23" Summer
School on
PARALLEL
COMPUTING

Design patterns:
an introduction

Paolo Ciancarini - paolo.ciancarini@unibo.it
Department of Informatics - University of Bologna

CINECA sc A

SuperComputing Applications and Innovation

consorzio
interuniversitario
nazionale
per 'informatica

Motivation and Concept

» Software systems should exploit reusable
design knowledge promoting
— Abstraction
— Flexibility
— Modularity
— Elegance

* Problem: capturing, communicating, and
applying design knowledge

Patterns for HPC

Which technologies improve the productivity of
HPC software development?

parallel programming languages and libraries,
Object Oriented scientific programming, and
parallel run-time systems and tools.

The success of these activities requires a good
understanding of common patterns used in the
development of HPC software:

patterns used for the coding of parallel

algorithms, their mapping to various
architectures, and performance tuning activities.

What Is a Design Pattern?

* A design pattern
— Is a common solution to a recurring problem in
design
— Abstracts a recurring design structure

— Comprises class and/or object
* Dependencies
« Structures
* Interactions
« Conventions
— Names & specifies the design structure explicitly

— Distils design experience

What Is a Design Pattern?

A design pattern has 4 basic parts:

— Name

— Problem

— Solution

— Consequences and trade-offs of application
Language- and implementation-independent
A “micro-architecture”

Adjt;nct to existing methodologies (Unified, OMT,
etc.

No mechanical application

— The solution needs to be translated into concrete
terms in the application context by the developer

Design Pattern Catalogues

* GoF ("the gang of four”) catalogue

— “Design Patterns: Elements of Reusable

Object-Oriented Software,” Gamma, Helm,
Johnson, Vlissides, Addison-Wesley, 1995

 POSA catalogue

— Pattern-Oriented Software Architecture,
Buschmann, et al.; Wiley, 1996

Design Space for GoF Patterns

Purpose
Creational Structural Behavioral
8 Factory Method Adapter (class) Interpreter
® Template Method
&
® Abstract Factory Adapter (object) Chain of Responsibility
Q. Builder Bridge Command
o Prototype Composite lterator
t% © | Singleton Decorator Mediator
) Flyweight Memento
a Facade Observer
(@) Proxy State
Strategy
Visitor

Scope: domain over which a pattern applies

Purpose: reflects what a pattern does

Observer (Behavioral)

 |ntent

— Define a one-to-many dependency between objects
so that when one object changes state, all its
dependents are notified and updated automatically

* Applicability
— When an abstraction has two aspects, one dependent
on the other

— When a change to one object requires changing
others, and you don't know how many objects need to
be changed

— When an object should notify other objects without
making assumptions about who these objects are

1. Accept Bid

Observer

Auctioneer (Subject)

2. Broadcast New High Bid

s

Y

Y Y
‘501 \ % 19 I
Bidders (Observers)

Behavioral

When a bidder at an
auction accepts a bid. he or
she raises a numbered
paddle which identifies the
bidder. The bid price then
changes and all Observers
must be notified of the

change. The auctioneer
then broadcasts the new
bid to the bidders.

Observer: class diagram

Subj ect

-observers Observer
+attach(in o: Observer)
+detach(in o : Observer) 1 * |+update()
+notify() _ _
— = =] {for all o in observers
{ o.update() } }
ConcreteSubject| -subject ConcreteObserver
-subjectState -ObserverState
+QgetState() 1 ¥ |+update() <
{return subjectState }

-

{observerState =
subject.getState()

}

Observer: example

et ———

Reatohget Bar Graph Pie Chart
Formula

N I /
\ I s
\ I /

N I p)

3 I ¢
\ I /

4 h 4 j

opreadsheet Data

N

Subject

Composite (Structural)

* Intent
— Treat individual objects and multiple, recursively-
composed objects uniformly
* Applicabllity
— Objects must be composed recursively,

— And there should be no distinction between individual
and composed elements,

— And objects in the structure can be treated uniformly
— Part-Whole hierarchy of objects.
— Constant handling of objects as groups or individuals

Composite: class diagram

Component

+operation()

+add(in ¢ : Component)
+remove(in ¢ : Component)
+getChild(in i : int)

/\

-children

Leaf Composite

+operation() +operation() .‘é
+add(in ¢ : Compssite) 1

+remove(in ¢ : Composite)]

+getChild(in i : int) RN

.

{ forall g in children
g.operation(); }

Composite: example

Equipment

Watt Power()
Currency NetPrice()
Currency DiscountPrice()

void Add{Equipment)
void Remove(Equipment)

lterator<Equipment> getlterator)

_equipment

Card

FloppyDisk

CompositeEquipment

S

Watt Power()
Currency NetPrice()
Currency DiscountPrice()

Watt Power()
Currency NetPrice()
Currency DiscountPrice()

Watt Power()

Currency NetPrice() o------------

Currency DiscountPrice()

void Add(Equipment)
void Remove(Equipment)

lterator<Equipment> getlterator()

4---4 forall g in children &

add += g.NetPrice(),

A

Bus

Cabinet

Chassis

Watt Power()
Currency NetPrice()
Currency DiscountPrice()

Watt Power()
Currency NetPrice()

Currency DiscountPrice()

Watt Power()
Currency NetPrice()
Currency DiscountPrice()

Strategy (Behavioral)

e |ntent

— Define a family of algorithms, encapsulate
each one, and make them interchangeable to
let clients and algorithms vary independently

* Applicability
— When an object should be configurable with
one of several algorithms,

and all algorithms can be encapsulated,
and one interface covers all encapsulations

Strategy: class diagram

Context (Composition)

+contextinterface()

Strategy (Compositor)
@
1 +algorithminterface()
AN
ConcreteStrategyA ConcreteStrategyB

+algorithminterface()

ConcreteStrategyC

+algorithminterface()

+algorithminterface()

Strategy: example

Context

Context ()

Context (Strategy<class T> ™)
Context (const Context &)
attachStrategy (Strategy <class T> ™)
removeStrategy ()

getAggregation ()

execute ()

Strafeqy

doAlgonthem (T const)
clore ()

A

ConcreteContext
int array[10]

Prirt

IncreasePrint

DecreasePrint

doAlgorithm (T* const)
clone ()

doAlgorithm (T™ const)
clone ()

doAlgorithm (T* const)
clone ()

Decorator (Structural)

* Intent
— Augment objects with new responsibilities
* Applicability

— When extension by subclassing is impractical
— For responsibilities that can be withdrawn

Decorator: class diagram

Component (Glyph) 1

+operation() -component

AN

ConcreteComponent Decorator (MonoGlyph)
o—— { component-> component.operation(); }
+operation() +operatiom)— — | 1
ConcreteDecoratorB
ConcreteDecoratorA { super.operation();
-addedState : — 1 — —1 addedBehavior(); }
+operation() +operationt)

+addedBehavior()

Decorator - Diagram

AComponent q

+ void : doStufip)

1

Concrete Component

+ void : doStuffy)

Decorator

= AComponent : aCoraponent

+ void : doStuffi)

7

ConcreteDecoratora

= State : additionalState

+ wvoid : doStuffy)

ConcreteDecoratorB

+ void : doStuffi)
+ void : moreStuffy)

Decorator overview

« A Decorator, also known as a Wrapper, is an object
that has an interface identical to an object that it
contains. Any calls that the decorator gets, it relays to
the object that it contains, and adds its own
fur|1|ctionality along the way, either before or after the
ca

« Therefore, the Decorator Pattern is used for adding
additional functionality to a particular object as
opposed to a class of objects

 |tis easy to add functionality to an entire class of
objects by subclassing an object, but it is impossible to
extend a single object this way. With the Decorator
Pattern, you can add functionality to a single object
and leave others like it unmodified

Decorator comments

« The Decorator pattern offers a lot of flexibility, since
you can change what the decorator does at runtime,
as opposed to having the change be static and
determined at compile time by subclassing

« Since a Decorator complies with the interface that the
object that it contains, the Decorator is
indistinguishable from the object that it contains.

That is, a Decorator is a concrete instance of the
abstract class, and thus is indistinguishable from any
other concrete instance, including other decorators

« This can be used to great advantage, as you can
recursively nest decorators without any other objects
being able to tell the difference, allowing a near infinite
amount of customization

Abstract Factory (Creational)

e |ntent

— Create families of related objects without
specifying class names

* Applicability

— When clients cannot anticipate groups of
classes to instantiate

Abstract factory: class diagram

AbstractFactory Client
+createProductA() . . .
+createProductB() AbstractProductA

JAN

ProductA1 ProductA2
— o
ConcreteFactory2 !
ConcreteFactory | v | «instantiate» T 2
| ! l _ ___t==—===—=z=====T——————————————— 4
+createProductA() +createProductA() AbstractProductB] *
+createProductB() +createProductB()

«instantiate» A

ProductB1 ProductB2

«instantiate» «instantiate»

Iterator (Behavioral)

e |ntent

— Access elements of an aggregate sequentially
without exposing its representation

* Applicability
— Require multiple traversal algorithms over an
aggregate

— Require a uniform traversal interface over
different aggregates

— When aggregate classes and traversal
algorithm must vary independently

Iterator: class diagram

Iterator

Aggregate (Glyph)

+first()

+next()
+createlterator() +isDone()

/\ +currentltem()
/\

ConcreteAgregate| _ __ _ ______ _________________x Concretelterator
+createlterator() 1 *

)

\
\

\
\

{ return Concretelterator(this); }

Visitor (Behavioral)

e Intent

— Centralize operations on an object structure so
that they can vary independently but still behave
polymorphically

* Applicability
— When classes define many unrelated operations
— Class relationships of objects in the structure

rarely change, but the operations on them change
often

— Algorithms over the structure maintain state that's
updated during traversal

Visitor: class diagram

ObjectStructure Element

* * * 1 |+accepti(in v : Visitor)

AN

**

Visitor
ConcreteElement ConcreteElement2
+VisitConcreteElement1(ConcreteElement1)(, _ — : —
+VisitConcreteElement2(ConcreteElement2)(+accept(in v : Visitor) +accept(in v : Visitor)
[4
1
/
/ |
/ |
/ |
/ |
ConcreteVisitor / 1
+VisitConcreteElement] (ConcreteElement1)({ v.visitConcreteElement1(this); } { v.visitConcreteElement2(this); }
+VisitConcreteElement2(ConcreteElement2)()

Template Method (Behavioral)

e |ntent

— Define the skeleton of an algorithm in an
operation, deferring some steps to subclasses

* Applicability
— To implement invariant aspects of an

algorithm once and let subclasses define
variant parts

— To localize common behavior in a class to
Increase code reuse

— To control subclass extensions

Template Method: class diagram

AbstractClass
{...
primitiveOperation1();
+templateMethod(}- —| — — — — —
+primitiveOperation1() primitiveOperation2();
+primitiveOperation2())
/\

ConcreteClass

+primitiveOperation1()
+primitiveOperation2()

Singleton (Creational)

e Intent

— Ensure a class only ever has one instance, and
provide a global point of access to it

« Applicability
— When there must be exactly one instance of a

class, and it must be accessible from a well-
known access point

— When the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code

Singleton: class diagram

Singleton

-uniquelnstance : Singleton
-singletonData

finstance(— — — — — — _ — — 1 {return uniquelnstance; }
+singletonOperation()

+getSingletonData()

Facade

Facade

Client . Session Entity Entity
Object . Beanl Beanl Bean2
doThis) !
doThati
before E
doMore] !
networki
| boundary: | I U
Client : Session Session Entity Entity
Object . Facade Beanl Beanl Bean2
dof) i
i || doThisg
after E
E doThat()
network | doMare]
| boundary: L I U U

Facade (Structural)

 |ntent

— Provide a unified interface to a set of interfaces in a
subsystem

— Facade defines a higher-level interface that makes
the subsystem easier to use
* Applicability
— To provide a simple interface to a complex subsystem

— This interface is good enough for most clients; more
sophisticated clients can look beyond the facade

— To decouple the classes of the subsystem from its
clients and other subsystems, thereby promoting
subsystem independence and portability

Facade: class diagram

optional _ _ — — — -

— —

Class1 S -
N\
\
\
\
Class?2 ~ - A lJ Facade
T +m()
+m2()
Class3 P 7] +m3()
i +md()
7/
/
/7
7
Class4
Facade

System Under Development [5]

.

Existing2

—
—
-
-

T~ Existing4

—7‘ Existing1

Existing7

~
S~
\
S~
-~
~
-
S
S~

-~

L -7 Existing3
; Existing5
Existing6
Existing8

Existing Sub-System ‘\—\]

Patterns at Different Levels

Applicable in most stages of the OO lifecycle

— Analysis, design, implementation, reviews, documentation, reuse, and refactoring
Analysis patterns

— Typical solutions to recuring anlysis problems

— See Analysis Patterns, Fowler; Addison-Wesley, 1996
Architectural patterns

— See POSA
Design patterns

— Most GoF design patterns are applicable both at the architectural and detailed design
ldioms

— Smalltalk Best Practice Patterns, Beck; Prentice Hall, 1997

— Concurrent Programming in Java, Lea; Addison-Wesley, 1997

— Advanced C++, Coplien, Addison-Wesley, 1992

— Effective C++: 50 Specific Ways to Improve Your Programs and Design (2nd Edition),
Scott Meyers, Addison-Wesley, (September 1997)

— More Effective C++: 35 New Ways to Improve Your Programs and Designs, Scott
Meyers, Addison-Wesley (December 1995)

Observations

« Patterns permit design at a more abstract
level
— Treat many class/object interactions as a unit
— Often beneficial after initial design
— Targets for class refactorings

 Variation-oriented design
— Consider what design aspects are variable
— |ldentify applicable pattern(s)
— Vary patterns to evaluate tradeoffs
— Repeat

MapReduce and Hadoop

based on material by
K. Madurai and B. Ramamurthy

Big-data

« Data mining huge amounts of data collected
In a wide range of domains from astronomy
to healthcare has become essential for
planning and performance

 We are in a knowledge economy

— Data is an important asset to any organization

— Discovery of knowledge; Enabling discovery;
annotation of data

* We are looking at newer
— programming models, and
— Supporting algorithms and data structures

What is MapReduce?

 MapReduce is a programming model

— Google has used successfully in processing its
“big-data” sets (~ 20000 peta bytes per day)

« Users specify the computation in terms of a
map and a reduce function

— Underlying runtime system automatically
parallelizes the computation across large-scale
clusters of machines, and

— Underlying system also handles machine failures,
efficient communications, and performance
iIssues

Towards MapReduce

» Consider a large data collection:

—{web, weed, green, sun, moon, land, part,
web, green, ...}

— Problem: Count the occurrences of the
different words in the collection

Word Counter and Result Table

{web, weed, green, sun, moon, land, part,

web 2
web, green,...}
/\ weed 1
\/

green 2

Main
sun 1
N~ moon 1
land 1
WordCounter part 1

[Hparse()

[Hcount()

DataCollection ResultTable

Multiple Instances of Word Counter

7 Wyeb 2

/\ weed 1
\ green 2
I 4 o
. Itil ’ sun 1
< —~ moon 1
! Threaa o
' land 1
{ WordCounter part 1
pHparsed |
Heount |

DataCollection =esultTabla Observe:

Multi-thread
Lock on shared data

Improve Word Counter for

Per,\fa? rmance QNO need for lock

green 2

Data
collection
\ moon 1
\ Thread
' 1
\ V %
! 1.

\ Parsel Counter
\
\
. / Separate counters
' DataCollection WordList ResultTable P
|
|
|
4
KEY web weed green sun moon land part web green |

VALUE

Addressing the Scale Issue

« Single machine cannot serve all the data: you
need a distributed special (file) system
* Failure is norm and not an exception

— File system has to be fault-tolerant: replication,
checksum

— Data transfer bandwidth is critical (location of
data)

 Critical aspects: fault tolerance + replication +
load balancing, monitoring

« Exploit parallelism afforded by splitting
parsing and counting

—

5 eta Scale Data is Commonly
i Distributed

—
[Main

Data web 2

collection

v

— N
N~

Data | .

collection

v

— Thread
- A

Data 1 v 1

collection Parser | Counter
\—/ [

—
Data DataCollection WordList ResultTable

green 2

moon 1

*

collection
v

Issue: managing the
large scale data

KEY web weed green sun moon land part web green |

VALUE

— N

o Write Once Read Many
collection (WORM) data

—
[Main

Data web 2

collection

\/

—
N~

Date_z |
collection

\) moon 1
T Thread
N—_ -
1.7
Data 1 Vi

collection Parser | Counter
v [

—
Data DataCollection WordList ResultTable

collection
v

green 2

KEY web weed green sun moon land part web green |

VALUE

——WORM Data is Amenable to

collection

- Parallelism

N
~—— Main

Data

collection

v

N
—

Data

collection

v

T Thread
\/

Data 1 v 1]

collection Parserlil Counter
v [
/\ Y

<) / | \

Data DataCollection WorcLis] ResultTable

collection
v

« Data with WORM characteristics : yields to parallel processing
« Data without dependencies: yields to out of order processing

Divide and Conquer: Provision
Computing at Data Location

Data)I .

collection | ssssss =
One node =4 = -

pata |
Eolleac’ﬁoJ

pata |
Eolleac’ﬁoJ

pata |
Eolleac’ﬁoJ

\

Our parse is a mapping
operation:

MAP: input = <key, value>
pairs

Our count is a
reduceoperation:

REDUCE: <key, value> pairs
reduced

Map/Reduce originated from
Lisp
But have different meaning
here
— Runtime adds distribution + fault
tolerance + replication +

monitoring + load balancing to
your base application!

Mapper and Reducer

Map Operation

MAP: Input data = <key, value> pair

Data
Collection: split1

Data
Collection: split 2

Data
Collection: split n

Split the data to
Supply multiple
processors

web

weed

green

- - - = -

Reduce Operation

MAP: Input data =» <key, value> pair
REDUCE: <key, value> pair = <result>

=
= Reduce >
Data _
Collection: split? EISURUCKECICRT
Supply multiple
- O
Reduce
Data D
Collection: split 2
[]
P

Map
processors
Ma
Data -
Collection: split n Ma F' Reduce >

Large scale data splits

Map <key, 1> b Reducers (say, Count)

O O

O

o

(e

=} P-0000
@, count1

O

o

= P-0001

- @, count2

O

o

(e

= P-0002
(0 ,count3

MapReduce programming
model

Determine if the problem is parallelizable and solvable
using MapReduce

Design and implement solution as Mapper classes and
Reducer classes

Compile the source code with hadoop core
Package the code as jar executable

Configure the application (job) as to the number of
mappers and reducers (tasks), input and output
streams

Load the data (or use it on previously available data)
Launch the job and monitor
Study the result

MapReduce Characteristics

Very large scale data: peta, exa bytes

Write once and read many data: allows for parallelism without
mutexes

Map and Reduce are the main operations: simple code

All the map should be completed before reduce operation
starts

Map and reduce operations are typically performed by the
same physical processor

Number of map tasks and reduce tasks are configurable
Operations are provisioned near the data

Commodity hardware and storage

Runtime takes care of splitting and moving data for operations

“mapreducable” problems

Google uses it (we think) for wordcount, adwords,
pagerank, indexing data

Simple algorithms such as grep, text-indexing, reverse
iIndexing

Bayesian classification: data mining domain

Facebook uses it for various operations:
demographics

Financial services use it for analytics

Astronomy: Gaussian analysis for locating extra-
terrestrial objects

Expected to play a critical role in semantic web and
web3.0

Hadoop

At Google MapReduce operation are run on a
special file system called Google File System
(GFS) that is highly optimized for this purpose

GFS is not open source

Doug Cutting and Yahoo! reverse engineered
the GFS and called it Hadoop Distributed File
System (HDFS)

The software framework that supports HDFS,
MapReduce and other related entities is called
the project Hadoop or simply Hadoop

This is open source and distributed by Apache

Basic Features: HDFS

Highly fault-tolerant
High throughput

Suitable for applications with large data
sets

Streaming access to file system data
Can be built out of commodity hardware

Credits

* Design Patterns, Gamma, et al.; Addison-
Wesley, 1995; ISBN 0-201-63361-2; CD

version ISBN 0-201-63498-8
* Douglas C. Schmidt

