
Paolo Ciancarini – paolo.ciancarini@unibo.it
Department of Informatics – University of Bologna

Agenda

!  What is Software Engineering?
!  The Software Development Lifecycle
!  Software Development Activities
!  Methods and tools

2

Using software in a research project

Your Project

 ?

Publications

Data

Software

v

v

?

Used by
other

projects

Other
software ?

What is the future of your software?

4

Typical software development in HPC

!  Thrown away
!  Kept on some systems, possibly in different versions
!  Dumped on a code repository

Research
Project

Research
Questions

Develop
Software

Run
Software

Analyse
Data

Publish
Paper

Project
Ends ?

What happens to the software?

What happens when…
•  You have a follow-on project?
•  Someone wants to (re)use the code?
•  Someone wants to reproduce your results?
•  Maintenance or future reuse should be considered?

Beware of software aging!

Software can age
!  Ill-conceived modifications
!  Functional operation degrades over time
!  It becomes unsustainable, unusable
!  Lack of proper maintenance
!  Infrastructure (os, libraries, language platform) evolves
!  Some software types more susceptible

Enters Software Engineering
“Software engineering is the discipline concerned
with all aspects of software production from the
early stages of system specification to maintaining
the system after it has gone into use”

[Sommerville 2007]

7

Software Engineering

!  “The establishment and use of sound
engineering principles in order to obtain
economically software that is reliable and
works efficiently on real machines.” [Naur &
Randell, 1968]

8

What is Software Engineering?

A naive view:
 Problem Specification Final Program

But ...
!  Where did the problem specification come from?
!  How do you know the problem specification corresponds to and

satisfies the user’s needs?
!  How did you decide how to structure your program?
!  How do you know the program actually meets the specification?
!  How do you know your program will always work correctly?
!  What do you do if the users’ needs change?
!  How do you divide tasks up if you have more than a one person in

the developing team?
!  How do you reuse exisiting software for solving similar problems?

coding

9

Software Engineering

!  A definition and some issues
!  “developing quality software on time and within

budget”
!  Trade-off between a system perfectly

engineered and the available resources
!  SwEng has to deal with real-world issues

!  State of the art
!  Community decides on “best practices” + life-long

education

10

What is Software Engineering?

“multi-person construction of multi-version software”

— Parnas
!  Team-work

!  Scale issue (“program well” is not enough)
+ communication issues: Conway’s law

!  Successful software systems must
evolve or perish
!  Change is the norm, not the exception

11

Conway’s Law

!  The law: Organizations that design systems
are constrained to produce designs that are
copies of the communication structures of
these organizations

!  Example: "If you have four groups working on
a compiler, you'll get a 4-pass compiler”

!  Several studies found significant differences
in modularity when software is outsourced,
consistent with a view that distributed teams
tend to develop more modular products

12

What is Software Engineering?

“software engineering is different from other
engineering disciplines”

— Sommerville
!  It is not constrained by physical laws

!  limit = human knowledge
!  It is constrained by social forces

!  Balancing stakeholders needs
!  Consensus on functional and especially

non-functional requirements

13

Software Engineering

!  Software engineering is … dedicated to
designing, implementing, and modifying software
so that it is of higher quality, more affordable,
maintainable, and faster to build

!  The application of a systematic, disciplined,
quantifiable approach to the development,
operation, and maintenance of software; that is,
the application of engineering to software [Guide
to the Software Engineering Body of Knowledge]

14

Roadmap

!  What is Software Engineering?
!  The Software Development Lifecycle
!  Software Development Activities
!  Methods and tools

15

Software: the product of a process

!  Many kinds of software products " many kinds of
development processes

!  “Study the process to improve the product”

!  A software development process can be
described according to some specific “model”

!  Examples of process models: waterfall, iterative,
agile, extreme,…

!  The models differ mainly in the roles and activities
that the stakeholders cover

16

The software development process
!  Software process: set of roles,

activities, and artifacts necessary to
create a software product

!  Possible roles: stakeholder, designer,
developer, tester, maintainer, ecc.

!  Possible artifacts: source code,
executables, specifications, comments,
test suite, etc.

17

Stakeholders

Typical stakeholders in a sw process
!  Users
!  Decisors
!  Designers
!  Management
!  Technicians
!  Funding people
!  …

Each stakeholder has a specific viewpoint on
the product and its development process

18

HPC stakeholders attributes

19

V.Basili et al., Understanding the High-Performance-
Computing Community: A Software Engineer’s

Perspective, IEEE Software, 2008

Activities

!  Each organization differs in products it builds
and the way it develops them; however, most
development processes include:
!  Specification
!  Design
!  Verification and validation
!  Evolution

!  The development activities must be modeled
to be managed and supported by automatic
tools

20

Software Development Activities
Requirements
Collection! Establish customer’s needs"

Analysis! Model and specify the requirements (“what”)"

Design! Model and specify a solution (“how”)"

Implementation! Construct a solution in software"

Testing! Validate the software against its requirements"

Deployment! Making a software available for use"

Maintenance! Repair defects and adapt the sw to new requirements"

NB: these are ongoing activities, not sequential phases!	

21

First development step: requirements

!  The first step in any development
process consists in understanding the
needs of someone asking for a software

!  The needs should be stated explicitly in
“requirements”, which are statements
requiring some function or property to
the final software system

22

A Software Requirement is … (IEEE 610)

1)  A condition or capability needed by a user
to solve a problem or achieve an objective

2)  A condition or capability that must be met or
possessed by a system or component to
satisfy a contract, standard, specification, or
other formally imposed documents

3)  A documented representation of a condition
or capability as in (1) or (2)

The requirements pyramid
Some user has some need

Needs are answered by “features” that
some system must have

Each feature corresponds to a need and
is a collection of requirements

Features and requirements can be
aggregated in “scenarios” where testing
can prove that the features will satisfy the
needs

www.ibm.com/developerworks/rational/library/04/r-3217
24

25

Requirements and tests

User
requirements

Test reqs

Scenarios and
test cases

Test script

Models for the software process

!  Waterfall (planned, linear)
!  Spiral (planned, iterative)
!  Agile (unplanned, test driven)

26

Waterfall characteristics
!  Delays confirmation of

critical risk resolution
!  Measures progress by

assessing work-products
that are poor predictors
of time-to-completion

!  Delays and aggregates
integration and testing

!  Precludes early
deployment

!  Frequently results in
major unplanned
iterations

Code and unit test

Design

Subsystem integration

System test

Waterfall Process

 Requirements
 analysis

27

The Classical Software Lifecycle

The classical
software lifecycle

models the software
development as a

step-by-step
“waterfall” between

the various
development phases

The waterfall model is unrealistic for many reasons:
•  Requirements must be frozen too early in the life-cycle

•  Requirements are validated too late
•  Risks in costructing wrongly the software are high

Design
Implementation

Testing
Maintenance

Analysis
Requirements

Collection

28

Problems with the waterfall lifecycle

1.  “Real projects rarely follow the sequential flow that the
waterfall model proposes. Iteration always occurs and creates
problems in the application of the paradigm”

2.  “It is often difficult for the customer to state all requirements
explicitly. The classic life cycle requires this and has difficulty
accommodating the natural uncertainty that exists at the
beginning of many projects.”

3.  “The customer must have patience. A working version of the
program(s) will not be available until late in the project
timespan. A major blunder, if undetected until the working
program is reviewed, can be disastrous.”

— Pressman, SE, p. 26

29

Iterative Development

In practice, development is always iterative,
and most activities can progress in parallel

Requirements
Collection

Testing

Design

Analysis
Validation through prototyping

Testing based on requirements

Testing throughout implementation

Maintenance through iteration

Design through refactoring

If the waterfall
model is pure

fiction, why is it
still the dominant

software process?

Implementation

30

Iterative Development

!  Plan to iterate your analysis, design and
implementation
!  You will not get it right the first time, so

integrate, validate and test as frequently as
possible

!  During software development, more than one
iteration of the software development cycle
may be in progress at the same time

!  This process may be described as an
'evolutionary acquisition' or 'incremental build'
approach

31

Incremental Development

Plan to incrementally develop (i.e.,
prototype) the system
!  If possible, always have a running version

of the system, even if most functionality is
yet to be implemented

!  Integrate new functionality as soon as
possible

!  Validate incremental versions against user
requirements.

32

The Spiral Lifecycle (B.Bohem)

evolving system

initial requirements

first prototype
alpha demo

go, no-go decision completion Impossibile visualizzare l'immagine. La memoria
del computer potrebbe essere insufficiente per
aprire l'immagine oppure l'immagine potrebbe
essere danneggiata. Riavviare il computer e aprire
di nuovo il file. Se viene visualizzata di nuovo la x
rossa, potrebbe essere necessario eliminare
l'immagine e inserirla di nuovo.

Planning = determination
of objectives, alternatives
and constraints

Risk Analysis = Analysis of
alternatives and identification/
resolution of risks

Customer Evaluation =
Assessment of the

results of engineering

Engineering =
Development of the
next level product

Risk = something that
will delay project or
increase its cost

33

A process for HPC [Lugato 2010]

34

Time

R
is

k

Waterfall Risk

Iterative Risk

Risk: waterfall vs iterative

35

 Tests

Test each iteration

36

Agile ethics

!  www.agilemanifesto.org

!  Management can tend to prefer the things on the
right over the things on the left

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we prefer the items on the left.

37

Agile development

!  Agile development uses feedback to make
constant adjustments in a highly collaborative
environment

!  There are many agile development methods;
most minimize risk by developing software in
short amounts of time"

!  Software developed during one unit of time is
referred to as an iteration, which typically
lasts from hours or few days"

!  Each iteration passes through a full software
development cycle

38

Working Software
Delivered

Requirements
Prioritised Requirements &
Features “Backlog” Requirements

Requirements
Requirements

Requirements

Prioritised
Iteration
Scope

Daily Scrum Meeting:
15 minutes
Each teams member answers 3 questions:
1) What did I do since last meeting?
2) What obstacles are in my way?
3) What will I do before next meeting?

Team-Level
Planning Every 24hrs

Every Iteration
4-6 weeks

Applying Agile:
Continuous integration; continuously monitored progress

SCRUM

39

Roadmap

!  What is Software Engineering?
!  The Software Development Lifecycle
!  Software Development Activities
!  Methods and tools

40

Requirements Collection

User requirements are often expressed informally:
!  features
!  usage scenarios

Although requirements may be documented in written
form, they may be incomplete, ambiguous, or
incorrect

41

Changing requirements

Requirements will change!
!  inadequately captured or expressed in the first place
!  user and business needs may change during the

project
Validation is needed throughout the software
lifecycle, not only when the “final system” is
delivered!

!  build constant feedback into your project plan
!  plan for change
!  early prototyping [e.g., UI] can help clarify

requirements
42

Requirements Analysis

Analysis is the process of specifying what a
system will do

!  The goal is to provide an understanding of what the
system is about and what its underlying concepts are

The result of analysis is a specification document

Does the requirements
specification correspond to the

users’ actual needs?	

43

Object-Oriented Analysis

An object-oriented analysis results in models of
the system which describe:

!  classes of objects that exist in the system
!  responsibilities of those classes

!  relationships between those classes
!  use cases and scenarios describing

!  operations that can be performed on the system
!  allowable sequences of those operations

44

Prototyping

A prototype is a software program developed to
test, explore or validate a hypothesis, i.e. to
reduce risks

An exploratory prototype, also known as a
throwaway prototype, is intended to validate
requirements or explore design choices
!  UI prototype — validate user requirements
!  rapid prototype — validate functional requirements
!  experimental prototype — validate technical feasibility

45

Design

Design is the process of specifying how the
specified system behaviour will be realized from
software components. The results are
architecture and detailed design documents.
Object-oriented design delivers models that describe:
!  how system operations are implemented by

interacting objects
!  how classes refer to one another and how they are

related by inheritance
!  attributes and operations associated to classes

Design is an iterative process,
proceeding in parallel with

implementation!
46

Implementation and Testing

Implementation is the activity of
constructing a software solution to the
customer’s requirements.

Testing is the process of validating that
the solution meets the requirements.

!  The result of implementation and testing is
a fully documented and validated solution.

47

Testing, Testing!

1

•  Provide automated build process
•  Far easier & quicker to validate changes
•  e.g. Make, Ant, Maven

2

•  Provide automated regression test suite - TDD
•  Do changes break anything?
•  JUnit, CPPUnit, xUnit, fUnit, …

3
•  Join together: automated build & test

•  A ‘fail-fast’ environment

4
•  Infrastructure support

•  Nightly builds – run build & test overnight, send reports
•  Continuous integration - run build & test when codebase changes

Towards anytime releasable code!

Design, Implementation and Testing

Design, implementation and testing are iterative activities
!  The implementation does not “implement the

design”, but rather the design document documents
the implementation!

!  System tests reflect the requirements specification
!  Testing and implementation go hand-in-hand

!  Ideally, test case specification precedes design and
implementation

49

Maintenance

Maintenance is the process of changing a system after
it has been deployed.

!  Corrective maintenance: identifying and repairing
defects

!  Adaptive maintenance: adapting the existing solution
to new platforms

!  Perfective maintenance: implementing new
requirements

!  Preventive maintenance: repairing a software
product before it breaks

In a spiral lifecycle, everything after the
delivery and deployment of the first prototype
can be considered “maintenance”!	

50

Maintenance activities

“Maintenance” entails:
!  configuration and version management
!  reengineering (redesigning and

refactoring)
!  updating all analysis, design and user

documentation
Repeatable, automated
tests enable evolution

and refactoring	

51

Efficiency
Improvements

4%
Documentation

6%

Hardware
Changes

6%

Routine
Debugging

9%

Emergency
Fixes
12%

Changes in
Data Formats

17%

Other
3%

Changes in
User

Requirements
43%

Maintenance costs

“Maintenance”
typically accounts for

70% of software costs!

Means: most
project costs

concern continued
development after

deployment	

– Lientz 1979

52

Configuration management

!  Run your own CM system, if you have the resources
!  Generally easy to set up
!  Full control, but be sure to back it up!

!  Some public solutions can offer most of these for free
!  SourceForge, GoogleCode, GitHub, Codeplex, Launchpad,

Assembla, Savannah, …
!  BitBucket for private code base (under 5 users)
!  See (for hosting code and related tools)

http://software.ac.uk/resources/guides/choosing-repository-
your-software-project

!  See (for hosted continuous integration)
http://www.software.ac.uk/blog/2012-08-09-hosted-
continuous-integration-delivering-infrastructure

“If you’re not using version control, whatever else you might be doing with a
computer, it’s not science” – Greg Wilson, Software Carpentry

Deployment

!  Virtual Machines
!  Software pre-installed, ready to run
!  Often easiest
!  Not enough in itself – documentation!

!  Release software
!  Prioritise & select requirements -> Develop -> Test ->

Commit changes to repository -> Test -> Release
!  Documentation (minimum: quick start guide)

!  Licencing
!  Specify rights for using, modifying and redistributing

Roadmap

!  What is Software Engineering?
!  The Software Development Lifecycle
!  Software Development Activities
!  Methods and tools

55

Principles, methods and tools

Principle = general statement describing desirable properties
Method = general guidelines governing some activity

Technique = more technical and mechanical than method
Methodology = package of methods and techniques packaged

Principle
Methods and Techniques

Methodologies
Tools

— Ghezzi et al. 1991

56

Object-Oriented Methods:
a short history

First generation:
!  Adaptation of existing notations (ER diagrams,

state diagrams ...): Booch, OMT, Shlaer and
Mellor, ...

!  Specialized design techniques:
!  CRC cards; responsibility-driven design; design by

contract

Second generation:
!  Fusion: Booch + OMT + CRC + formal methods

Third generation:
!  Unified Modeling Language:

!  uniform notation: Booch + OMT + Use Cases + ...
!  various UML-based methods (e.g. Catalysis)

57

UML is a modeling language

!  A modeling language allows the specification,
the visualization, and the documentation of the
development of a software system

!  The models are artifacts which clients and
developers use to communicate

!  UML 1.* is a modeling language
!  UML 2.* is also a programming language

Meaning of models for software

!  A model is a description of the structure
and meaning of a system

!  A model is always an abstraction at
some level: it captures the essential
aspects of a system and ignores some
details

!  NB: a model can be also generator of
potential configurations of systems

Class diagram: example

dateReceived: Date[0..1]
isPrepaid: Boolean[1]

number: String[1]
price: Money

contactName
creditRating
creditLimit

Employee

Order line

Product

quantity: Integer
price: Money

Customer
name[1]

address[0..1]

getCreditRating(): String

*

* {ordered}

*

*

1

0..1 salesRep

lineItems

1

1

creditCardNumber

Personal Customer

{getCreditRating()==“poor”}

{if
Order.customer.getCreditRating
is “poor” then Order.isPrepaid

must be true}

Order

generalization

association

role name

constraint

attributes

operation class

multiplicity

class name

Corporate Customer

Conclusions

Software engineering deals with
!  the way in which software is made

(process),
!  the languages to model and implement

software,
!  the tools that are used, and
!  the quality of the result (testing)

61

Self test questions

!  How does Software Engineering differ from
programming?

!  Why is the “waterfall” model unrealistic?
!  What is the difference between analysis and design?
!  Why plan to iterate? Why develop incrementally?
!  Why is programming only a small part of the cost of a

“real” software project?
!  What are the key advantages and disadvantages of

object-oriented methods?

62

References: books

!  Pressman, Software engineering a practictioner
approach, 7th ed., McGrawHill, 2009

!  Ambler, Agile Modern Driven Development with
UML2 (The Object Primer 3ed.), Cambridge Univ.
Press, 2004

!  Larman, Agile and Iterative Development: a
managers’ guide, Addison Wesley, 2003

!  The Computer Society, Guide to the Software
Engineering Body of Knowledge, 2013
www.computer.org/portal/web/swebok

63

Reference: papers

!  V.Basili et al., Understanding the High-Performance- Computing
Community: A Software Engineer’s Perspective, IEEE Software,
2008

!  D.Lugato et al., Model-driven engineering for HPC applications,
Proc. Modeling Simulation and Optimization Focus on
Applications, Acta Press (2010): 303-308.

!  M.Palyart et al, MDE4HPC: An Approach for Using Model-
Driven Engineering in High-Performance Computing, Proc. SDL,
LNCS 7083, 2011.

64

Useful sites

!  software-carpentry.org Software carpentry
!  software.ac.uk/resources/case-studies!
!  First Int. Workshop on Sw eng for HPC, 2013
sehpccse13.cs.ua.edu!

65

Questions?

http://xkcd.com/844/

