
Introduction to Accelerators

Piero Lanucara – p.lanucara@cineca.it
SuperComputing Applications and Innovation Department

Single

core

Multi

core

Multi

core

Many

core

GPU
Intel

MIC

35 YEARS OF MICROPROCESSOR TREND DATA

Exposing parallelism in

applications is another

TOP PRIORITY

Source: C. Moore’s talk at Salishan, April 2011

from http://www.karlrupp.net/

http://www.karlrupp.net/

from http://www.karlrupp.net/

http://www.karlrupp.net/

from http://www.karlrupp.net/

http://www.karlrupp.net/

GPU and many core computing: a view

from the top
Basic principle (today's GPUs, many-core coprocessors):

● accelerator “cards” for standard cluster nodes (PCIe)

● many (~50...500) “lightweight” cores (~ 1 GHz)

● high thread concurrency, fast (local) memories

System architecture:

● currently: x86 “Linux-clusters” with nodes comprising

● 2 CPUs (2x 8 cores)

● max. 2...3 accelerator cards (GPU, MIC) per node

● future: smaller CPU component (extreme: “host-less”,many-core chips)

Programming paradigms:

● use CPU for program control, communication and maximum single-thread

performance

● “offload” data-parallel parts of computation to accelerator for maximum

throughput performance

● requires heterogeneous programming & load-balancing, careful assessment

of “speedups”

Motivation
Compute performance

● GPU/many-core computing is promising huge application-performance gains

● caveat: sustained performance on “real-world”, scientific applications

● observations:

● apparent GPU success stories: PetaFlops performance (Gordon-Bell Price

nominations)

● from aggressive marketing for Intel MIC, NVIDIA GPUs…

… towards more realistic attitudes: factor 2x..3x speedups (GPU vs. multi-core CPU)

Energy efficiency

● GPU/many-core computing is promising substantial energy-efficiency gains (a

must for exascale)

● caveat: sustained efficiency on “real-world” CPU-GPU clusters

Existing resources

● there is significant GPU/many-core-based compute-power around in the world

● by many, the technology is considered inevitable for the future

● caveat: the price to pay for application development ?

NVIDIA GPU TECHNOLOGY
Hardware overview (NVIDIA Tesla series)

● since 2011: “Fermi”: first product with HW support for double-precision and ECC memory

● up to 512 cores, 6 GB RAM

● high internal memory bandwidth ~180 GB/s

● 0.5 TFlops (DP, floating point)

● data exchange with host via PCIe (~8 GB/s)

● enhancements: MPI optimization, intra-node comm.

(“GPU direct”, “HyperQ”, ...)

Q1/2013: “Kepler K20”:

● GK110 GPU: up to 2880 cores, 6...12 GB RAM

● internal memory bandwidth: ~200 GB/s

● nominal peak performance: ~ 1.3 TFlops (DP)

plans for a “hostless” chip (for Exascale)

NVIDIA GPU TECHNOLOGY

Programming languages

● CUDA (NVIDIA), OpenCL (open standard)

● host program (C, executes on CPU) and device kernels (C, launch on

GPU)

● numerical libraries: CUBLAS, CUFFT, higher LA: CULA, MAGMA

● tools: debuggers, profiling, system monitoring,…

● CUDA-FORTRAN (PGI)

● directive-based approaches (PGI, CRAY, CAPS, OpenACC, OpenMP-4)

● high-level, comparable to OpenMP

● proprietary (CRAY, PGI, HMPP, ...) → OpenACC → OpenMP

Software & programming models

● paradigm: split program into host code (CPU) and device code (GPU)

● GPU hardware architecture requires highly homogeneous program flow (SIMT, no if-

branches!)

● PCIe bottleneck for communication of data between CPU and GPU:

● O(n2)...O(n3) computations for communication of n data

● overlapping of communication and computation phases

NVIDIA GPU TECHNOLOGY

OpenACC

● joint effort of vendors to shortcut/guide OpenMP 4.0 standardization effort

● functional (not performance) portability

● minimally invasive to existing code

● facilitates incremental porting

● compilers: PGI, CRAY, CAPS

● no free lunch!

INTEL MIC TECHNOLOGY
Hardware overview

● since 2011: “Knights Ferry”: software development platform

● Q4/2012: “Knights Corner”: first product of the new Intel Xeon Phi processor line (MIC

arch)

● approx 60 x86 cores (~ 1GHz), 8 GB RAM

● internal memory bandwidth: 175 GB/s

● nominal peak performance: 1 TFlops (DP)

● more than a device: runs Linux OS, IP addressable

● data exchange with host via PCIe (~8 GB/s)

● towards a true many-core chip (“Knights Landing”, 2014)

Software & programming models

● paradigms:

1) offload model (like GPU: split program into host code (CPU) and device code

(MIC))

2) cluster models (MPI ranks distributed across CPUs and/or MICs)

● tools & libraries: the familiar Intel tool chain: compilers, MPI/OpenMP, MKL, ...

● syntax: “data offload” directives + OpenMP (and/or MPI)

● OpenCL

GPU MIC

Both are devices connected through a PCIe to a CPU

(=bottleneck in bandwith).

Both have a large number of computing units.

CUDA

OpenACC

OpenCL

MPI+OpenMP

offload directives

OpenCL

Similarities between GPU and MIC

1. get the data on the GPU/MIC and keep it there

2. give the GPU/MIC enough work to do

3. reuse and locate data to avoid global memory

bandwith bottlenecks

caveat: not always true... Not always possible..

What is the trasde-off between performance and effort?

Similarities between GPU and MIC

Differences between GPU and MIC

Both GPU and MIC utilize a large number of concurrent threads of execution to

achieve high performances….but….

…programming multiple GPU and MIC coprocessor threads in parallel can be very

different.

In fact GPU threads must be grouped together into blocks of threads (called

"thread blocks" in CUDA and "work-groups" in OpenCL) that execute

concurrently on the GPU Streaming Multiprocessors (SMs) according to a SIMD

model…

…while MIC coprocessors run generic MIMD (Multiple Instruction Multiple Data)

threads individually on the x86 cores.

http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/MIMD

Differences between GPU and MIC

GPU devices also support MIMD execution by allowing any block of threads to

be scheduled to run on any SM on the GPU.

This MIMD capability is most efficient when the problem matches the

granularity of the SM thread block size (32 threads for current GPU

devices).

GPUs that support this modified form of MIMD capability are referred to as

SIMT (Single Instruction Multiple Thread) devices.

 SIMT:

Threads in groups (or 16, 32) that are scheduled together call Warp.

All threads in a Warp start at the same PC, but free to branch and

execute independently.

A warp executes one common instruction at a time

To execute different instructions at different threads, the

instructions are executed serially

To get efficiency, we want all instructions in a Warp to be

the same.

GPU Warp scheduler

evolution
• FERMI: 2 per SM: representing a

compromise between cost and

complexity

• Kepler: 4 per SM with 2

instruction dispatcher units

each.

Differences between GPU and MIC:

degree of parallelism

K40 GPU claims to have 2,880 "CUDA cores“…but…

…a K40 SM can concurrently execute up to 64 Warps ,

meaning that 2048 SIMD threads can be actively running (and not queued) at any

moment in time.

A K40 GPU contains 15 SMs, which means up to 2K*15 = 30K threads can be queued to

run at any given moment on the device.

The MIC coprocessor combines many-core parallelism with a wide per-core wide

vector unit providing additional operations per clock.

As a result, the per core vector unit basically multiplies the number of cores by the

number of concurrent vector operations to increase the MIC coprocessors degree of

parallelism.

Open question: what can MICs learn from GPUs and

viceversa?

It seems that GPUs and MICs are like two different cars

that should run on the same path…

BUT….

… we still miss a common (consolidated) approach to

drive…

Need for a common programming model???

?

