
Paolo Ciancarini – paolo.ciancarini@unibo.it
Department of Informatics – University of Bologna

Motivation and Concept

•  Software systems should exploit reusable
design knowledge promoting
– Abstraction
– Flexibility
– Modularity
– Elegance

•  Problem: capturing, communicating, and
applying design knowledge

Patterns for HPC

•  Which technologies improve the productivity of
HPC software development?

•  parallel programming languages and libraries,
Object Oriented scientific programming, and
parallel run-time systems and tools.

•  The success of these activities requires a good
understanding of common patterns used in the
development of HPC software:

•  patterns used for the coding of parallel
algorithms, their mapping to various
architectures, and performance tuning activities.

What Is a Design Pattern?
•  A design pattern

–  Is a common solution to a recurring problem in
design

– Abstracts a recurring design structure
– Comprises class and/or object

•  Dependencies
•  Structures
•  Interactions
•  Conventions

– Names & specifies the design structure explicitly
– Distils design experience

What Is a Design Pattern?
•  A design pattern has 4 basic parts:

–  Name
–  Problem
–  Solution
–  Consequences and trade-offs of application

•  Language- and implementation-independent
•  A “micro-architecture”
•  Adjunct to existing methodologies (Unified, OMT,

etc.)
•  No mechanical application

–  The solution needs to be translated into concrete
terms in the application context by the developer

Design Pattern Catalogues

•  GoF (“the gang of four”) catalogue
–  “Design Patterns: Elements of Reusable

Object-Oriented Software,” Gamma, Helm,
Johnson, Vlissides, Addison-Wesley, 1995

•  POSA catalogue
– Pattern-Oriented Software Architecture,

Buschmann, et al.; Wiley, 1996
•  …

Design Space for GoF Patterns

Scope: domain over which a pattern applies
Purpose: reflects what a pattern does

Observer (Behavioral)
•  Intent

–  Define a one-to-many dependency between objects
so that when one object changes state, all its
dependents are notified and updated automatically

•  Applicability
–  When an abstraction has two aspects, one dependent

on the other
–  When a change to one object requires changing

others, and you don't know how many objects need to
be changed

–  When an object should notify other objects without
making assumptions about who these objects are

Observer: class diagram

Observer: example

Subject

Observers

Composite (Structural)
•  Intent

–  Treat individual objects and multiple, recursively-
composed objects uniformly

•  Applicability
–  Objects must be composed recursively,
–  And there should be no distinction between individual

and composed elements,
–  And objects in the structure can be treated uniformly
–  Part-Whole hierarchy of objects.
–  Constant handling of objects as groups or individuals

Composite: class diagram

Composite: example

Strategy (Behavioral)

•  Intent
– Define a family of algorithms, encapsulate

each one, and make them interchangeable to
let clients and algorithms vary independently

•  Applicability
– When an object should be configurable with

one of several algorithms,
and all algorithms can be encapsulated,
and one interface covers all encapsulations

Strategy: class diagram

Strategy: example

Decorator (Structural)

•  Intent
– Augment objects with new responsibilities

•  Applicability
– When extension by subclassing is impractical
– For responsibilities that can be withdrawn

Decorator: class diagram

Decorator - Diagram

Decorator overview
•  A Decorator, also known as a Wrapper, is an object

that has an interface identical to an object that it
contains. Any calls that the decorator gets, it relays to
the object that it contains, and adds its own
functionality along the way, either before or after the
call

•  Therefore, the Decorator Pattern is used for adding
additional functionality to a particular object as
opposed to a class of objects

•  It is easy to add functionality to an entire class of
objects by subclassing an object, but it is impossible to
extend a single object this way. With the Decorator
Pattern, you can add functionality to a single object
and leave others like it unmodified

Decorator comments
•  The Decorator pattern offers a lot of flexibility, since

you can change what the decorator does at runtime,
as opposed to having the change be static and
determined at compile time by subclassing

•  Since a Decorator complies with the interface that the
object that it contains, the Decorator is
indistinguishable from the object that it contains.
That is, a Decorator is a concrete instance of the
abstract class, and thus is indistinguishable from any
other concrete instance, including other decorators

•  This can be used to great advantage, as you can
recursively nest decorators without any other objects
being able to tell the difference, allowing a near infinite
amount of customization

Abstract Factory (Creational)

•  Intent
– Create families of related objects without

specifying class names
•  Applicability

– When clients cannot anticipate groups of
classes to instantiate

Abstract factory: class diagram

«instantiate» «instantiate»

«instantiate»

«instantiate»

Iterator (Behavioral)

•  Intent
– Access elements of an aggregate sequentially

without exposing its representation
•  Applicability

– Require multiple traversal algorithms over an
aggregate

– Require a uniform traversal interface over
different aggregates

– When aggregate classes and traversal
algorithm must vary independently

Iterator: class diagram

Visitor (Behavioral)
•  Intent

– Centralize operations on an object structure so
that they can vary independently but still behave
polymorphically

•  Applicability
– When classes define many unrelated operations
– Class relationships of objects in the structure

rarely change, but the operations on them change
often

– Algorithms over the structure maintain state that's
updated during traversal

Visitor: class diagram

Template Method (Behavioral)

•  Intent
– Define the skeleton of an algorithm in an

operation, deferring some steps to subclasses
•  Applicability

– To implement invariant aspects of an
algorithm once and let subclasses define
variant parts

– To localize common behavior in a class to
increase code reuse

– To control subclass extensions

Template Method: class diagram

Singleton (Creational)

•  Intent
– Ensure a class only ever has one instance, and

provide a global point of access to it
•  Applicability

– When there must be exactly one instance of a
class, and it must be accessible from a well-
known access point

– When the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code

Singleton: class diagram

Façade

Façade

Façade

Façade (Structural)
•  Intent

–  Provide a unified interface to a set of interfaces in a
subsystem

–  Façade defines a higher-level interface that makes
the subsystem easier to use

•  Applicability
–  To provide a simple interface to a complex subsystem
–  This interface is good enough for most clients; more

sophisticated clients can look beyond the façade
–  To decouple the classes of the subsystem from its

clients and other subsystems, thereby promoting
subsystem independence and portability

Façade: class diagram

Patterns at Different Levels
•  Applicable in most stages of the OO lifecycle

–  Analysis, design, implementation, reviews, documentation, reuse, and refactoring
•  Analysis patterns

–  Typical solutions to recuring anlysis problems
–  See Analysis Patterns, Fowler; Addison-Wesley, 1996

•  Architectural patterns
–  See POSA

•  Design patterns
–  Most GoF design patterns are applicable both at the architectural and detailed design

•  Idioms
–  Smalltalk Best Practice Patterns, Beck; Prentice Hall, 1997
–  Concurrent Programming in Java, Lea; Addison-Wesley, 1997
–  Advanced C++, Coplien, Addison-Wesley, 1992
–  Effective C++: 50 Specific Ways to Improve Your Programs and Design (2nd Edition),

Scott Meyers, Addison-Wesley, (September 1997)
–  More Effective C++: 35 New Ways to Improve Your Programs and Designs, Scott

Meyers, Addison-Wesley (December 1995)

Observations
•  Patterns permit design at a more abstract

level
– Treat many class/object interactions as a unit
– Often beneficial after initial design
– Targets for class refactorings

•  Variation-oriented design
– Consider what design aspects are variable
–  Identify applicable pattern(s)
– Vary patterns to evaluate tradeoffs
– Repeat

MapReduce and Hadoop

based on material by
K. Madurai and B. Ramamurthy

Big-data
•  Data mining huge amounts of data collected

in a wide range of domains from astronomy
to healthcare has become essential for
planning and performance

•  We are in a knowledge economy
– Data is an important asset to any organization
– Discovery of knowledge; Enabling discovery;

annotation of data
•  We are looking at newer

–  programming models, and
– Supporting algorithms and data structures

What is MapReduce?
•  MapReduce is a programming model

– Google has used successfully in processing its
“big-data” sets (~ 20000 peta bytes per day)

•  Users specify the computation in terms of a
map and a reduce function
– Underlying runtime system automatically

parallelizes the computation across large-scale
clusters of machines, and

– Underlying system also handles machine failures,
efficient communications, and performance
issues

Towards MapReduce

•  Consider a large data collection:
–  {web, weed, green, sun, moon, land, part,

web, green, …}
– Problem: Count the occurrences of the

different words in the collection

Word Counter and Result Table

Data
collection

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

{web, weed, green, sun, moon, land, part,
web, green,…}

Multiple Instances of Word Counter
web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Observe:
Multi-thread
Lock on shared data

Improve Word Counter for
Performance

B.Ramamurthy & K.Madurai

Data
collection

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

N
o

No need for lock

Separate counters

Addressing the Scale Issue
•  Single machine cannot serve all the data: you

need a distributed special (file) system
•  Failure is norm and not an exception

– File system has to be fault-tolerant: replication,
checksum

– Data transfer bandwidth is critical (location of
data)

•  Critical aspects: fault tolerance + replication +
load balancing, monitoring

•  Exploit parallelism afforded by splitting
parsing and counting

Peta Scale Data is Commonly
Distributed

B.Ramamurthy & K.Madurai

Data
collection

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection Issue: managing the

large scale data

Write Once Read Many
(WORM) data

B.Ramamurthy & K.Madurai

Data
collection

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection

WORM Data is Amenable to
Parallelism

•  Data with WORM characteristics : yields to parallel processing
•  Data without dependencies: yields to out of order processing

Data
collection

Data
collection

Data
collection

Data
collection

Data
collection

Divide and Conquer: Provision
Computing at Data Location

•  Our parse is a mapping
operation:

•  MAP: input ! <key, value>
pairs

•  Our count is a
reduceoperation:

•  REDUCE: <key, value> pairs
reduced

•  Map/Reduce originated from
Lisp

•  But have different meaning
here
–  Runtime adds distribution + fault

tolerance + replication +
monitoring + load balancing to
your base application!

Data
collection

Data
collection

Data
collection

Data
collection

One node

Mapper and Reducer
MapReduceTask

YourMapper
YourReducer Parser

Counter

Mapper Reducer

Map Operation
MAP: Input data " <key, value> pair

Data
Collection: split1

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

Split the data to
Supply multiple
processors

Data
Collection: split 2

Data
Collection: split n

Map

…
…

 Map

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

…

Reduce

Reduce

Reduce

Reduce Operation
MAP: Input data " <key, value> pair
REDUCE: <key, value> pair " <result>

Data
Collection: split1 Split the data to

Supply multiple
processors

Data
Collection: split 2

Data
Collection: split n Map

Map

…
…

 Map

…

C
ount

C
ount

C
ount

Large scale data splits

Parse-
hash

Parse-
hash

Parse-
hash

Parse-hash

Map <key, 1> Reducers (say, Count)

P-0000

P-0001

P-0002

, count1

 , count2

,count3

54

Cat

Bat

Dog

Other
Words
(size:
TByte)

map

map

map

map

split

split

split

split

combine

combine

combine

reduce

reduce

reduce

part0

part1

part2

Example

MapReduce programming
model

•  Determine if the problem is parallelizable and solvable
using MapReduce

•  Design and implement solution as Mapper classes and
Reducer classes

•  Compile the source code with hadoop core
•  Package the code as jar executable
•  Configure the application (job) as to the number of

mappers and reducers (tasks), input and output
streams

•  Load the data (or use it on previously available data)
•  Launch the job and monitor
•  Study the result

MapReduce Characteristics
•  Very large scale data: peta, exa bytes
•  Write once and read many data: allows for parallelism without

mutexes
•  Map and Reduce are the main operations: simple code
•  All the map should be completed before reduce operation

starts
•  Map and reduce operations are typically performed by the

same physical processor
•  Number of map tasks and reduce tasks are configurable
•  Operations are provisioned near the data
•  Commodity hardware and storage
•  Runtime takes care of splitting and moving data for operations

“mapreducable” problems
•  Google uses it (we think) for wordcount, adwords,

pagerank, indexing data
•  Simple algorithms such as grep, text-indexing, reverse

indexing
•  Bayesian classification: data mining domain
•  Facebook uses it for various operations:

demographics
•  Financial services use it for analytics
•  Astronomy: Gaussian analysis for locating extra-

terrestrial objects
•  Expected to play a critical role in semantic web and

web3.0

Hadoop

•  At Google MapReduce operation are run on a
special file system called Google File System
(GFS) that is highly optimized for this purpose

•  GFS is not open source
•  Doug Cutting and Yahoo! reverse engineered

the GFS and called it Hadoop Distributed File
System (HDFS)

•  The software framework that supports HDFS,
MapReduce and other related entities is called
the project Hadoop or simply Hadoop

•  This is open source and distributed by Apache

Basic Features: HDFS

•  Highly fault-tolerant
•  High throughput
•  Suitable for applications with large data

sets
•  Streaming access to file system data
•  Can be built out of commodity hardware

Credits

•  Design Patterns, Gamma, et al.; Addison-
Wesley, 1995; ISBN 0-201-63361-2; CD
version ISBN 0-201-63498-8

•  Douglas C. Schmidt

