CINECA sc AI

SuperComputing Applications

cni=-

COSOI’Z

pel Formhco

23" Summer

School on
PARALLEL
COMPUTING

Introduction to UML

Paolo Ciancarini - paolo.ciancarini@unibo.it
Department of Informatics - University of Bologna




Software models

A model is a description of the structure
and meaning of a system

A model is always an abstraction at “some
level™: it captures the essential aspects of
a system and ignores some details




UML is a modeling language

A modeling language allows the specification,
the visualization, and the documentation of the
development of a software system

The models are descriptions which users and
developers can use to communicate ideas
about the software

UML 1.* is a modeling language

UML 2.* is still a modeling language, but it is so
“detailed” that can be used also as a

programming language (see OMG’s Model
Driven Architecture)



Evolution of UML

« OO languages appear, since mid 70’ s to late 80’ s
« Between 89 and ' 94, OO methods increased from 10 to 50
« Unification of ideas began in mid 90’ s

* 1994 Rumbaugh joins Booch at Rational
1995 v0.8 draft Unified Method

-« 1995 Jacobson joins Rational (Three Amigos)
1996 June: UML v0.9 published

1997 Jan: UML 1.0 offered to OMG
1997 Jul: UML 1.1 OMG standard
1998: UML 1.2

1999: UML 1.3

2001: UML 1.4
+ 2003 Feb: IBM buys Rational

2003: UML 1.5
2004: UML 1.4.2 becomes the standard ISO/IEC 19501

2005: UML 2.0
2007: UML 2.1.2
2009: UML 2.2
2010: UML 2.3
2011: UML 2.4
2013: UML 2.5

>~ pre-UML

UML 1.x

UML 2.0



UML
2.5

UML 2.5 Diagram

AN

Structure Diagram

Behavior Diagram

Class Diagram

A i

-~ '_'J—

Object Diagram

UseCase Diagram

Package Diagram

Model Diagram ’—T

Composite Structure

Information Flow
Diagram

Activity Diagram

State Machine
Diagram

Interaction Diagram

Diagram

2013)

Component Diagram

I}

]

r

Manifestation Diagram

Deployment Diagram

' Network Architecture |
Diagram

Profile Diagram

i

Sequence Diagram

Communication
Diagram

Timing Diagram

Interaction Overview
Diagram




Deployment diagram

deployment Book Club Web Application )

device

axecution
environment

deployed
artifact <

«device» Sun Fire X4150 Server

/ device

execution
environment

N

aprotocols
TCP/IP

31
«JSP server» Tomcat 7
//V
«executionEnvironment»
N Catalina Servlet Container
‘N
deployment
specification
\b «deployment spec»
_-= web.xml
ttact D[
wartifact»
/—"‘_‘V book_club_app.war
L] S
L ~ < _ «manifests
=~ ~
~
&N
\ O «components g]
\ OnlineOrders
\75_ «artifact» D Ge
user_services.jar
web-tools-lib.jar

/

communication
path

Oracle 10g
Ba «scheman» Q
Users
«scheman» Q
Orders

«device» Sun SPARC Server

«database system»

«scheman Q
Inventory

7
/

dcplo','cd/

artifact




Three modeling axes

Functional

Use case diagram

(System sequence diagram)

(Activity diagram)

Static Dynamic

Class diagram State diagram
(Object diagram) Collaboration diagram
Component diagram (Sequence diagram)

(Deployment diagram) (Activity diagram)



Another organization

Implementation
View

Class Diagrams

Component Diagrams
Object Diagrams

User View
Use Case
Diagrams
Sequence Diagrams &gr/
Collaboration Diagrams _
Statechart Diagrams Deployment Diagrams

Actrnty Diagrams

Behavioral | Enwironment
View View




Example

A chess program could be “stand-alone”,
“client-server”, “agent based”, etc.

* |ts behavior should always be coherent
with the rules of chess

* What is its goal”? To play and win a chess
game against an opponent




Goals and responsibilities

* The very same chess program, with identical structure
and behavior, could be used with a different goal?

* Forinstance, could it be used to learn to play chess?
Responsibility of the program: teach chess

* Or to write a chess book, like a chess game editor?
Responsibility of the program: write chess texts

« Or to play a game of loser’ s chess (where who is
checkmated wins)? Responsibility: play games with rules
slightly different from chess

Each responsibility corresponds to (at least) a use case



From responsibilities to use cases

<<extend>>
——————— Play with other rules



Use Case diagram

It describes the externally observable behavior
of a system, as related to requirements

It describes the main interactions between the
system and external entities, including users and

other systems

It is @ summary of the main scenarios where the
system will be used

It describes the main user roles



Example

Q Negotiate policy Q

>

Sales statistics

U

Customer Insurance Salespers:

Customer statistics




Use Case: elements

system
N boundary ™
\ v

\ use case
\ J
N\ 7
S~ Register -~
actor ~, > g

Grades

~ .
~. <<include>>
~

RSN

Validate User

association —=—




Elements of a Use Case Diagram

e Actor:

— Represents a role played by external entities
(humans, systems) that interact with the system

 Use case:
— Describes what the system does (i.e., functionality)

— Scenario: sequence of interactions between the
actors and the system

* Relationships:
— Association between actors and use cases
— Extension (or generalization) among actors
— Dependency among use cases: include and extend



A

2

/\

User

-

AR

Student Faculty

Example

>10 § >+0

Student

>0

Faculty

e
N

o

Check Grades <<1nc1ude>>
Validate User
/ <<1nc1ude>>

I
| <<extend>>




Use Case Scenario

Use Case: Check Grades

Description: View the grades of a specific year and semester
Actors: Student

Precondition: The student is already registered

Main scenario:

User System

1. The system carries out “Validate User”, e.g.,
for user “miner” with password “allAs”.

2. The system prompts for the year and semester.
3. The user enters the year and
semester, e.g., Fall 2013.

4. The system displays the grades of the courses
taken in the given semester, i.e., Fall 2013.

Alternative:
The student enters “All” for the year and semester, and the system displays
grades of all courses taken so far.

Exceptional:
The “Validate User” use case fails; the system repeats the validation use case.




Exercise

Draw a use case diagram and a related scenario for the
following situation:

A user can borrow a book from a library;
— extend it with borrowing a journal
* a user can give back a book to the library
— including the use case when the user is identified



Object-Oriented Modeling

* Models describe structures of objects and their behavior

« A system is modeled as a set of objects that interact by
exchanging messages

 No semantic gap, seamless development process

~

/ Conceptual/computational world

Abstraction :Z}I
| %'_I
Interpretation

Data-oriented Object-oriented

Real world




Key ldeas of OO Modeling

Abstraction

— hide minor details so to focus on major details
Encapsulation

— Modularity: principle of separation of functional concerns

— Information-hiding: principle of separation of design decisions
Relationships

— Association: relationship between objects or classes

— Inheritance: relationship between classes, useful to represent
generalizations or specializations of objects

Object-oriented language model
= object (class) + inheritance + message send



Main idea

« With UML we model systems made of

objects which have relationships among
them

* Objects are instances of classes

» Classes define the structure of objects and
their relationships



Class

* Aclass is the description of a set of objects

* Defines the structure of the states (attributes)
and the behaviors (methods) shared by all the
objects of the class (also called instances)

* Defines a template for creating instances
— Names and types of all fields

— Names, signatures, and implementations of all
methods



Notation for classes

* The notation for classes is a rectangular box with
three compartments

ClassName | The top compartment shows the class

field, name
fiéidn The middle compartment contains the
method, declarations of the fields, or attributes, of
the class
method, The bottom compartment contains the

declarations of the methods of the class



Example

A point class at three different abstraction levels

Point

Point

Move

Point
- X: int
- y:int

+ move(dx: int, dy: int): void




Exercise

Draw a class diagram for the following Java code

class Person {
private String name;
private Date birthday;
public String getName() ({
/..

}
public Date getBirthday() {

/] ..
}
}

® )
o ’/',I



A counter class

Counter

class Counter{
private counter: integer;

- counter: integer

public integer display()
{return counter};

public void tic()

+ display: integer

{counter = counter + 1};

+ tic: void public void reset()
+ reset: void {counter = 0};
A class in UML ’

A corresponding class
In a programming language

c3:Counter p:Printer

Using an object of type class
in an object oriented system



Class diagram: example

Order

dateReceived: Date[0..1]
isPrepaid: Boolean[1]
number: String[1]

association

Customer | class name

price: Money

class 1

lineltems v * {ordered}

> namel[1] .
address|[0..1] attributes

{if
Order.customer.getCreditRating
is “poor” then Order.isPrepaid
must be true}

getCreditRating(): String ope ration

Order line

quantity: Integer

price: Money

*

multiplicity

Ty

Product

generalization

Personal Customer

constraint
Corporate Customer
contactName
creditRating
creditLimit
*
role name

salesRep J, 0..1

creditCardNumber

{getCreditRating()=="poor”}

Employee




Example

* A university is an organization where some
persons work, some other study

* There are several types of roles and
grouping entities

* We say nothing about behaviors, for the
moment



Citizen

A taxonomy

Female

Foreigner

[>| Person <]——[

Male

Student

T

Employee

Undergraduate
student

Masters
student

PhD
student

Professor <

Full professor

Administrative

Technician

Associate
professor

Research
fellow




Object diagram

An object diagram represents a “snapshot” of a
system composed by set of objects

An object diagram looks like a class diagram

However, there is a difference: values are
allocated to attributes and method parameters

While a class diagram represents an abstraction
on source code, an object diagram is an
abstraction of running code



Example (object diagram)

r:Robot

[moving]

w:World

al:Area aZ2:Area

|

w1: Wall w2: Wall d1: Door w3: Wall

width = 36 width = 96 width = 36 width = 96




Example: chemical elements
(class diagram)

Element

C | carbon <<covalent>> Hydrogen

C H

<<covalent>>



Example: molecule
(object diagram)

:Hydrogen :Hydrogen
:Hydrogen :Carbon :Carbon :Hydrogen

:Hydrogen :Hydrogen




Objects vs. Classes

Interpretation in the
real world

Representation in the
model

Object

Class

An object is anything in the
real world that can be
distinctly identified

A class is a set of objects
with similar structure and
behavior. These objects are
called instances of the class

An object has an identity, a
state, and a behavior

A class defines the structure
of states and behaviors that
are shared by all of its
instances




Class diagrams denote systems of objects

from

Flight City

to

Roma:City from AZ611:Flight to Boston:City




Author _ _ Computer
writeswith »
name: string 0.1 1 _* | name: string
age: integer screen: integer

Paolo:Author

name= “Paolo”
age= 19

JobMac:Computer

name= “MacBook”
screen=27

HomeMac:Computer

name= “MacBook”
screen= 21

Object diagram instantiating a class diagram

Class diagram

Object diagram
that is an instance
of the class
diagram above



Roles and multiplicity

* An association line may have a role name and a
multiplicity specification

* The multiplicity specifies an integer interval, e.g.,
— [..u closed (inclusive) range of integers
— | singleton range
— 0..* nonnegative integer, i.e., 0, 1, 2, ...

b S
Student O", , 1 Faculty
advisee  advisor




Association example

A Student can take up to five Courses

Every Student has to be enrolled in at least one course
Up to 300 students can enroll in a course

A class should have at least 10 students

Student

takes

>

10..300

1..5

Course




Example

class Persona {

private String nome;
Persona private String cognome;

private Date dataNascita;

- nome: String X - -
- cognome: String private static int numPersone;
- dataNascita: Date + marito public Persona marito;
- numPersone: int 0.1 public Persona moglie;

+ siSposa(p: Persona): boolean

+ compieAnni(d: Date): boolean public boolean siSposa(Persona p) {

+ moglie
0..1 J
matrimonio public boolean compieAnni(Date d) {
}

3



Aggregations

* They are specialized associations that stress
the containment between the two classes

 We have a part-of relationship

Course <> Curriculum
1.* 0..*




Composites

Composites are heavy aggregations
— The contents is subordinated to the container

— For example, deleting the container means deleting
the contents as well

Window

scrollbar /' 5

Panel Button
Slider




Inheritance (Generalization)

Makes common properties
explicit

Inheritance is an elegant
modeling means, but

— It is not mandatory

— Maybe we must add
properties

— Maybe we must refine/
modify other properties

We can work
— Bottom-up (Generalization)
— Top-down (Specialization)

Person

Student

Professor




Interaction diagrams

* Models that describe how groups of objects
interact (collaborate)

* Class and use case diagrams are useful at
capturing the structural nature of a system
design in a generalized way

* [nteraction diagrams capture dynamic
behavior applicable to timing or sequencing
requirements



Sequence

Boxes at the top are participants (objects)
Vertical lines are time lines
Horizontal directed lines are messages

Unless specifically noted, only sequence (location
on the time line) is important, not exact times

An activation rectangle in the lifeline indicates a
focus of control (activation) during which an
object is performing an action, either directly or
through another object



®

First example

:Computer ‘Server

| L

' ]

checkEmail ' '
sendUnsentEmail N

newEmail :

response

P Akt e i .

[newEmail] downloadEmail

deleteOldEmail




Lifetime of objects

a Handler

* Creation; arrow with
'new’ written above it weysme |

— Notice that an object
created after the sta rT of e
the scenario appears lowe
than the others vow | aDatabass
* Deletion: an X at bottom -
of object's lifeline T
— Java doesn't exp I|C|tI]y R g
delete objects; t ey fall ot
out of scope and are — |
garbage-collected T |
close |
R >T< ><

—|' self-deletion



gate

sd submit_comments)

validate()

synchronous
message

_

execution

specification

return
message

gate /P

duration
constraint

«serviet»

‘DWRServiet

lifeline
‘window «javascript» q/\b
:Comments
| I object creation
I message
validate() |
> «create» _
————— > (( a]ax ))
:Proxy
P> occurrence
specification «ajax» I
>_ .
«ajax»
<- - - I /1 j
asynchronous
| message
< — — — — —
| «callback» orrors
-

interaction use

ref

Handle Errors

destruction
occurrence
specification

uml-diagrams.org




Sequence diagram

c:Client

T
I

: {transient}

[Sccreate>>, ‘Transaction

| :0DBCP
setActions{a,d,0) P , roxy

A

setValues(2,3.4) .

'Y
L4

set‘v‘alues(a,”CO:

committed
____________ |
I

<<destroy>> >'<




Corresponding collaboration diagram

c:Client

2. setAction{a,d,0)
3. <<destroy>>
<<global>>

. —)
iransient} 5 1- getvalues(2,3.4)
2.2 setValues(a,"CO")

l 1. <<create>>

<<|pcal>>

:Transaction

p:ODBCProxy




Which to use?

* Choose sequence diagram when only the
sequence of events needs to be shown and
collaboration among the objects are priority

 Choose a collaboration/communication
diagram when the objects and their links
facilitate understanding the interactions

* Collaboration diagrams have relatively fixed
notation and numbering scheme



Activity diagrams

* Useful to specify software or hardware system

behavior

* Based on data flow models —a graphical
representation (with a Directed Graph) of how data
move around an information system

[order reject]

Receive Ship
Order Order

[order
accepted]

Send .
. Invoice
Invoice

K Accept
Make Payment Payment

{52 e



Actions

e The fundamental unit of executable
functionality in an activity

* The execution of an action represents some
transformations or processes in the modeled
system

Send Accept
Payment Payment



Pins

Actions can have inputs and outputs, through the pins

Hold inputs to actions until the action starts, and hold the
outputs of actions before the values move downstream

The name of a pin is not restricted: generally recalls the
type of objects or data that flow through the pin

Order Order

name
Fill Ship
() 63

Output pins Input pins

Standalone pin notations:
name | — = the output pin and the input
— pin have the same name and

name

9

=[] same type

UQ



Activities

* An activity is the specification of parameterized behaviour as the
coordinated sequencing of subordinate units whose individual

elements are actions

* Uses parameters to receive and provide data to the invoker

activity name Activity
parameter name: Type
nodes

parameter] - .
nout |t ) Activity
\ I . edges
er

pa ra met Parameter R
T --T_? .“ -—‘Tf -"D

- |Parameter

name

— Qutput
parameter

e An action can invoke an activity to describe its action more finely

Activity
name 4



Activity nodes

Action nodes: executable activity nodes; the execution of an action
represents some transformations or processes in the modeled
system (already seen)

[ name j

Control nodes: coordinate flows in an activity diagram between
other nodes

0 | ¢ ©®

Decision node  Fork node, join node Initial node Activity final ~ Flow final
or Merge node
Object nodes: indicate an instance of a particular object, may be

available at a particular point in the activity (i.e Pins are object
nodes)




Activity edges

Control flow edge - is an edge which starts an activity node after the
completion of the previous one by passing a control token

-

()

Object flow edge - models the flow of values to or from object nodes by

passing object or data tokens

=
—__
)
—= —
Weight can de\. J

the edge at the same time

.

315 that must traverse



Decision nodes

Route the flow to one of the outgoing edges (tokens are
not duplicated)

Guards are specified on the outgoing edges or with the
stereotype «decisionlnput»

There is also the predefined guard [else], chosen only if the
token is not accepted by all the other edges

If all the guards fail, the token remains at the source object
node until one of the guards accept it

[order [true]
rejected] \1/ —_— Reorder
. Goods
- [false]] °.
o— Receive 1l Close '
. “«decisionInputy
inventoryLevel

[order _ .
accepted] < reorderPoint




Merge nodes

* Bring together multiple alternate flows

* All controls and data arriving at a merge node are
immediately passed to the outgoing edge

* There is no synchronization of flows or joining of
tokens

Fill Order

I irable odi
raer
\; ; Close
[else] Order

|
£ |




Fork nodes

* Fork nodes split flows into multiple concurrent
flows (tokens are duplicated)

H Receive
* Order

Add Account
Payable

Send
Invoice

 UML 2.0 activity forks model unrestricted
parallelism



Join nodes

* Join nodes synchronize multiple flows

Ship
Order
Close
Order
Accept

* Generally, controls or data must be available on every incoming
edge in order to be passed to the outgoing edge, but user can
specify different conditions under which a join accepts incoming
controls and data using a join specification

Evaluate Revise
" —_— Impact Schedule
N A

.o [else] B Release
{joinSpec = ...} - Fix
{joinSpec = (A or B)
Fix Problem

'

[ priority = 1]

File
Problem
Report

and C



Final nodes

* Flow final:
— destroys the tokens that arrive into it

— the activity is terminated when all tokens in the graph are
destroyed

Receive
Order

. Invoice Payable
 Final node: d
— the activity is terminated when the first token arrives
[ accepted ] A . it i
A o | o thet J—{ e |
> Choose g.@

@<

Movie

Notify Wait in Buy
. Customer Line 2 Tickets
[ rejected ]




Object nodes

Hold data temporarily while they wait to move through the
graph

Specify the type of values they can hold (if no type is
specified, they can hold values of any type)

Can also specify the state of the held objects

name
[state, state...]

There are four kinds of object nodes:

s /S N e ™
Activity ] ] «centralbuffer» «datastore»
S N F S N
\ ) . ) Central BufferData Store
Activity Parameter — g Nodes Nodes
Nodes - . __
Pins

(three differents notations)




Activity edges - transformation

* |tis possible to apply a transformation of tokens as
they move across an object flow edge (each order is
passed to the transformation behaviour and replaced

with the result)

Order Customer
Close Order Send Notice

«transformation »j

<<transf0rmat10n>> 5 order.customer

transformation
specification

In this example, the
transformation gets the value
of the attribute Customer of
the Order object



Go to Heaven/
Hell ;)

Car crash
«local precondition» Exa I I l p I e
Have a license

Go to

Heaven/
Hell ;)

To
motorway
tollgate

Turn on
the car

cm
the

with fuel ticket

[on car]

—>

[the tank is full]

Go home
with the
car

Pay the
ticket

Get
luggage >

ready

[on train]

)

Go to the
station with a
friend

Catch the
train

Obliterate
the ticket

The train
derail

The friend
goes home

When the train
arrives

to Genova

Study
for 5
minutes

Get off [else]

the train

Go home
with bus

Y

[Genova is a long way]




ActivityPartition

Partitions divide the nodes and edges for identifying
actions that have some characteristics in common

They often correspond to organizational units in a business
model

Partitions can be hierarchical and multidimensional

Additional notation is provided: placing the partition name
in parenthesis above the activity name

Dimension name

’ Partition Partition
: Name-3 Name-4

a) Partition using a swimlane notation s 12 %
E |EE
= £ Z
=2 B EE 2
= A Bk i BB
1 22 £E
- = =7
21 = = )
=1 £ |3
2E ¢) Partition using a multidimensional
5~ hierarchical swimlane notation
—

b) Partition using a hierarchical swimlane notation



Example

«attribute» performing Dept: Department

«external»

5

§ Receive

- Order
3 [order

O accepted]

5

> Send Accept
. Invoice Payment
51

9
<

Invoice

e

= \

S

Z] Make Payment

o

(Order (Order
Department) Department) (Order
Receive Fill Order Ship Order Department)

Order [order Close Order

accepted]

(Accounting
Department)
Send Invoice

wexternaly»

(Customer)
Make

Payment

Accept
Payment

Invoice




Conclusions

 UML is a modeling language born for
object oriented (software) systems

* |t especially effective for describing
complex systems and reusing design
ideas

* Next lecture deals with the topic of reusing
design ideas expressed in UML



