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SUPERCOMPUTER SITES
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Rank

S

Site

Mational Super Computer Center in
Guangzhou
China

DOE/SC/Oak Ridge Mational Laboratory
United States

DOE/MNNSA/LLNL
United States

RIKEN Advanced Institute for
Computational Science (AICS)
Japan

DOE/SC/Argonne National Laboratory
United States

Swiss Mational Supercomputing Centre
(C5CS)
Switzerland

Texas Advanced Computing Center/Univ.
of Texas
United States

Forschungszentrum Juelich (FZJ)
Germany

DOE/NNSASLLNL
United States

Leibniz Rechenzentrum
Germany

System

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel
Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel
Xeon Phi 31S1P

NUDT

Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray
Gemini interconnect, NVIDIA K20x
Cray Inc.

Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz,
Custom
IBM

K computer, SPARCE4 VIIIfx 2.0GHz, Tofu
interconnect

Fujitsu

Mira - BlueGene/Q, Power BQC 16C 1.60GHz,
Custom

IBM

Piz Daint - Cray XC30, Xeon E5-2670 BC 2.600GHz,
Aries interconnect , NVIDIA K20x
Cray Inc.

Stampede - PowerEdge C8220, Xeon E5-2680 8C
2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P
Dell

JUQUEEN - BlueGene/Q), Power BEQC 16C
1.600GHz, Custom Interconnect
IBM

Vulcan - BlueGene/Q, Power BQC 16C 1.600GHz,
Custom Interconnect
IBM

SuperMUC - iDataPlex DX360M4, Xeon E5-2680 BC
2.70GHz, Infiniband FDR
IEM

Cores

3120000

560640

1572864

705024

786432

115984

462462

458752

393216

147456

Rmax
(TFlopls)

33862.7

17590.0

17173.2

10510.0

8586.6

6271.0

5168.1

5008.9

4293.3

2897.0

Rpeak
(TFlopls)

54902.4

271125

20132.7

11280.4

10066.3

7788.9

8520.1

5872.0

5033.2

3185.1
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MFLOPS/W Site*

Rank

GS5IC Center, Tokyo Institute of

1 4:503.17 Technology

2 3,631.86  Cambridge University

3 sema SoSwCommen
4 3,185.91 g:,;?er‘;;h; {Ig-lg; Supercomputing
5 aams e Ademe

6 3,068.71 ?j;lﬁncoﬁjlgjrl Tokyo Institute of

T 2,702.16  University of Arizona

8 2,629.10 Max-Planck-Gesellschaft MPIIPP
9 2,629.10  Financial Institution
10 235869 CSIRO

(
e/

Computer*

TSUBAME-KFC - LX 1U-4GPUIN04Re-1G Cluster, Intel Xeon ES- 5778

2620v2 6C 2.100GHz, Infiniband FDR, NVIDIA K20x ’

Wilkes - Dell T620 Cluster, Intel Xeon E5-2630v2 6C 2.600GHz, 53 62

Infiniband FOR, NVIDIA K20 '

HA-PACS TCA - Cray 3623G4-5M Cluster, Intel Xeon E5-2680v2 10C 2877
2.800GHz, Infiniband QDR, MVIDIA K20x ’

Piz Daint- Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect

 NVIDIA K20x 175366

Level 3 measurement data available ¢
romeo - Bull R421-E3 Cluster, Intel Xeon E5-2650v2 8C 2.600GHz, 8141

Infiniband FOR, NVIDIA K20x "

TSUBAME 2.5 - Cluster Platform SL380s G7, Xeon X5670 6C 922 54
2.930GHz, Infiniband QDR, MVIDIA K20x ‘

iDataPlex DX360M4, Intel Xeon ES-2650v2 BC 2.600GHz, Infiniband 5362 '
FDR14, NVIDIA K20x '

iDataPlex DX360M4, Intel Xeon ES-2680v2 10C 2.800GHz, Infiniband, 269.94 )
NVIDIA K20x : l
iDataPlex DX360M4, Intel Xeon EB-2680v2 10C 2.800GHz, Infiniband, 5562

NVIDIA K20 ’

CSIRO GPU Cluster - Nitro G16 3GPU, Xeon ES-2650 8C 2.000GHz, 2101 '
Infiniband FDR, Nvidia K20m '
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Theoretical Peak Performance, Double Precision
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Peak Floating Point Operations per Watt, Double Precision
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GPU and many core computing: a view

from the top

Basic principle (today's GPUs, many-core coprocessors):

e accelerator “cards” for standard cluster nodes (PCle)
e many (~50...500) “lightweight” cores (~ 1 GHz)
e high thread concurrency, fast (local) memories

System architecture:

e currently: x86 “Linux-clusters” with nodes comprising
e 2 CPUs (2x 8 cores)

e max. 2...3 accelerator cards (GPU, MIC) per node

X3 &
< EHE

FeeSEEnE Pees

l
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PCle

CPU 1

e future: smaller CPU component (extreme: “host-less”,many-core chips)

Programming paradigms:

CPU i

e use CPU for program control, communication and maximum single-thread

performance

e “offload” data-parallel parts of computation to accelerator for maximum

throughput performance

e requires heterogeneous programming & load-balancing, careful assessment

of “speedups”
CINECA
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Compute performance

e GPU/many-core computing is promising huge application-performance gains

e caveat: sustained performance on “real-world”, scientific applications

e observations:

e apparent GPU success stories: PetaFlops performance (Gordon-Bell Price
nominations)

e from aggressive marketing for Intel MIC, NVIDIA GPUs...

... towards more realistic attitudes: factor 2x..3x speedups (GPU vs. multi-core CPU)

Energy efficiency

e GPU/many-core computing is promising substantial energy-efficiency gains (a
must for exascale)

e caveat: sustained efficiency on “real-world” CPU-GPU clusters

Existing resources

e there is significant GPU/many-core-based compute-power around in the world
e by many, the technology is considered inevitable for the future

e caveat: the price to pay for application development ?

CINECA



NVIDIA GPU TECHNOLOGY

Hardware overview (NVIDIA Tesla series)
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e since 2011: “Fermi”: first product with HW support for double-precision and ECC memory

e Up to 512 cores, 6 GB RAM

e high internal memory bandwidth ~180 GB/s

e 0.5 TFlops (DP, floating point)
e data exchange with host via PCle (~8 GB/s) =

e enhancements: MPI optimization, intra-node comm. ———
(“GPU direct”, “HyperQ?”, ...)

Q1/2013: “Kepler K20”:

e GK110 GPU: up to 2880 cores, 6...12 GB RAM
e internal memory bandwidth: ~200 GB/s

e nominal peak performance: ~ 1.3 TFlops (DP)

Proor s
[ p—

Host Memory
plans for a “hostless™ chip (for Exascale) —

CINECA
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NVIDIA GPU TECHNOLOGY

Software & programming models
e paradigm: split program into host code (CPU) and device code (GPU)
e GPU hardware architecture requires highly homogeneous program flow (SIMT, no if-

branches!)

e PCle bottleneck for communication of data between CPU and GPU: hos oevie

e O(n2)...0(n3) computations for communication of n data o

e overlapping of communication and computation phases TETT & 6 s

Programming languages

e CUDA (NVIDIA), OpenCL (open standard)

e host program (C, executes on CPU) and device kernels (C, launch on
GPU)

e numerical libraries: CUBLAS, CUFFT, higher LA: CULA, MAGMA

e tools: debuggers, profiling, system monitoring,...

e CUDA-FORTRAN (PGI)

e directive-based approaches (PGI, CRAY, CAPS, OpenACC, OpenMP-4)
e high-level, comparable to OpenMP

e proprietary (CRAY, PGI, HMPP, ...) - OpenACC — OpenMP

CINECA



NVIDIA GPU TECHNOLOGY

OpenACC

e joint effort of vendors to shortcut/guide OpenMP 4.0 standardization effort

e functional (not performance) portability
e minimally invasive to existing code

e facilitates incremental porting

e compilers: PGI, CRAY, CAPS

e no free lunch!

CINECA

CPU

Your original code,,.... rrr

Program myscience
... serial code ...
ISacc parallel logg
dok=1,n1
doi=1,n2

... parallelcode ...
enddo

enddo
ISacc end parellel loop

End Program myscience

GPU
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Compiler
Hint.
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INTEL MIC TECHNOLOGY

Hardware overview

e since 2011: “Knights Ferry”: software development platform
e Q4/2012: “Knights Corner”: first product of the new Intel Xeon Phi processor line (MIC
arch)

e approx 60 x86 cores (~ 1GHz), 8 GB RAM

e internal memory bandwidth: 175 GB/s — 81—
e nominal peak performance: 1 TFlops (DP) Pt e e e
e more than a devu_:e: runs |TII’IUX OS, IP addressable — o - -
e data exchange with host via PCle (-8 GB/s) EDRNS] -+ JUDN DN - PUDY D : GoDRMC|

e towards a true many-core chip (“Knights Landing”, 2014)

21 21 21 21

Software & programming models si0y| feid| fewd| |8i0)
e paradigms:

1) offload model (like GPU: split program into host code (CPU) and device code
(MIC))

2) cluster models (MPI ranks distributed across CPUs and/or MICs)

e tools & libraries: the familiar Intel tool chain: compilers, MP1/OpenMP, MKL, ...
e syntax: “data offload” directives + OpenMP (and/or MPI)

e:QpenCL

CINECA
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Similarities between GPU and MIC

CINECA

1. get the data on the GPU/MIC and keep it there
2. give the GPU/MIC enough work to do
3. reuse and locate data to avoid global memory

bandwith bottlenecks

caveat: not always true... Not always possible..
What is the trasde-off between performance and effort?
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Differences between GPU and MIC

Both GPU and MIC utilize a large number of concurrent threads of execution to

achieve high performances....but....

...programming multiple GPU and MIC coprocessor threads in parallel can be very
different.

In fact GPU threads must be grouped together into blocks of threads (called
"thread blocks" in CUDA and "work-groups" in OpenCL) that execute
concurrently on the GPU Streaming Multiprocessors (SMs) according to a SIMD
model...

...while MIC coprocessors run generic MIMD (Multiple Instruction Multiple Data)
threads individually on the x86 cores.

CINECA
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Differences between GPU and MIC

CINECA

GPU devices also support MIMD execution by allowing any block of threads to
be scheduled to run on any SM on the GPU.

This MIMD capability is most efficient when the problem matches the
granularity of the SM thread block size (32 threads for current GPU
devices).

GPUs that support this modified form of MIMD capability are referred to as
SIMT (Single Instruction Multiple Thread) devices.

SIMT:
Threads in groups (or 16, 32) that are scheduled together call Warp.
All threads in a Warp start at the same PC, but free to branch and
execute independently.
A warp executes one common instruction at a time
To execute different instructions at different threads, the
instructions are executed serially
To get efficiency, we want all instructions in a Warp to be
the same.



GPU Warp scheduler

evolution

« FERMI: 2 per SM: representing a °
compromise between cost and
complexity

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit | Instruction Dispatch Unit

AAMAALLAKAAALARAAALARAARAAALA AAARAARARRARRAALALRAALALAAAR
Warp 8 instruction 11 Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33
Warp 14 instruction 95 Warp 15 instruction 95

Warp 8 instruction 12 Warp 9 instruction 12
Warp 14 instruction 96 Warp 3 instruction 34
! Warp 2 instruction 43 Warp 15 instruction 96

time:

CINECA
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Kepler: 4 per SM with 2
Instruction dispatcher units
each.
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degree of parallelism

K40 GPU claims to have 2,880 "CUDA cores®...but...
...a K40 SM can concurrently execute up to 64 Warps ,

meaning that 2048 SIMD threads can be actively running (and not queued) at any
moment in time.

A K40 GPU contains 15 SMs, which means up to 2K*15 = 30K threads can be queued to
run at any given moment on the device.

The MIC coprocessor combines many-core parallelism with a wide per-core wide

vector unit providing additional operations per clock.

As a result, the per core vector unit basically multiplies the number of cores by the

number of concurrent vector operations to increase the MIC coprocessors degree of
parallelism.

CINECA
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Open question: what can MICs learn from GPUs and
viceversa?

It seems that GPUs and MICs are like two different cars
that should run on the same path...
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... we still miss a common (consolidated) approach to
drive...

Need for a common programming model???

CINECA



