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35 YEARS OF MICROPROCESSOR TREND DATA 
  

Exposing parallelism in 

applications is another 

TOP PRIORITY 

Source: C. Moore’s talk at Salishan, April 2011 
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GPU and many core computing: a view 

from the top  
Basic principle (today's GPUs, many-core coprocessors): 

● accelerator “cards” for standard cluster nodes (PCIe) 

● many (~50...500) “lightweight” cores (~ 1 GHz) 

● high thread concurrency, fast (local) memories 

System architecture: 

● currently: x86 “Linux-clusters” with nodes comprising 

● 2 CPUs (2x 8 cores) 

● max. 2...3 accelerator cards (GPU, MIC) per node 

● future: smaller CPU component (extreme: “host-less”,many-core chips) 

Programming paradigms: 

● use CPU for program control, communication and maximum single-thread 

performance 

● “offload” data-parallel parts of computation to accelerator for maximum 

throughput performance 

● requires heterogeneous programming & load-balancing, careful assessment 

of “speedups” 



Motivation   
Compute performance 

● GPU/many-core computing is promising huge application-performance gains 

● caveat: sustained performance on “real-world”, scientific applications 

● observations: 

● apparent GPU success stories: PetaFlops performance (Gordon-Bell Price 

nominations) 

● from aggressive marketing for Intel MIC, NVIDIA GPUs… 

… towards more realistic attitudes: factor 2x..3x speedups (GPU vs. multi-core CPU) 

Energy efficiency 

● GPU/many-core computing is promising substantial energy-efficiency gains (a 

must for exascale) 

● caveat: sustained efficiency on “real-world” CPU-GPU clusters 

Existing resources 

● there is significant GPU/many-core-based compute-power around in the world 

● by many, the technology is considered inevitable for the future 

● caveat: the price to pay for application development ? 



NVIDIA GPU TECHNOLOGY    
Hardware overview (NVIDIA Tesla series) 

● since 2011: “Fermi”: first product with HW support for double-precision and ECC memory 

● up to 512 cores, 6 GB RAM 

● high internal memory bandwidth ~180 GB/s 

● 0.5 TFlops (DP, floating point) 

● data exchange with host via PCIe (~8 GB/s) 

● enhancements: MPI optimization, intra-node comm. 

(“GPU direct”, “HyperQ”, ...) 

Q1/2013: “Kepler K20”: 

● GK110 GPU: up to 2880 cores, 6...12 GB RAM 

● internal memory bandwidth: ~200 GB/s 

● nominal peak performance: ~ 1.3 TFlops (DP) 

plans for a “hostless” chip (for Exascale) 



NVIDIA GPU TECHNOLOGY    

Programming languages 

● CUDA (NVIDIA), OpenCL (open standard) 

● host program (C, executes on CPU) and device kernels (C, launch on 

GPU) 

● numerical libraries: CUBLAS, CUFFT, higher LA: CULA, MAGMA 

● tools: debuggers, profiling, system monitoring,… 

● CUDA-FORTRAN (PGI) 

● directive-based approaches (PGI, CRAY, CAPS, OpenACC, OpenMP-4) 

● high-level, comparable to OpenMP 

● proprietary (CRAY, PGI, HMPP, ...) → OpenACC → OpenMP 

Software & programming models 

● paradigm: split program into host code (CPU) and device code (GPU) 

● GPU hardware architecture requires highly homogeneous program flow (SIMT, no if-

branches!) 

● PCIe bottleneck for communication of data between CPU and GPU: 

● O(n2)...O(n3) computations for communication of n data 

● overlapping of communication and computation phases 



NVIDIA GPU TECHNOLOGY    

OpenACC 

● joint effort of vendors to shortcut/guide OpenMP 4.0 standardization effort 

● functional (not performance) portability 

● minimally invasive to existing code 

● facilitates incremental porting 

● compilers: PGI, CRAY, CAPS 

● no free lunch! 



INTEL MIC TECHNOLOGY    
Hardware overview 

● since 2011: “Knights Ferry”: software development platform 

● Q4/2012: “Knights Corner”: first product of the new Intel Xeon Phi processor line (MIC 

arch) 

● approx 60 x86 cores (~ 1GHz), 8 GB RAM 

● internal memory bandwidth: 175 GB/s 

● nominal peak performance: 1 TFlops (DP) 

● more than a device: runs Linux OS, IP addressable 

● data exchange with host via PCIe (~8 GB/s) 

● towards a true many-core chip (“Knights Landing”, 2014) 

Software & programming models 

● paradigms: 

1) offload model (like GPU: split program into host code (CPU) and device code 

(MIC)) 

2) cluster models (MPI ranks distributed across CPUs and/or MICs) 

● tools & libraries: the familiar Intel tool chain: compilers, MPI/OpenMP, MKL, ... 

● syntax: “data offload” directives + OpenMP (and/or MPI) 

● OpenCL 

 

 



GPU MIC 

Both are devices connected through a PCIe to a CPU 

(=bottleneck in bandwith). 

Both have a large number of computing units. 

CUDA 

OpenACC 

OpenCL 

MPI+OpenMP 

offload directives 

OpenCL 

Similarities between GPU and MIC 



1. get the data on the GPU/MIC and keep it there 

 

2. give the GPU/MIC enough work to do 

 

3. reuse and locate data to avoid global memory 

bandwith bottlenecks 

 

 

caveat: not always true... Not always possible.. 

What is the trasde-off between performance and effort? 

Similarities between GPU and MIC 



Differences between GPU and MIC 

Both GPU and MIC utilize a large number of concurrent threads of execution to 

achieve high performances….but…. 

 

…programming multiple GPU and MIC coprocessor threads in parallel can be very 

different.  

 

In fact GPU threads must be grouped together into blocks of threads (called 

"thread blocks" in CUDA and "work-groups" in OpenCL) that execute 

concurrently on the GPU Streaming Multiprocessors (SMs) according to a SIMD 

model…  

 

…while MIC coprocessors run generic MIMD (Multiple Instruction Multiple Data) 

threads individually on the x86 cores. 

 

http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/MIMD


Differences between GPU and MIC 

GPU devices also support MIMD execution by allowing any block of threads to 

be scheduled to run on any SM on the GPU. 

 

This MIMD capability is most efficient when the problem matches the 

granularity of the SM thread block size (32 threads for current GPU 

devices).  

 

GPUs that support this modified form of MIMD capability are referred to as 

SIMT (Single Instruction Multiple Thread) devices.   

 SIMT: 

Threads in groups (or 16, 32) that are scheduled together call Warp. 

All threads in a Warp start at the same PC, but free to branch and 

execute independently. 

A warp executes one common instruction at a time 

To execute different instructions at different threads, the 

instructions are executed serially 

To get efficiency, we want all instructions in a Warp to be 

the same. 



GPU Warp scheduler 

evolution 
• FERMI: 2 per SM: representing a 

compromise between cost and 

complexity 

• Kepler: 4 per SM with 2 

instruction dispatcher units 

each. 

 



Differences between GPU and MIC: 

degree of parallelism  

  
 

K40 GPU claims to have 2,880 "CUDA cores“…but… 

…a K40 SM can concurrently execute up to 64 Warps ,  

 

meaning that 2048 SIMD threads can be actively running (and not queued) at any 

moment in time. 

  

A K40 GPU contains 15 SMs, which means up to 2K*15 = 30K threads can be queued to 

run at any given moment on the device.  

The MIC coprocessor combines many-core parallelism with a wide per-core wide 

vector unit providing additional operations per clock.  

 
As a result, the per core vector unit basically multiplies the number of cores by the 

number of concurrent vector operations to increase the MIC coprocessors degree of 

parallelism. 



Open question: what can MICs learn from GPUs and 

viceversa?  

It seems that GPUs and MICs are like two different cars 

that should run on the same path… 

BUT…. 



… we still miss a common (consolidated) approach to 

drive…  

 

Need for a common programming model??? 

? 


