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•    61 cores
•    512bit-SIMD units
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Both are devices connected through a PCIe 
to a CPU (=bottleneck in bandwith).

Both have a large number of computing 
units.

CUDA
OpenACC
OpenCL

MPI+OpenMP
within offload 

directives

OpenCL



Quantum ESPRESSO is an integrated suite of 
Open-Source computer codes for electronic-structure 

calculations and materials modeling at the 
nanoscale. It is based on density-functional theory, 

plane waves, and pseudopotentials.

Intensive computational kernes are based on:
- linear algebra (diagonalization, matrix-matrix mult. 
etc.)
- Fourier transform



Project started in 2010 (with PRACE1IP) by 
Girotto and Spiga.

Goals:
- create a library to transparently accelerate part 
of a complex application
- rely on existing CUBLAS algebraic libraries 
-preserve the maintainability of the application
 



Profiling of Quantum 
ESPRESSO

• calculation of charge density
• FFT + matrix-matrix multiplication

• calculation of potential
• FFT + operations on real-space grid

• Davidson iterative diagonalization (SCF)
• FFT + eigenproblem + matrix-matrix 

multiplications

Most CPU time is spent in linear-algebra 
operations implemented in BLAS and LAPACK 
libraries, and in FFT 



The 3 best rules for fast GPU 
codes

1. get the data on the GPU and keep it there

2. give the GPU enough work to do

3. reuse and locate data to avoid global 
memory bandwith bottlenecks

caveat: not always true... Not always 
possible..
What is the trasde-off between performance 
and effort?



The 3 best rules for fast MIC 
codes

1. get the data on the MIC and keep it there

2. give the MIC enough work to do

3. reuse and locate data to avoid global 
memory bandwith bottlenecks

caveat: not always true...



The phiGEMM design



The split issue

Division of workload between multi-core CPUs and multiple 
GPUs is not easy because multiple factors can affect the 
performance.

What is the best strategy?

Use a test-program to auto-tune possible splits (ATLAS 
style)

•matrices too small -> CPU only
•matrices small -> CPU+GPU using a pre-calculated split 
factor

•matrices "big enough" -> CPU+GPU using a 
performance-based split factor

•matrices "too rectangular" -> GPU only



Intrusivity?

From the documentation...



xphizgem
m

Use the offload model to run *gemm 
calculation on the MIC platform.

Project started in oct.2013 with the 
engagement of CINECA as Intel Parallel 
Computing Center.

Goals:

- same of phiGEMM
- try to get the best performance out of the 
MIC cards 



Double-buffer 
technique



Directive based approach



phiGEM
M

xphizGEM
M

computation is split 
between host and 
device, hiding the 

latency with 
computation on the host 

side

computation is executed 
on the device; host is in 

charge of  reshaping 
only. Latency is hidden 

with double-buffer 
technique

relying on CUBLAS relying on MKL+OpenMP

Intrusivity and impact on the source code are 
very low. 



A simple benchmark: SiO2

109 atoms

DEVICE(S) MIC 2 MIC GPU CPU

MPI 1 8 1 1

THREADS 8 2 8 8

WTIME (min) 46 12 15 97



Development on Intel Xeon Phi has just 
recently started…

… there is a long long road ahead 



Open question: what can MICs learn from GPUs and 
viceversa? 

It seems that GPUs and MICs are like two 
different cars that should run on the same 

path…

BUT….BUT….



… we still miss a common (consolidated) 
approach to drive… 

Need for a common programming model???

??
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