
Approaches to acceleration: Approaches to acceleration:
GPUs vs Intel MICGPUs vs Intel MIC

Fabio AFFINITO
SCAI department

Single
core

Multi
core

Many
core

GPU
Intel
MIC

• 61 cores
• 512bit-SIMD units

from
http://www.karlrupp.net/

http://www.karlrupp.net/

from
http://www.karlrupp.net/

http://www.karlrupp.net/

from
http://www.karlrupp.net/

http://www.karlrupp.net/

GP
U

MI
C

Both are devices connected through a PCIe
to a CPU (=bottleneck in bandwith).

Both have a large number of computing
units.

CUDA
OpenACC
OpenCL

MPI+OpenMP
within offload

directives

OpenCL

Quantum ESPRESSO is an integrated suite of
Open-Source computer codes for electronic-structure

calculations and materials modeling at the
nanoscale. It is based on density-functional theory,

plane waves, and pseudopotentials.

Intensive computational kernes are based on:
- linear algebra (diagonalization, matrix-matrix mult.
etc.)
- Fourier transform

Project started in 2010 (with PRACE1IP) by
Girotto and Spiga.

Goals:
- create a library to transparently accelerate part
of a complex application
- rely on existing CUBLAS algebraic libraries
-preserve the maintainability of the application

Profiling of Quantum
ESPRESSO

• calculation of charge density
• FFT + matrix-matrix multiplication

• calculation of potential
• FFT + operations on real-space grid

• Davidson iterative diagonalization (SCF)
• FFT + eigenproblem + matrix-matrix

multiplications

Most CPU time is spent in linear-algebra
operations implemented in BLAS and LAPACK
libraries, and in FFT

The 3 best rules for fast GPU
codes

1. get the data on the GPU and keep it there

2. give the GPU enough work to do

3. reuse and locate data to avoid global
memory bandwith bottlenecks

caveat: not always true... Not always
possible..
What is the trasde-off between performance
and effort?

The 3 best rules for fast MIC
codes

1. get the data on the MIC and keep it there

2. give the MIC enough work to do

3. reuse and locate data to avoid global
memory bandwith bottlenecks

caveat: not always true...

The phiGEMM design

The split issue

Division of workload between multi-core CPUs and multiple
GPUs is not easy because multiple factors can affect the
performance.

What is the best strategy?

Use a test-program to auto-tune possible splits (ATLAS
style)

•matrices too small -> CPU only
•matrices small -> CPU+GPU using a pre-calculated split
factor

•matrices "big enough" -> CPU+GPU using a
performance-based split factor

•matrices "too rectangular" -> GPU only

Intrusivity?

From the documentation...

xphizgem
m

Use the offload model to run *gemm
calculation on the MIC platform.

Project started in oct.2013 with the
engagement of CINECA as Intel Parallel
Computing Center.

Goals:

- same of phiGEMM
- try to get the best performance out of the
MIC cards

Double-buffer
technique

Directive based approach

phiGEM
M

xphizGEM
M

computation is split
between host and
device, hiding the

latency with
computation on the host

side

computation is executed
on the device; host is in

charge of reshaping
only. Latency is hidden

with double-buffer
technique

relying on CUBLAS relying on MKL+OpenMP

Intrusivity and impact on the source code are
very low.

A simple benchmark: SiO2

109 atoms

DEVICE(S) MIC 2 MIC GPU CPU

MPI 1 8 1 1

THREADS 8 2 8 8

WTIME (min) 46 12 15 97

Development on Intel Xeon Phi has just
recently started…

… there is a long long road ahead

Open question: what can MICs learn from GPUs and
viceversa?

It seems that GPUs and MICs are like two
different cars that should run on the same

path…

BUT….BUT….

… we still miss a common (consolidated)
approach to drive…

Need for a common programming model???

??

	Approaches to acceleration: GPUs vs Intel MIC
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

