
Hybrid Programming:
MPI + OpenMP

Piero Lanucara – p.lanucara@cineca.itl
SuperComputing Applications and Innovation Department

2

From serial code……
From OpenMP code…
From MPI code……

Hybrid parallelization…the Long and Winding Road

3

From serial code…

Hybrid parallelization…the Long and Winding road

4

From OpenMP code…

Hybrid parallelization…the Long and Winding road

5

From MPI code…

Hybrid parallelization…the Long and Winding road

 Top 500 historical view: clusters (and MPP) dominates HPC arena

Architectural Trend

 Top 500 historical view: the multicore age

Architectural Trend (cont.)

 Multi-socket nodes with rapidly increasing core counts.

 Memory per core decreases.

 Memory bandwidth per core decreases.

 Network bandwidth per core decreases.

 Deeper memory hierarchy.

Which programming model is the best choice for this architectural trend ?

Architectural Trend (cont.)

Which programming model is the best choice for this architecture?

 MPI is the de-facto standard for distributed memory architectures

 in principle, MPI library is supposed to scale up to 10k cores and over….

 …but the MPI model (flat) is not guaranteed to match with this architecture for any
kind of application!

Programming model

Which programming model is the best choice for this architecture?

 OpenMP is the de-facto standard for shared-memory architectures (SMP and Multi-
socket nodes).

 OpenMP standard is robust, clear and sufficently easy to implement but is supposed
not to scale up to hundreds of cores!

 What about MPI+OpenMP?

Programming model

 Logical view: multi-node SMP (Symmetric Multiprocessor).

 MPI between the nodes via node interconnect

 OpenMP (the standard for shared memory parallel programming) inside of the SMP
nodes

The Hybrid model

 Pure MPI Pro:

 High scalability

 High portability

 No false sharing

 Scalability out-of-node

 Pure MPI Con:

 Hard to develop and debug.

 Explicit communications

 Coarse granularity

 Hard to ensure load balancing

Pure OpenMP Pro:

Easy to deploy (often)

Low latency

Implicit communications

Coarse and fine granularity

Dynamic Load balancing

Pure OpenMP Con:

Only on shared memory machines

Intranode scalability

Possible data placement problem

Undefined thread ordering

12

MPI vs. OpenMP

 MPI+OpenMP hybrid paradigm is the trend for clusters with SMP architecture.

 Elegant in concept: use OpenMP within the node and MPI between nodes, in order

to have a good use of shared resources.

 Avoid additional communication within the MPI node.

 OpenMP introduces fine-granularity.

 Two-level parallelism

 Some problems can be reduced by lowering MPI procs number

 If the problem is suitable, the hybrid approach can have better performance than

pure MPI or OpenMP codes.

13

Why Hybrid?

14

In the pure MPI model each process needs to allocate some extra memory to manage

communications and MPI environment

Supposing to use threads within node :
 Smaller number of MPI processes
 Fewer messages, larger message size

Example: one node having 8 cores and 32 GB. Pure MPI and Hybrid:

Pure MPI: 8 MPI process, 4 GB for each (parallelism is 8)

Pure MPI: 1 MPI process, 32 GB (serial)

Hybrid: 1 MPI process, 8 threads. 32 GB shared per process, 4 GB per thread. (parallelism is 8)

Avoid additional communication

within the MPI node

 MPI+OpenMP hybrid paradigm is the trend for clusters with SMP architecture.

 Elegant in concept: use OpenMP within the node and MPI between nodes, in order

to have a good use of shared resources.

 Avoid additional communication within the MPI node.

 OpenMP introduces fine-granularity.

 Two-level parallelism

 Some problems can be reduced by lowering MPI procs number

 If the problem is suitable, the hybrid approach can have better performance than

pure MPI or OpenMP codes.

15

Why Hybrid?

 Loop-based parallelism (just a set of directives in your code)

 Task construct (OpenMP 3.0): powerful and flexible

 Dynamic and guided scheduling (load balancing)

 Without additional software effort

 Without explicit data movement (MPI’s drawback)

16

OpenMP introduces fine-granularity

 MPI+OpenMP hybrid paradigm is the trend for clusters with SMP architecture.

 Elegant in concept: use OpenMP within the node and MPI between nodes, in order

to have a good use of shared resources.

 Avoid additional communication within the MPI node.

 OpenMP introduces fine-granularity.

 Two-level parallelism

 Some problems can be reduced by lowering MPI procs number

 If the problem is suitable, the hybrid approach can have better performance than

pure MPI or OpenMP codes.

17

Why Hybrid?

 Parallelism across SMP nodes, single node equipped with m sockets and n cores per

socket.

 To be assigned: the number of MPI process and the (optimal) number of threads

per MPI process.

 Heuristics:

 (often) n threads per MPI process

 (sometimes) n/2 threads per MPI process

 (seldom) 2n threads per MPI process

 No golden rule, application and hardware dependent

18

Two level parallelism

 MPI+OpenMP hybrid paradigm is the trend for clusters with SMP architecture.

 Elegant in concept: use OpenMP within the node and MPI between nodes, in order

to have a good use of shared resources.

 Avoid additional communication within the MPI node.

 OpenMP introduces fine-granularity.

 Two-level parallelism

 Some problems can be reduced by lowering MPI procs number

 If the problem is suitable, the hybrid approach can have better performance than

pure MPI or OpenMP codes.

19

Why Hybrid?

 Memory consumption can be alleviated by a reduction of replicated data on MPI

level

 Speedup limited due to algorithmic problem can be solved

 MPI scaling problems (expecially to high number of cores) can be significantly

reduced

 MPI scaling problems can be solved by a reduced aggregated message size

(compared to pure MPI)

20

Some problems can be reduced

By lowering MPI procs number

 OpenMP has lower scalability because of locking resources while MPI has not
potential scalability limits.

 All threads are idle except ones during an MPI communication

 Need overlap computation and communication to improve performance

 Critical section for shared variables update

 Overhead of thread creation

 Cache coherency and false sharing.

 Pure OpenMP code is generally slower than pure MPI code

 Fewer optimizations by OpenMP compilers compared to MPI

21

Why mixing MPI and OpenMP

code can be slower?

22

It is a side effects of the cache-line granularity of cache coherence implemented

in shared memory systems.
The cache coherency implementation keep track of the status of cache lines by

appending state bits to indicate whether data on cache line is still valid or

outdated.
Once the cache line is modified, cache coherence notifies other caches holding a

copy of the same line that its line is invalid.
If data from that line is needed, a new updated copy must to be fetched.

Cache coherency and False sharing

23

#pragma omp parallel for shared(a)

schedule(static,1)

for (int i=0; i<n; i++)

a[i] = i;

Suppose that each cache line consist of 4 elements and you are

using 4 threads

Each thread store:

Thread ID Stores

0 a[0]

1 a[1]

2 a[2]

3 a[3]

0 a[4]

... ...

Assuming that a[0] is the beginning of the

cache line, we have 4 false sharing

The same for a[4]...,a[7]

Cache coherency and False sharing

24

 The problem is that state bits do not keep track of which part of

the line is outdated, but indicates the whole line
 As a result, when two threads update different data elements in

the same cache line, they interfer with each other
 Solving:
 Using private data instead of shared data
 Padding

Cache coherency and False sharing

25

Masteronly approach

…if works…
…then, try to use MPI inside parallel regions with a tread-safe MPI

Hybrid parallelization Roadmap

26

call MPI_INIT (ierr)
call MPI_COMM_RANK (…)
call MPI_COMM_SIZE (…)
… some computation and MPI communication
call OMP_SET_NUM_THREADS(4)
!$OMP PARALLEL
!$OMP DO

do i=1,n
… computation

enddo
!$OMP END DO
!$OMP END PARALLEL
… some computation and MPI communication
call MPI_FINALIZE (ierr)

Hybrid code (Masteronly)

27

 The various MPI implementations differs in levels of thread-safety
 Advantages of Masteronly:
 No message passing inside of SMP nodes
 Simplest hybrid parallelization (easy to implement, debug, …)
 Major problems:
 All other threads are sleeping while master thread communicates
 Use of internode bandwidth satisfactory?
 Thread-safe MPI is required

Hybrid code (Masteronly)

 MPI_INIT_THREAD (required, provided, ierr)

 IN: required, desired level of thread support (integer).

 OUT: provided, provided level (integer).

 provided may be less than required.

 Four levels are supported:

 MPI_THREAD_SINGLE: Only one thread will runs. Equals to MPI_INIT.

 MPI_THREAD_FUNNELED: processes may be multithreaded, but only the main
thread can make MPI calls (MPI calls are delegated to main thread)

 MPI_THREAD_SERIALIZED: processes could be multithreaded. More than one thread
can make MPI calls, but only one at a time.

 MPI_THREAD_MULTIPLE: multiple threads can make MPI calls, with no restrictions.

28

MPI_INIT_Thread support (MPI-2)

 The various implementations differs in levels of thread-safety

 If your application allow multiple threads to make MPI calls simultaneously, whitout

MPI_THREAD_MULTIPLE, is not thread-safe

 Using OpenMPI, you have to use –enable-mpi-threads at configure time to activate all

levels.

 Higher level corresponds higher thread-safety. Use the required safety needs.

29

MPI_INIT_Thread support (MPI-2)

 Equivalent to Hybrid Masteronly:

30

!$OMP PARALLEL DO

do i=1,10000

a(i)=b(i)+f*d(i)

enddo

!$OMP END PARALLEL DO

call MPI_Xxx(...)

!$OMP PARALLEL DO

do i=1,10000

x(i)=a(i)+f*b(i)

enddo

!$OMP END PARALLEL DO

#pragma omp parallel for

for (i=0; i<10000; i++)

{ a[i]=b[i]+f*d[i];

}

/* end omp parallel for */

MPI_Xxx(...);

#pragma omp parallel for

for (i=0; i<10000; i++)

{ x[i]=a[i]+f*b[i];

}

/* end omp parallel for */

MPI_THREAD_SINGLE

 Only the master thread can do MPI communications.

31

MPI_THREAD_FUNNELED

 MPI calls:

 outside the parallel region.

 inside the parallel region with “omp master”.

32

!$OMP BARRIER

!$OMP MASTER

call MPI_Xxx(...)

!$OMP END MASTER

!$OMP BARRIER

There are no synchronizations with “omp master”, thus needs a barrier

before and after, to ensure that data and buffers are available before

and/or after MPI calls

#pragma omp barrier

#pragma omp master

MPI_Xxx(...);

#pragma omp barrier

MPI_THREAD_FUNNELED

 Only one thread at a time will make calls to the MPI library, but all threads are
eligible to make such calls as long as they do not do so at the same time.

33

MPI_THREAD_SERIALIZED

 MPI calls:

 Outside the parallel region

 Inside the parallel region with “omp single”

34

!$OMP BARRIER

!$OMP SINGLE

call MPI_Xxx(...)

!$OMP END SINGLE

#pragma omp barrier

#pragma omp single

MPI_Xxx(...);

OMP_BARRIER is needed since OMP_SINGLE only guarantees

synchronization at the end

MPI_THREAD_SERIALIZED

 Each thread can make communications at any times. Less restrictive and very

flexible, but the application becomes very hard to manage

35

MPI_THREAD_MULTIPLE

 FUNNELED/SERIALIZED:

 All other threads are sleeping while just one thread is communicating.

 Only one thread may not be able to lead up max internode bandwidth

 Pure MPI:

 Each CPU communication can lead up max internode bandwidth

 Hints: Overlap communications and computations.

36

THREAD FUNNELED/SERIALIZED

vs. Pure MPI

 Need at least MPI_THREAD_FUNNELED.

 While the master or the single thread is making MPI calls, other threads are doing
computations.

 It's difficult to separate code that can run before or after the exchanged data
are available

37

!$OMP PARALLEL
if (thread_id==0) then

call MPI_xxx(…)
else

do some computation
endif

!$OMP END PARALLEL

Overlap comunications and

computations

 MPI collectives are highly optimized

 Several point-to-point communication in one
operations

 They can hide from the programmer a huge
volume of transfer (MPI_Alltoall generates
almost 1 million point-to-point messages
using 1024 cores)

 There is no non-blocking (no longer the case
in MPI 3.0)

38

MPI collective hybridization

 Hybrid implementation:

 Better scalability by a reduction of both
the number of MPI messages and the
number of process. Tipically:

 for all-to-all communications, the
number of transfers decrease by a
factor #threads^2

 the length of messages increases by a
factor #threads

 Allow to overlap communication and
computation.

39

MPI collective hybridization

 Restrictions:

 In MPI_THREAD_MULTIPLE mode is forbidden
at any given time two threads each do a
collective call on the same communicator
(MPI_COMM_WORLD)

 2 threads calling each a MPI_Allreduce may
produce wrong results

 Use different communicators for each
collective call

 Do collective calls only on 1 thread per
process(MPI_THREAD_SERIALIZED mode
should be fine)

40

MPI collective hybridization

 Introduction of OpenMP into existing MPI codes includes OpenMP drawbacks

(synchronization, overhead, quality of compiler and runtime…)

 A good choice (whenever possible) is to include into the MPI code a

multithreaded, optimized library suitable for the application.

 BLAS, LAPACK, NAG (vendor), FFTW are well known multithreaded libraries

available in the HPC arena.

 MPI_THREAD_FUNNELED (almost) must be supported.

41

Hybrid programming via

Multithreaded library

42

Only the master

thread can do MPI

communications

(Pseudo QE code)

Hybrid programming via

Multithreaded library

43

Funneled: master

thread do MPI

communications

within parallel region

(Pseudo QE code)

Hybrid programming via

Multithreaded library

 Starting point is a well known MPI parallel code that solve Helmoltz Partial

Differential Equation on a square domain.

 Standard domain decomposition (into slices for simplicity).

 No huge I/O

 The benchmark collect the timing of the main computational routine

(Jacobi), GFLOPS rate, the number of iterations to reach fixed error and the

error with respect to known analytical solution

44

Hybrid programming via

Domain decomposition

 In the MPI basic implementation, each process has to exchange ghost-cells at every

iteration (also on the same node)

45

reqcnt = 0

if (me .ne. 0) then

! receive stripe mlo from left neighbour blocking

reqcnt = reqcnt + 1

call MPI_IRECV(uold(1,mlo), n, MPI_DOUBLE_PRECISION, me,1, 11,

MPI_COMM_WORLD,reqary(reqcnt),ierr)

end if

if (me .ne. np-1) then

! receive stripe mhi from right neighbour blocking

reqcnt = reqcnt + 1

…

if (me .ne. 0) then

! send stripe mlo+1 to left neighbour async

reqcnt = reqcnt + 1

call MPI_ISEND (u(1,mlo+1), n, MPI_DOUBLE_PRECISION,

me-1, 12, MPI_COMM_WORLD,reqary(reqcnt),ierr)

end if

Domain decomposition

 The pseudo code for the rest of the Jacobi routines:

46

do j=mlo+1,mhi-1

do i=1,n

uold(i,j) = u(i,j)

enddo

enddo

call MPI_WAITALL (reqcnt, reqary, reqstat, ierr)

do j = mlo+1,mhi-1

do i = 2,n-1

! Evaluate residual

resid = (ax*(uold(i-1,j) + uold(i+1,j)) +…

& + b * uold(i,j) - f(i,j))/b

u(i,j) = uold(i,j) - omega * resid

! Accumulate residual error

error = error + resid*resid

end do

enddo

error_local = error

call MPI_ALLREDUCE (error_local,….,error,…)

Domain decomposition

 The hybrid approach allows you to share the memory area

where ghost-cells are stored

 In the Hybrid Masteronly, each thread has not to do MPI

communication within the node, since it already has

available data (via shared memory).

 Communication decreases as the number of MPI process,

but increases MPI message size for Jacobi routine.

47

Domain decomposition

hybridization

48

!$omp parallel

!$omp do

do j=mlo+1,mhi-1

do i=1,n

uold(i,j) = u(i,j)

enddo

enddo

!$omp end do

!$omp end parallel

call MPI_WAITALL (reqcnt, reqary, reqstat, ierr)

 Advantages:
No message passing inside SMP nodes
Simplest hybrid parallelization (easy to implement)
Major problems:
All other threads are sleeping while master thread communicate

Hybrid Masteronly

Domain decomposition

Only the master

thread can do MPI

communications.

49

!$omp parallel default(shared)

!$omp master

error = 0.0

…

if (me .ne. 0) then

! receive stripe mlo from left neighbour blocking

reqcnt = reqcnt + 1

call MPI_IRECV(uold(1,mlo), n, MPI_DOUBLE_PRECISION, &

& me-1, 11, MPI_COMM_WORLD,reqary(reqcnt),ierr)

end if

….

!$omp end master

!$omp do

do j=mlo+1,mhi-1

do i=1,n

uold(i,j) = u(i,j)

enddo

enddo

!$omp end do

The other threads are

sleeping as in the

previous case

MPI_THREAD_FUNNELED

Domain decomposition

The barrier is needed

after omp_ master

directive in order to

ensure correctness of

results.

50

!$omp master

call MPI_WAITALL (reqcnt, reqary, reqstat, ierr)

!$omp end master

!$omp barrier

! Compute stencil, residual, & update

!$omp do private(resid) reduction(+:error)

do j = mlo+1,mhi-1

do i = 2,n-1

….

error = error + resid*resid

end do

enddo

!$omp end do

!$omp master

…

call MPI_ALLREDUCE (error_local, error,1, &

& MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,ierr)

!$omp end master

!$omp end parallel

MPI_THREAD_FUNNELED

Domain decomposition

omp_single guarantee

serialized threads

access . Note that no

barrier is needed

because omp_single

guarantee

synchronization at the

end

51

!$omp parallel default(shared)

!$omp single

error = 0.0

reqcnt = 0

if (me .ne. 0) then

! receive stripe mlo from left neighbour blocking

reqcnt = reqcnt + 1

call MPI_IRECV(uold(1,mlo), n, MPI_DOUBLE_PRECISION, &

& me-1, 11, MPI_COMM_WORLD,reqary(reqcnt),ierr)

end if

!$omp end single

!$omp single

if (me .ne. np-1) then

! receive stripe mhi from right neighbour blocking

reqcnt = reqcnt + 1

call MPI_IRECV(uold(1,mhi), n, MPI_DOUBLE_PRECISION, &

& me+1, 12, MPI_COMM_WORLD,reqary(reqcnt),ierr)

end if

!$omp end single

….

MPI_THREAD_SERIALIZED

Domain decomposition

omp_single guarantee

only one threads

access to the

MPI_Allreduce

collective.

52

…

!$omp do private(resid) reduction(+:error)

do j = mlo+1,mhi-1

do i = 2,n-1

! Evaluate residual

resid = (ax*(uold(i-1,j) + uold(i+1,j)) &

& + ay*(uold(i,j-1) + uold(i,j+1)) &

& + b * uold(i,j) - f(i,j))/b

! Update solution

u(i,j) = uold(i,j) - omega * resid

! Accumulate residual error

error = error + resid*resid

end do

enddo

!$omp end do

!$omp single

error_local = error

call MPI_ALLREDUCE (error_local, error,1, …)

!$omp end single

!$omp end parallel

MPI_THREAD_SERIALIZED

Domain decomposition

53

 Each thread can make communications at any times (in principle)

 Some little change in the Jacobi routine

 Use of omp sections construct (it ensures that each thread is allowed a different

MPI call at the same time)

 Use of omp single for MPI_Waitall and collectives

MPI_THREAD_MULTIPLE

Domain decomposition

leftr, rightr,lefts and

rights must to be

private to ensure

correct MPI calls.

54

!$omp parallel default(shared) private(leftr,rightr,lefts,rights)

error = 0.0

!$omp sections

!$omp section

if (me .ne. 0) then

! receive stripe mlo from left neighbour blocking

leftr=me-1

else

leftr=MPI_PROC_NULL

endif

call MPI_IRECV(uold(1,mlo), n, MPI_DOUBLE_PRECISION, &

& leftr, 11, MPI_COMM_WORLD,reqary(1),ierr)

!$omp section

….

!$omp end sections

!$omp do

do j=mlo+1,mhi-1

do i=1,n

uold(i,j) = u(i,j)

enddo

enddo

!$omp end do

MPI_THREAD_MULTIPLE

omp single is used

both for MPI_Waitall

call that for

MPI_Allreduce

collective.

55

!$omp single

call MPI_WAITALL (4, reqary, reqstat, ierr)

!$omp end single

! Compute stencil, residual, & update

!$omp do private(resid) reduction(+:error)

do j = mlo+1,mhi-1

…

! Evaluate residual

resid = (ax*(uold(i-1,j) + uold(i+1,j)) …

….

! Update solution

u(i,j) = uold(i,j) - omega * resid

! Accumulate residual error

error = error + resid*resid

…

!$omp end do

!$omp single

…

call MPI_ALLREDUCE (error_local, error,1,…)

error = sqrt(error)/dble(n*m)

!$omp end single

!$omp end parallel

MPI_THREAD_MULTIPLE

56

Number of threads

(process for MPI only)

per node

MPI+OpenMP (64 MPI, 1

process per node)

MPI_THREAD_MULTIPLE

version

Elapsed time (sec.)

MPI (1024 MPI,

16,32,64 processes per

node)

Elapsed time (sec.)

1 78.84 N.A

4 19.89 N.A

8 10.33 N.A

16 5.65 5.98

32 3.39 7.12

64 2.70 12.07

Huge simulation,

30000x30000 points.

Stopped after 100

iterations only for

timing purposes.

Up to 64 hardware

threads per process

are available on

bgq (SMT)

Some results on

FERMI@CINECA

 Modern CPUs continues to evolve….

 progressively higher cores count

• The problem: memory bandwidth is increasing a lower rate than FLOPs

 Solution: modern architectures feature large on-die caches of O(10) MB to

increase overall performances

 Take advantage of caches involves data reuse…

 Take advantage of multicore and cluster of multicores involve hybridization

 Standard hybrid programming disadvantages:

 messages are larger

 cache is not shared among all threads within a node

 The solution: cache-friendly hybrid programming

Cache-friendly

Hybrid programming

do i = ioff, iend

do j = joff, jend

do l = loff, lend

c(i, j) = c(i, j) + a(i, l) * b(l, j)

end do

end do

end do

Serial – textbook algorithm

=C A

B

*

Case study: Matrix Multiply

Main memory

cache

performances of

different cache

levels can be

very different

Some example:

L1 cache: 1 cycle

L2 cache: 7 cycles

RAM: 36 cycles

The memory hierarchy

Main memory

cache

when CPU request
data from memory
L1 cache takes
over

if data is in L1
cache (cache hit)
return data to CPU

If data is not in L1 cache:

cache misses…

…L1 cache forward

request to L2 cache…and

so on

The memory hierarchy again

 Cache miss degrading performances

 Increasing cache hit rate higher performances

 Efficiency directly related to the reuse of data in cache

 Cache is organized in cache lines….

…

32-byte cache line

1 MB (32,768 cache lines)

Cache effects on performance

 Direct-mapped cache

 Given a memory cache line it is placed in one specific cache line in cache

 Fully associative cache

 Given a memory cache line it can be placed in any of the cache line in cache

 N-way set associative cache

 Given a memory cache line it can be placed in any of N cache lines in cache

Direct-mapped and (partially) N-way set associative caches may lead to

cache thrashing

Cache classification

i=0:

load line X[0]-X[3] into cache;

load X[0] from cache to register;

load line Y[0]-Y[3] into cache, displacing line X[0]-X[3];

load Y[0] from cache into register;

add, update Y[0] in cache;

i=1:

load X[0]-X[3] into cache, displacing Y[0]-Y[3], write line Y[0]-Y[3] back to memory;

load X[1] from cache to register;

load Y[0]-Y[3] into cache, displacing X[0]-X[3];

load Y[1] from cache to register;

add, update Y[1] in cache;

i=2:

load X[0]-X[3] into cache, displacing Y[0]-Y[3], write line Y[0]-Y[3] back to memory;

load X[2] from cache to register;

load Y[0]-Y[3] into cache, displacing X[0]-X[3];

load Y[2] from cache to register;

add, update Y[2] in cache;

i=3: …

No cache reuse!

Repeatedly displacing and

loading cache lines

Poor performance!

double X[131072], Y[131072];

long i, j;

// initialization of X, Y

…

for(i=0;i<131072;i++)

Y[i] = X[i] + Y[i];

…

1 MB

32768 lines

X[0] X[1] X[2] X[3]

X[4] X[5] X[6] X[7]

… … … …

… … … …

Y[0] Y[1] Y[2] Y[3]

Y[4] Y[5] Y[6] Y[7]

… … … …

… … … …

… … … …

… … … …

cache Memory

1 MB

32768 lines

Assumptions:

• Direct-mapped
cache

• Cache size: 1 MB;

• Cache line: 32
bytes;

Cache thrashing

64

Size of the matrices MFLOPs for the Matrix

Multiply

MFLOPs/size

128 119 0.92

256 93 0.36

512 93 0.18

1024 86 0.08

2048 61 0.02

4096 33 0.008

PLX single core

Xeon E5645 (32KB

L1 cache, 128KB

L2 cache, 12 MB

shared cache) –O0

flag

Degrading

performances

due to

excessive cache

thrashing (size

is a power of 2)

Cache thrashing for

matrix multiply
Why –O0? Otherwise the compiler

did the right think with all codes

=C
A

B
*

Great idea: blocking!

Better performances due to better cache reuse. Choose optimal

blocking size is crucial.

=
*

+

+

+

+

Cmn

Amk Bkn

mh

kh nh

kh

mh, kh, nh: block sizes, “Free” parameters

m, k, n: matrixes sizes

mb, kb, nb: number of blocks

Blocks matrix multiply: a

simple example

do ib = 0, mb-1

ioff = 1 + ib * mh

iend = MIN(m, ioff+mh-1)

do jb = 0, nb-1

joff = 1 + jb * nh

jend = MIN(n, joff+nh-1)

do lb = 0, kb-1

loff = 1 + lb * kh

lend = MIN(k, loff+kh-1)

! Cij = Aik * Bkj

do i = ioff, iend

do j = joff, jend

do l = loff, lend

c(i, j) = c(i, j) + a(i, l) * b(l, j)

end do

end do

end do

end do

end do

end do

Loops over

Matrix bloks

Loops inside

Matrix block

Blocking algorithm

68

Size of the matrices MFLOPs for the Matrix

Multiply

MFLOPs/size

128 97 0.75

256 120 0.46

512 124 0.24

1024 126 0.12

2048 122 0.05

4096 98 0.02

PLX single core Xeon

E5645 (32KB L1

cache, 128KB L2

cache, 12 MB shared

cache)

-O0 optimization

flag, number of

blocks fixed to 64 for

simplicity

Better

performances

but again not

good

Blocking algorithm

!$omp parallel do default(none) &

!$omp shared(a,b,c,ioff,joff,loff,iend,jend,lend) &

!$omp private(i,j,l)

do i = ioff, iend

do j = joff, jend

do l = loff, lend

c(i, j) = c(i, j) + a(i, l) * b(l, j)

end do

end do

end do

!$omp end parallel do

base version

what about
performances?

Matrix multiply OpenMP

algorithm

70

Size of the matrices MFLOPs for the Matrix

Multiply (4 OpenMP

threads)

MFLOPs/size

128 357 2.78

256 373 1.45

512 369 0.72

1024 337 0.32

2048 225 0.10

4096 109 0.02

Better

performances

but again not so

good

PLX single core Xeon

E5645 (32KB L1

cache, 128KB L2

cache, 12 MB shared

cache)

(-O0 -openmp)

Matrix multiply OpenMP

algorithm

!$omp parallel do default(none) &

!$omp shared(a,b,c,mb,nb,kb,m,n,k,mh,nh,kh) &

!$omp private(ib,jb,lb,i,j,l,ioff,joff,loff,iend,jend,lend)

do ib = 0, mb-1

ioff = 1 + ib * mh

iend = MIN(m, ioff+mh-1)

do jb = 0, nb-1

joff = 1 + jb * nh

jend = MIN(n, joff+nh-1)

do lb = 0, kb-1

loff = 1 + lb * kh

lend = MIN(k, loff+kh-1)

! Cij = Aik * Bkj

do i = ioff, iend

do j = joff, jend

do l = loff, lend

c(i, j) = c(i, j) + a(i, l) * b(l, j)

end do

end do

end do

end do

end do

end do

!$omp end parallel do

OpenMP blocking algorithm

72

Size of the matrices MFLOPs for the Matrix

Multiply (4 OpenMP

threads)

MFLOPs/size

128 268 2.09

256 477 1.86

512 494 0.96

1024 502 0.49

2048 486 0.23

4096 398 0.09

Better scaling

with size and

better

performances

PLX single core Xeon

E5645 (32KB L1 cache,

128KB L2 cache, 12 MB

shared cache)

-O0 -openmp flag

number of blocks fixed

to 64 for simplicity

OpenMP blocking algorithm

 In general, a given matrix cannot be stored in a single node memory

 Matrix multiply takes too long (scale as a cubic power of matrix size)

 Target: increase the number of processors, mantaining local matrix size as

constant as possible

 Use cache blocking algorithm within the single node

 MPI outside the node (simplest implementation)

MPI+OpenMP blocking

algorithm

=
*

+

+

+

+

Cmn

Amk Bkn

mh

kh nh

kh

mh, kh, nh: block sizes, “Free” parameters

m, k, n: matrixes sizes

mb, kb, nb: number of blocks

Remark: I need to minimize communications

Assign blocks to tasks

Blocks again!

1) Distribute processors on a 2D mesh (2D-Torus is good as well)
2) Processor grid has dimension PxQ
3) Each processor has his coordinates (p,q)
4) Partition the matrixes into PxQ blocks
5) Distribute blocks to processors
6) Perform block by block operations, local to each processor
7) Communicate blocks between processors

In details

= *+

Block C11

Amk Bkn

Consider 3x3 processor grid

+* * *

Processor (0,0)

A11 B11 A12 A13B21 B31

Already on

Proc (0,0)
Already on

Proc (0,0)

A11 A13A12

A21 A22 A23

A33A32A31 B33

B23

B13

B32

B22

B12B11

B21

B31

Cannon’s algorithm

= *+

Block C21

Amk Bkn

Consider 3x3 processor grid

+* * *

Processor (1,0)

A21 B11 A22 A23B21 B31

Already on

Proc (1,0)

Left Shift for

Proc (1,0)

A11 A13A12

A21 A22 A23

A33A32A31 B33

B23

B13

B32

B22

B12B11

B21

B31

Cannon’s algorithm

*

Amk Bkn

First Step:

shift left A blocks of rowid+1

shift Up B blocks of colid+1

Each proc (p,q) performs a local MatrixMatrix multiplication

A12 B21 A13 B32 A11 B13

A23 B31 A21 B12 A22 B23

A31 B11 A32 B22 A33 B33

B33

A33A32A31

A21 A22 A23

A11 A13A12

C11 C12 C13

C21 C22 C23

C31 C32 C33

B23

B13

B32

B22

B12

B11

B21

B31

Cannon’s algorithm

*

Amk Bkn

Second Step:

shift right A blocks of 1

shift down B blocks of 1

Each proc (p,q) performs a local MatrixMatrix multiplication

A12

B21

A13

B32

A11

B13A23

B31

A21

B12

A22

B23A31

B11

A32

B22

A33

B33 B33

A33A32A31

A21 A22 A23

A11 A13

C11 C12 C13

C21 C22 C23

C31 C32 C33

B23

B13

B32

B22

B12

B11

B21

B31

A12

Cannon’s algorithm

*

Amk
Bkn

Third Step:

shift right A blocks of 1

shift down B blocks of 1

Each proc (p,q) performs a local MatrixMatrix multiplication

A12

B21

A13

B32

A11

B13

A23

B31

A21

B12

A22

B23

A31

B11

A32

B22

A33

B33

B33

A33A32A31

A21 A22 A23

A11 A13

C11 C12 C13

C21 C22 C23

C31 C32 C33

B23

B13

B32

B22

B12

B11

B21

B31

A12

Cannon’s algorithm

81

Size of the matrices MFLOPs for the MPI

Cannon’s Matrix

Multiply

MFLOPs for the Hybrid

Cannon’s Matrix

Multiply (4 OpenMP

threads)

2048 (1 MPI) 836 3315

4096 (4 MPI) 3303 8366

8192 (16 MPI) 13104 50246

16384 (64 MPI) 51343 121230

64 proc. case,

Hybrid code is

about 2.5

faster than MPI

PLX runs up to 64

cores, use standard

optimization flags (-

O)

number of blocks

fixed to 64 for

simplicity

Hybrid MPI+OpenMP

Cannon’s scaling
Blocking algorithm

MPI_THREAD_FUNNELED for

communication

Blocking algorithm Hybrid code is faster than simple

MPI+OpenMP code

82

Size of the matrices MFLOPs for the MPI

Cannon’s Matrix

Multiply

MFLOPs for the Hybrid

Cannon’s Matrix

Multiply (4 OpenMP

threads)

2048 (1 MPI) 1063 3882

4096 (4 MPI) 4266 15083

8192 (16 MPI) 16366 55215

16384 (64 MPI) 64284 216781

Hybrid code is

about 3.5

faster than MPI

PLX runs up to 64

cores, use standard

optimization flags (-

O)

number of blocks

fixed to optimal 128

Hybrid MPI+OpenMP

Cannon’s scaling
Blocking algorithm

MPI_THREAD_FUNNELED for

communication

Blocking algorithm Hybrid code is faster than simple

MPI+OpenMP code

 Better scalability by a reduction of both the number of MPI messages and the

number of processes involved in collective communications and by a better load

balancing.

 Better adeguacy to the architecture of modern supercomputers while MPI is only a

flat approach.

 Optimization of the total memory consumption (through the OpenMP shared-

memory approach, savings in replicated data in the MPI processes and in the used

memory by the MPI library itself).

 Reduction of the footprint memory when the size of some data structures depends

directly on the number of MPI processes.

 It can remove algorithmic limitations (maximum decomposition in one direction for

example).

83

Lesson learned I

 Codes having limited MPI scalability (through the use of MPI_Alltoall for example).

 Codes requiring dynamic load balancing

 Codes limited by memory size and having many replicated data between MPI

processes or having data structures that depends on the number of processes.

 Inefficient MPI implementation library for intra-node communication.

 Codes working on problems of fine-grained parallelism or on a mixture of fine and

coarse-grain parallelism.

 Codes limited by the scalability of their algorithms.

84

Applications that can benefit

from Hybrid programming

 Achieving high-performance on modern CPUs requires algorithm which take full

advantage of its computing resources and memory hierarchy.

 Using blocking and other cache-friendly techniques may help in writing efficient,

hybrid-parallel applications, suitable for present and future computer

architectures.

85

Lesson learned II

 Hybrid programming is complex and requires high level of expertise.

 Both MPI and OpenMP performances are needed (Amdhal’s law apply separately to

the two approaches).

 Savings in performances are not guaranteed (extra additional costs).

86

Conclusions: there is no golden rule….

 Carlo Cavazzoni for Cache Friendly Hybrid Programming part

 Luca Ferraro and Francesco Salvadore for Hybrid Programming exercises part

 All CINECA SCAI staff for useful discussions and suggestions

87

Credits….

