

 // each thread computes one element

 // of the block sub-matrix

 for (int k = 0; k < BLOCK_SIZE; ++k)

 Csub += As[ty][k] * Bs[k][tx];

 // Synchronize to make sure that the preceding

 // computation is done before loading two new

 // sub-matrices of A and B in the next iteration

 barrier(CLK_LOCAL_MEM_FENCE);

 }

 // Write the block sub-matrix to device memory;

 // each thread writes one element

 int

indexC=wB*BLOCK_SIZE*by+BLOCK_SIZE*bx+wB*ty+tx;

 C[indexC] = Csub;

}

Matrix Multiplication:

using Local Memory (3)

3. Calculate block *

block.

Exercise 5

• Goal:

– To inspect and verify that you can run the fourth mat_mul OpenCL

kernel

• Procedure:

– Take the provided C mat_mul.c.3 host program.

– Take the mat_mul.cl.3 kernel from SKEL directory.

– Insert the correct calls, compile and link.

– Run on NVIDIA and Intel plaform.

• Expected output:

– A message verifying that the mat_mul completed successfully

Exercise 5 (again)

• Additional Goal:

– To inspect and verify the performances of this mat_mul OpenCL kernel

• Procedure:

– Take the mat_mul.cl.3uncoalesced kernel from SOURCE directory.

– Compile and link.

– Run on NVIDIA and Intel plaform.

• Expected output:

– You should verify performance degradation. Why?

From work-group to hw threads

• OpenCL kernels are structured into work groups that map to device compute

units.

• Compute units on GPUs consist of SIMT processing elements.

• Hw creates wavefronts (warps) grouping threads of a WG (dimension zero first).

• All threads in a wavefront execute the same instruction.

• Thead mapping determine which thread access which data!

 Proper mapping can align to hw (greater performances)

 Improper mapping can be disastrous

Thread mapping
• To ensure coalesced accesses consecutive threads in a warp should be mapped

to columns of B and C.

__kernel void mat_mul(

 const int Mdim, const int Ndim, const int Pdim,

 __global float *A, __global float *B, __global float *C)

{

 int i, j, k;

 i = get_global_id(0);

 j = get_global_id(1);

 for (k = 0; k < Pdim; k++) {

 C[i][j] += A[i][k] * B[k][j];

 }

}

Consecutive threads (i)

are mapped to different

rows of matrix C

Highly inefficient

memory access

Thread mapping
• To ensure coalesced accesses consecutive threads in a warp should be mapped

to columns of B and C.

__kernel void mat_mul(

 const int Mdim, const int Ndim, const int Pdim,

 __global float *A, __global float *B, __global float *C)

{

 int i, j, k;

 i = get_global_id(0);

 j = get_global_id(1);

 for (k = 0; k < Pdim; k++) {

 C[j][i] += A[j][k] * B[k][i];

 }

}

Consecutive threads (i)

are mapped to

consecutive rows of

matrices B and C

Highly efficient memory

access

Making matrix

multiplication really fast

• Tiled (or blocked) algorithm can improves data reuse on architectures where at

least two memory hierarchies exist:

1. Slow and big memory

2. Fast but small memory

• To utilize it, try to maximize data reuse, so instead of producing one element of C,

compute a block.

An 2-dimension domain

of tiles
• For example:total number of tiles in N direction: 1024

• This number is equal to 16 (work-items per work-group size in one

dimension) * 64 (TILE_SIZE_N parameter)

1

0
2

4

6
4

TILE_SIZE_N=64

TILE_GROUP_N=16

Blocked (Tiled)

Matrix Multiply
Consider A,B,C to be divided into blocks (tilings) along the two dimensions.

 for i = 0 to NUM_OF_TILES_M-1

 for j = 1 to NUM_OF_TILES_N-1

 C_BLOCK=ZERO_MATRIX(TILE_SIZE_M,TILE_SIZE_N);

 for k = 0 to size-1

 for ib = 0 to TILE_SIZE_M-1

 for jb = 0 to TILE_SIZE_N-1

 C_BLOCK(jb,ib)=C_BLOCK(jb,ib)+A(k,i*TILE_SIZE_M+ib)*B(j*TILE_SIZE_N+jb,k)

 end for

 end for

 end for

 for ib = 0 to TILE_SIZE_M -1

 for jb = 0 to TILE_SIZE_N -1

 C(j*TILE_SIZE_M+jb,i*TILE_SIZE_N+ib) = C_BLOCK(jb,ib)

 end for

 end for

 end for

 end for

TILE_SIZE_N*TILE_SIZE_

M being the number of

elements of matrix C

computed by one work-

item

Blocked (Tiled)

Matrix Multiply
Consider A,B,C to be divided into blocks (tilings) along the two dimensions.

 for i = 0 to NUM_OF_TILES_M-1

 for j = 1 to NUM_OF_TILES_N-1

 C_BLOCK=ZERO_MATRIX(TILE_SIZE_M,TILE_SIZE_N);

 for k = 0 to size-1

 for ib = 0 to TILE_SIZE_M-1

 for jb = 0 to TILE_SIZE_N-1

 C_BLOCK(jb,ib)=C_BLOCK(jb,ib)+A(k,i*TILE_SIZE_M+ib)*B(j*TILE_SIZE_N+jb,k)

 end for

 end for

 end for

 for ib = 0 to TILE_SIZE_M -1

 for jb = 0 to TILE_SIZE_N -1

 C(j*TILE_SIZE_M+jb,i*TILE_SIZE_N+ib) = C_BLOCK(jb,ib)

 end for

 end for

 end for

 end for

TILE_GROUP_N and
TILE_GROUP_M being

the zero and one

dimension of local work-

group size

int Aind = …

int Bind = …

Int Cind = …

size/TILE_SIZE_N and
size/TILE_SIZE_M being

the zero and one

dimension of NDRange

Exercise 6
• Goal:

– To inspect and verify that you can run the fifth mat_mul OpenCL kernel

• Procedure:

– Take the provided C mat_mul.c.4 host program.

– Take the mat_mul.cl.4 kernel from SKEL directory.

– Insert the correct calls, compile and link.

– Run on NVIDIA and Intel plaform.

• Expected output:

– A message verifying that the mat_mul completed successfully

Exercise 6 (again)
• Additional Goal:

– To inspect and verify the performances of this mat_mul OpenCL

kernel

• Procedure:

– Play with TILE* parameters and matrix size.

– Compile and link.

– Run on NVIDIA and Intel plaform.

• Expected output:

– You should verify very exciting performance on Intel MIC. Why?

OpenCL on Intel MIC

• Tremendous computing

power available (236

compute units…)

• More than 1 TFLOPs

peak for double

precision computation

• You should understand

how to optimize OpenCL

code in order to reach

peak performances

Is Intel MIC, not a

Pentium 4

Intel MIC architecture

• Intel MIC architecture targets highly parallel and computationally intensive

applications. Three basic factors:

1. Threading scalability (60+ Intel CPU cores in a single chip)

2. Vectorization (wide vector registers and associated SIMD operations)

3. Memory bandwidth utilization

OpenCL on Intel MIC

• Intel MIC combines many core onto a single chip. Each core runs exactly 4

hardware threads. In particular:

1. All cores/threads are a single OpenCL device

2. Separate hardware threads are OpenCL CU.

• In the end, you’ll have parallelism at the work-group level (vectorization) and

parallelism between work-groups (threading).

OpenCL on Intel MIC

• To reach performances, the number of work-groups should be not less than

CL_DEVICE_MAX_COMPUTE_UNITS parameter (more is better)

• Again, automatic vectorization module should be fully utilized. This module:

 packs adiacent work-items (from dimension 0 of NDRange)

 executes them with SIMD instructions

• Use the recommended work-group size as multiple of 16 (SIMD width for float,

int, …data type).

OpenCL on Intel MIC

• Memory bandwidth should be saturated. Use

 Prefetching

 Blocking (tiling)

 Data structures layout optimized

• All aforementioned techniques have already been applied to matrix multiply

kernel, resulting in extreme performances on Intel MIC device.

More than 400

GFLOPs for

SGEMM

Himeno Benchmark

• Dr. Ryutaro Himeno, Director of the Advanced Center for Computing and

Communication, has developed this benchmark to evaluate performance of

incompressible fluid analysis code.

• This benchmark takes measurements to proceed major loops in solving the

Poisson's equation solution using the Jacobi iteration method.

• Being the code very simple and easy to compile and to execute, users can

measure actual speed (in MFLOPS) immediately on different machines and

languages/tools (C, Fortran, OpenMP, MPI, …).

• The most computational part of Himeno Benchmark is restricted to Jacobi

routine.

• A simple OpenCL version of Himeno Benchmark was realized in order to

test performances on NVIDIA and Intel Platforms.

Jacobi routine: sequential code
Float jacobi(int nn,int MIMX,int MJMX,int MKMX,int imax,int
jmax,int kmax,float* a1,float* a2,float* a3,float* a4,float* b1,float*
b2,float* b3,float* c1,float* c2,float* c3,float* p,float* wrk1,float*
bnd,float* wrk2)

{

#define idxz(i,j,k) ((k)+MKMX*((j)+MJMX*(i)))

 int i,j,k,n;

 float gosa, s0, ss;

 for(n=0 ; n<nn ; ++n){

 gosa = 0.0;

for(i=1 ; i<imax-1 ; i++)

 for(j=1 ; j<jmax-1 ; j++)

 for(k=1 ; k<kmax-1 ; k++){

 s0 = a1[idxz(i,j,k)] * p[idxz(i+1,j,k)]

 + a2[idxz(i,j,k)] * p[idxz(i,j+1,k)]

 + a3[idxz(i,j,k)] * p[idxz(i,j,k+1)]

 + b1[idxz(i,j,k)] * (p[idxz(i+1,j+1,k)] - p[idxz(i+1,j-1,k)]

 - p[idxz(i-1,j+1,k)] + p[idxz(i-1,j-1,k)])

 + b2[idxz(i,j,k)] * (p[idxz(i,j+1,k+1)] - p[idxz(i,j-1,k+1)]

 - p[idxz(i,j+1,k-1)] + p[idxz(i,j-1,k-1)])

 + b3[idxz(i,j,k)] * (p[idxz(i+1,j,k+1)] - p[idxz(i-1,j,k+1)]

 - p[idxz(i+1,j,k-1)] + p[idxz(i-1,j,k-1)])

 + c1[idxz(i,j,k)] * p[idxz(i-1,j,k)]

 + c2[idxz(i,j,k)] * p[idxz(i,j-1,k)]

 + c3[idxz(i,j,k)] * p[idxz(i,j,k-1)]

 + wrk1[idxz(i,j,k)];

 ss = (s0 * a4[idxz(i,j,k)] - p[idxz(i,j,k)]) * bnd[idxz(i,j,k)];

 gosa+= ss*ss;

 wrk2[idxz(i,j,k)] = p[idxz(i,j,k)] + omega * ss;

 }

 for(i=1 ; i<imax-1 ; ++i)

 for(j=1 ; j<jmax-1 ; ++j)

 for(k=1 ; k<kmax-1 ; ++k)

 p[idxz(i,j,k)] = wrk2[idxz(i,j,k)];

 } /* end n loop */

 return(0);

}

Jacobi routine: OpenCL kernel
Float jacobi(int nn,int MIMX,int MJMX,int MKMX,int imax,int
jmax,int kmax,float* a1,float* a2,float* a3,float* a4,float* b1,float*
b2,float* b3,float* c1,float* c2,float* c3,float* p,float* wrk1,float*
bnd,float* wrk2)

{

#define idxz(i,j,k) ((k)+MKMX*((j)+MJMX*(i)))

 int i,j,k,n;

 float gosa, s0, ss;

 for(n=0 ; n<nn ; ++n){

 gosa = 0.0;

for(i=1 ; i<imax-1 ; i++)

 for(j=1 ; j<jmax-1 ; j++)

 for(k=1 ; k<kmax-1 ; k++){

 s0 = a1[idxz(i,j,k)] * p[idxz(i+1,j,k)]

 + a2[idxz(i,j,k)] * p[idxz(i,j+1,k)]

 + a3[idxz(i,j,k)] * p[idxz(i,j,k+1)]

 + b1[idxz(i,j,k)] * (p[idxz(i+1,j+1,k)] - p[idxz(i+1,j-1,k)]

 - p[idxz(i-1,j+1,k)] + p[idxz(i-1,j-1,k)])

 + b2[idxz(i,j,k)] * (p[idxz(i,j+1,k+1)] - p[idxz(i,j-1,k+1)]

 - p[idxz(i,j+1,k-1)] + p[idxz(i,j-1,k-1)])

 + b3[idxz(i,j,k)] * (p[idxz(i+1,j,k+1)] - p[idxz(i-1,j,k+1)]

 - p[idxz(i+1,j,k-1)] + p[idxz(i-1,j,k-1)])

 + c1[idxz(i,j,k)] * p[idxz(i-1,j,k)]

 + c2[idxz(i,j,k)] * p[idxz(i,j-1,k)]

 + c3[idxz(i,j,k)] * p[idxz(i,j,k-1)]

 + wrk1[idxz(i,j,k)];

 ss = (s0 * a4[idxz(i,j,k)] - p[idxz(i,j,k)]) * bnd[idxz(i,j,k)];

 gosa+= ss*ss;

 wrk2[idxz(i,j,k)] = p[idxz(i,j,k)] + omega * ss;

 }

 for(i=1 ; i<imax-1 ; ++i)

 for(j=1 ; j<jmax-1 ; ++j)

 for(k=1 ; k<kmax-1 ; ++k)

 p[idxz(i,j,k)] = wrk2[idxz(i,j,k)];

 } /* end n loop */

 return(0);

}

 int I=get_global_id(0);

 int J=get_global_id(1);

 int K=get_global_id(2);

 End of Update kernel

 Swap kernel

 int I=get_global_id(0);

 int J=get_global_id(1);

 int K=get_global_id(2);

Exercise 7
• Goal:

– To inspect and verify that you can run the Himeno Benchmark (OpenCL

version)

• Procedure:

– Take the provided C himenoBMTxps.c host program.

– Take the provided OpenCL initmt.cl kernel from SOURCES directory

– Take the swap.cl and update.cl kernels from SKEL directory.

– Insert the correct calls, compile and link.

– Run on NVIDIA and Intel plaform.

• Expected output:

– A message verifying that the Himeno Benchmark completed successfully

Exercise 7 (again)
• Additional Goal:

– To inspect and verify the performances of Himeno Benchmark

OpenCL

• Procedure:

– Play with LOCAL WORK-GROUPS parameter and input size.

– Compile and link.

– Run on NVIDIA and Intel plaform.

• Expected output:

– You should verify correctness and performances on NVIDIA and Intel

MIC.

Himeno Benchmark on

Intel MIC

• Hardware prefetching is enabled by default on Intel MIC (from GDDR to L2

cache).

• Compiler insert prefetch instructions into assembly based on kernel code analysis

(automatic prefetching).

 Variables in global and constant address spaces.

 Well detected memory access pattern

• Auto Prefetching level is enabled by default. Can be changed using

 “-auto-prefetch-level=0/1/2/3” option argument of clBuildProgram() API call.

Exercise 7 (again)
• Additional Goal:

– To inspect and verify the performances of Himeno Benchmark

OpenCL using different manual and auto-prefetching levels.

• Procedure:

– Play with different auto-prefetching levels.

– Try to insert prefetch built-in into update.cl source code.

– Compile and link.

– Run on Intel plaform.

• Expected output:

– You should verify correctness and performances Intel MIC.

Conclusions

• Nine (9) things we missed during this presentation….

– Vector data types, …

– Events, …

– C++ interface, Python interface, Fortran interface (via Ompss

runtime)

– Profiling

– Debugging

– Porting CUDA code to OpenCL

– OpenCL 2.0 and beyond

Conclusions

And Six (6) things we won’t miss to say….

• OpenCL is an open standard, which is targeted for portability on heterogeneous devices

(GPUs, AMD, Intel MIC,…)

• OpenCL has widespread industrial support

• OpenCL is the only parallel programming standard that enables mixing task parallel and

data parallel code in a single program while load balancing across ALL of the platform’s

available resources

• To reach its full potential, however, OpenCL needs to deliver Performance portability.

• OpenCL gives users the chance to efficiently use native SIMD engines (like vector units) of

CPUs, accelerators, ….

• OpenCL will help you use existing and future devices increasingly provide tremendous

computing power at a reduced energy-requirement and price

Optimizing OpenCL applications on Intel Xeon Phi

http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-

Intel-Xeon-Phi-IWOCL.pdf

OpenCL home page

http://www.khronos.org/opencl/

General Matrix Multiply Sample

http://software.intel.com/sites/products/vcsource/files/GEMM.pdf

Himeno Benchmark home page

http://accc.riken.jp/2444.htm

Simon McIntosh-Smith home page

http://www.cs.bris.ac.uk/~simonm/

References

http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://iwocl.org/wp-content/uploads/2013/06/Optimizing-OpenCL-Applications-on-Intel-Xeon-Phi-IWOCL.pdf
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://software.intel.com/sites/products/vcsource/files/GEMM.pdf
http://software.intel.com/sites/products/vcsource/files/GEMM.pdf
http://software.intel.com/sites/products/vcsource/files/GEMM.pdf
http://software.intel.com/sites/products/vcsource/files/GEMM.pdf
http://software.intel.com/sites/products/vcsource/files/GEMM.pdf
http://software.intel.com/sites/products/vcsource/files/GEMM.pdf
http://software.intel.com/sites/products/vcsource/files/GEMM.pdf
http://software.intel.com/sites/products/vcsource/files/GEMM.pdf
http://software.intel.com/sites/products/vcsource/files/GEMM.pdf
http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://www.cs.bris.ac.uk/~simonm/
http://www.cs.bris.ac.uk/~simonm/
http://www.cs.bris.ac.uk/~simonm/
http://www.cs.bris.ac.uk/~simonm/
http://www.cs.bris.ac.uk/~simonm/
http://www.cs.bris.ac.uk/~simonm/
http://www.cs.bris.ac.uk/~simonm/
http://www.cs.bris.ac.uk/~simonm/
http://www.cs.bris.ac.uk/~simonm/
http://www.cs.bris.ac.uk/~simonm/
http://www.cs.bris.ac.uk/~simonm/
http://www.cs.bris.ac.uk/~simonm/
http://www.cs.bris.ac.uk/~simonm/

