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Why parallel?
In principle, if you have more than one computing processing unit 
you can exploit that to:

-Decrease the time to solution
- Increase the size of the problem to be solved

The perfect parallelism is achieved when all the processes can run 
independently to obtain the final result.

Parallelism impacts on:
-The source structure
- the computer architecture



Parallel architectures
A first division, on the architectural side can be:

-Distributed memory systems: each computing unit has its own 
memory address space

- Shared memory systems: computing units (cores/processors) 
share the same address space. Knowledge of where data is stored 
is no concern of the programmer.

On new MPP this division is not particularly defined. Both the 
models can live together. 
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Programming models
Distributed memory systems:

-Message-passing approach. A paradigm to send and receive data 
among processes and synchronize them

-Message-passing libraries:
-MPI
-PVM (out-of-date...)

Shared memory systems:

-Thread based programming approach
-Compiler directives (i.e. OpenMP)
-Can be used together with message-passing paradigm



Parallel approaches
There are several typical cases of problems that are suitable for a 
parallel approach:

-Linear algebra (or FT problems)
-Problems where an inversion/multiplication/diagonalization of 
matrices can be partitioned on different processing units. 
Communications can be important and it be can be an important 
limit to the scalability.

-Domain (or functional) decomposition
-Large size problems can be partitioned on different processors. 
Typical examples are CFD, geophysical problems, molecular 
dynamics. Communication is the limit if the domains are correlated 
by forces, interactions and so on.

-Parametric studies (high-througput)
-Sensitivity approaches,
-Montecarlo calculations,
-Ensemble techniques

-Communication is close to zero, high scalability.
-.........





Amdahl’s law



Message Passing 
Interface

-Each process has its own memory
-Processes communicate among themselves with “messages” 
-The interface (API) for message passing is implemented in a 
library

-Code contains library calls 
-The code must be deeply modified to implement message-passing 
algorithms
-If well implemented it can lead to high scalability 



Message Passing 
Interface

-MPI is a message passing standard

•the 3.0 standard specification has been published very recently 
•it enforces portability of the code to very different architectures
•it has an interface for Fortran/C/C++ languages
•(also a Python and Java interfaces are available)



Types of 
communications

Communications are the building blocks of MPI 

They can be distinguished in:

- Initialization, finalization and sync calls

- Point to point communications
- deadlocks
- blocking/non-blocking

- Collective calls (data movement, reduction operations, 
sync)

- one to many
- many to one
- many to many



A summary of MPI

-Point-to-point 
communications

-Collective communications

-One-sided communications

-Communicators

-User-defined datatypes

-Virtual topologies

-MPI I/O

communications

“structure”



PROGRAM hello
IMPLICIT NONE
INCLUDE ‘mpif.h’
INTEGER:: myPE, totPEs, i, ierr
 
CALL MPI_INIT(ierr)

CALL MPI_COMM_RANK( MPI_COMM_WORLD, myPE, ierr )

CALL MPI_COMM_SIZE( MPI_COMM_WORLD, totPEs, ierr )

PRINT *, “myPE is “, myPE, “of total ”, totPEs, “ PEs”

CALL MPI_FINALIZE(ierr)

END PROGRAM hello

Hello world!



PROGRAM hello
IMPLICIT NONE
INCLUDE ‘mpif.h’              <- call the MPI library

CALL MPI_INIT                 <- let the play start

CALL MPI_COMM_RANK( )         <- who am I?
        
CALL MPI_COMM_SIZE( )         <- how many players are there?

DO SOME STUFF HERE 

CALL MPI_FINALIZE(ierr)       <- let’s go back home

END PROGRAM hello



• It is the basic communication method provided by MPI library. 

Communication between 2 processes
• It is conceptually simple: source process A sends a message to 
destination process B, B receive the message from A. 
• Communication take places within a communicator
• Source and Destination are identified by their rank in the 
communicator

Point-to-point
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Most of the MPI point-to-point routines can be used in either 

blocking or non-blocking mode. 

Blocking: 
 A blocking send returns after it is safe to modify the 

application buffer (your send data) for reuse. Safe does 
not imply that the data was actually received - it may 
very well be sitting in a system buffer. 

 A blocking send can be synchronous 

 A blocking send can be asynchronous if a system buffer is 
used to hold the data for eventual delivery to the receive. 

 A blocking receive only "returns" after the data has 
arrived and is ready for use by the program. 

Blocking mode



Application SEND Application RECV

system buffer system buffer

Processor 1 Processor 2

Point-to-point flowchart



Non blocking

Non-blocking: 
 Non-blocking send and receive routines will return almost 

immediately. They do not wait for any communication 
events to complete

 Non-blocking operations simply "request" the MPI library 
to perform the operation when it is able. The user can not 
predict when that will happen. 

 It is unsafe to modify the application buffer until you know 
for a fact the requested non-blocking operation was 
actually performed by the library. There are "wait" 
routines used to do this. 

 Non-blocking communications are primarily used to 
overlap computation with communication. 



Deadlock or a Race condition occurs when 2 (or more) processes 
are blocked and each is waiting for the other to make progress.
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PROGRAM deadlock
INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc
INTEGER status(MPI_STATUS_SIZE)
REAL A(2), B(2)

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF( myid .EQ. 0 ) THEN
  a(1) = 2.0
  a(2) = 4.0
  CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr)
  CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)
ELSE IF( myid .EQ. 1 ) THEN
  a(1) = 3.0
  a(2) = 5.0
  CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)
  CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr)
END IF
WRITE(6,*) myid, ’: b(1)=’, b(1), ’ b(2)=’, b(2)
CALL MPI_FINALIZE(ierr)
END



PROGRAM avoid_lock
INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc
INTEGER status(MPI_STATUS_SIZE)
REAL A(2), B(2)

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF( myid .EQ. 0 ) THEN
  a(1) = 2.0
  a(2) = 4.0
  CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr)
  CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)
ELSE IF( myid .EQ. 1 ) THEN
  a(1) = 3.0
  a(2) = 5.0
  CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr)
  CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)
END IF
WRITE(6,*) myid, ’: b(1)=’, b(1), ’ b(2)=’, b(2)
CALL MPI_FINALIZE(ierr)
END



Collective communications

Communications involving a group of processes. They are called 
by all the ranks involved in a communicator (or a group)

• Barrier synchronization
• Broadcast
• Gather/scatter
• Reduction

• Collective communications will not interfere with point-to-point
• All processes (in a communicator) call the collective function
• All collective communications are blocking (in MPI 2.0)
• No tags are required
• Receive buffers must match in size (number of bytes)  



An example: Broadcast

PROGRAM broad_cast
INCLUDE ’mpif.h’
INTEGER ierr, myid, nproc, root
INTEGER status(MPI_STATUS_SIZE)
REAL A(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
root = 0
IF( myid .EQ. 0 ) THEN

a(1) = 2.0
a(2) = 4.0

END IF
CALL MPI_BCAST(a, 2, MPI_REAL, 0, MPI_COMM_WORLD, ierr)
WRITE(6,*) myid, ’: a(1)=’, a(1), ’a(2)=’, a(2)
CALL MPI_FINALIZE(ierr)



Most used...

MPI_SCATTER

MPI_GATHER



There are possible combinations of collective functions.
 For example,

MPI Allgather

It is a combination of a gather + a broadcast



For many collective functions there are extended functionalities.

For example it’s possible to define the length of arrays to be 
scattered or gathered with 

MPI_Scatterv

MPI_Gatherv



MPI All to all 

This function makes a redistribution of the content of each process 
in a way that each process know the buffer of all others. It is a way 

to implement the matrix data transposition.
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In addition to the default MPI_COMM_WORLD, MPI offers the 
possibility to create user-defined communicators to deal with the 
programmer’s needs.

Each communicator is defined on a group of MPI processes and it 
redefines the rank of each process within each communicator.

Collective functions take place only inside a defined communicator.

User defined communicators can be useful when one needs to 
manage several levels of parallelism inside the same code.



if(myid%2==0){
color=1;

}else{
color=2;

}
MPI_COMM_SPLIT(MPI_COMM_WORLD,color,myid,&subcomm);
MPI_COMM_RANK(subcomm,mynewid);
printf(“rank in MPICOMM_WORLD %d”,myid,”rank in Subcomm %d”,mynewid);

I am rank 2 in MPI_COMM_WORLD, but 1 in Comm 1.
I am rank 7 in MPI_COMM_WORLD, but 3 in Comm 2.
I am rank 0 in MPI_COMM_WORLD, but 0 in Comm 1.
I am rank 4 in MPI_COMM_WORLD, but 2 in Comm 1.
I am rank 6 in MPI_COMM_WORLD, but 3 in Comm 1.
I am rank 3 in MPI_COMM_WORLD, but 1 in Comm 2.
I am rank 5 in MPI_COMM_WORLD, but 2 in Comm 2.
I am rank 1 in MPI_COMM_WORLD, but 0 in Comm 2.



Virtual topologies are particular communicators that reflect a 
topology in the distribution of the processes.

A virtual topology can help the programmer to map a physical 
problem onto the MPI map of processes. 

This semplifies the writing of the code and it permit to optimize 
communications. 

MPI provides tools to manage virtual topologies with “mapping 
functions”.



Cartesian topology on a 2D torus



-It is an API extension to C/C++ and Fortran languages
-Most compilers support version 3.0

-GNU, IBM, Intel, PGI, etc. 

-Used for writing programs for shared memory architectures



OpenMP is based on a fork-join model

Master-worker threads 

OpenMP is implemented through the 
use of pragmas directives within the 
source code



There’s no message passing: all the thread access the same 
memory address space: communication is implicit.

Programmers must take care to define:

- local data
- shared data 

between threads.



PROGRAM hellomp
INTEGER numthreads, thread_id,omp_get_num_threads,omp_get_thread_num

!$OMP PARALLEL PRIVATE(NUM_THREADS, THREAD_ID)

NUM_THREADS=OMP_GET_NUM_THREADS()
THREAD_ID=OMP_GET_THREAD_NUM()

WRITE(*,*)’Hello world from thread num ”,THREAD_ID

!$OMP END PARALLEL

END #include <iostream.h>
#include <omp.h>

using namespace std;

int main(int argc, char* argv[]){
int thread, num_threads;
#pragma omp parallel private(thread_id, num_threads)
{

#if defined(_OPENMP)
num_threads=omp_get_num_threads();
thread_id=omp_get_thread_num();

#endif
printf(“Hello world from thread num %d”,thread_id);
}

}



API description

int omp_get_num_threads() returns the number of 
threads in the concurrent 
team

int omp_get_thread_num() returns the id of the thread 
inside the parallel region

int omp_get_num_procs() returns the number of 
processors in the machine

int omp_get_max_threads() returns the max number of 
threads that will be used in 
the next parallel region

double omp_get_wtime() returns the number of 
seconds since a time in the 
past

And more and more...



For each parallel region, the programmer should take care to define 
the data sharing attributes for each variable, through a number of 
clauses:

Clause Description

default It sets the default sharing attribute 
when no specified explicitly (caution!)

shared Variable is common among threads

private Variable inside the parallel construct 
is a new variable

firstprivate Variable is new, but initialized to its 
original value

lastprivate Variable’s last value is copied outside 
the construct

reduction Variable’s value is reduced at the end 
among all threads



INTEGER X
X=1
!$ OMP PARALLEL SHARED(X) NUM_THREADS(2)
X=X+1
PRINT*, X
!$ OMP END PARALLEL

It will print EITHER
2 or 3

INTEGER X
X=1
!$ OMP PARALLEL PRIVATE(X) NUM_THREADS(2)
X=X+1
PRINT*, X
!$ OMP END PARALLEL

It will print 
ANYTHING

INTEGER X
X=1
!$ OMP PARALLEL FIRSTPRIVATE(X) NUM_THREADS(2)
X=X+1
PRINT*, X
!$ OMP END PARALLEL

It will print 2 TWICE



OpenMP provides several synchronization mechanisms:

-Barrier (synchronizes all threads inside the parallel region)

-Master (only the master thread will execute the block)

-Critical (only one thread at at time will execute)

-Atomic (same as critical but for one memory location)

-....



INTEGER X
X=1
!$OMP PARALLEL SHARED(X) NUM_THREADS(2)
X=X+1
!$OMP BARRIER
PRINT*,X 
!$OMP END PARALLEL

3
3

INTEGER X
X=1
!$OMP PARALLEL SHARED(X) NUM_THREADS(2)
!$OMP MASTER
X=X+1
!$OMP END MASTER
PRINT*,X 
!$OMP END PARALLEL

2
2

INTEGER X
X=1
!$OMP PARALLEL SHARED(X) NUM_THREADS(2)
!$OMP ATOMIC
X=X+1
PRINT*,X 
!$OMP END PARALLEL

2
3



Worksharing constructs:

-Threads cooperate in doing some work

-Thread identifiers are not used in an explicit manner

-Most common use is in loop worksharing

-Worksharing constructs may not be nested

-DO/for directives are used in order to determine a parallel region



Int i,j;
#pragma omp parallel
#pragma omp for private(j)
for(i=0;i<N;i++)
{
  for(j=0;j<N,j++)
    m[i][j]=f(i,j);
}

-this loop is parallel on the i variable (private by default)

-j must be declared as private explicitly

-synchronization is implicitly obtained at the end of the 
loop



You may need that in some region a statement is executed by 
only one thread, no matter which one.

In this case you can use a SINGLE region.

....

!$omp parallel
...
!$omp single
read *,n
!$omp end single
...
!$omp end parallel



Using the schedule clause one can determine the distribution 
of computational work among threads:

-static, chunk: the loop is equally divided in pieces of size chunk 
whic are evenly distributed among threads in a “round-robin” 
way

-dynamic,chunk: the loop is equally divided among pieces chunk 
that are distributed for execution dynamically to threads. If no 
chunk is specified, then chunk=1

-guided: similar to dynamic with the variation that chunk size is 
reduced as threads grab iterations

This is configurable with environment variable OMP_SCHEDULE:
-i.e. setenv OMP_SCHEDULE “dynamic,4”





The reduction clause can be used when a variable is accumulated 
at the end of a loop.

Using the reduction clause:

-a private copy per thread is created and initialized

-at the end of the region the compiler safely updates the shared 
variable

!$omp do reduction(+:x)
do i=1,n
  x=x+a(i)
End do
!$omp end do



False sharing
-Memory addresses are grouped into cache lines

-If one element of the cache line is changed, the whole line is 
invalidated

-If more than one thread is working on the same cache line, this cache 
line is continously invalidated and there’s a lot of traffic between 
cache and memory.

-False sharing is one of the reason of poor scalability in pure OpenMP 
approaches

float data[N], total=0;
int ii;
#pragma omp parallel num_threads(N)
{
  int n = omp_get_thread_num();
  data[n] = 0;
  while(moretodo(n))
    data[n] += calculate_something(n);
}
for (ii=0; ii<N; ii++)
  total += data[n];





float data[N], total=0;
int ii;
#pragma omp parallel num_threads(N) private(data)
{
  int n = omp_get_thread_num();
  data[n] = 0;
  while(moretodo(n))
    data[n] += calculate_something(n);
}
for (ii=0; ii<N; ii++)
  total += data[n];

use private attribute

use padding





Using together MPI and OpenMP

OpenMP MPI



Since MPI2, a support is provided for hybrid programming 
MPI+OpenMP:

MPI_INIT_THREAD(required, provided,ierr)

There are 4 levels supported:

-MPI_THREAD_SINGLE: no threads are allowed
-MPI_THREAD_FUNNELED: threads are allowed; Only the master 
thread can call MPI primitives
-MPI_THREAD_SERIAL: threads are allowed. All threads can call MPI 
primitives. Communications are scheduled in a serial manner.
-MPI_THREAD_MULTIPLE: threads are allowed. All threads can call 
MPI communication primitives in an arbitrary order



INCLUDE ‘mpif.h’
INTEGER :: rnk,sz,n,i,ierr,chunk
INTEGER,PARAMETER :: n=100
REAL*8  :: x(n),y(n),buff(n)

CALL MPI_INIT(ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,rnk,ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,sz,ierr)

chunk=n/sz

CALL MPI_SCATTER(buff(rnk*chunk),chunk,MPI_DOUBLE,x,chunk,MPI_DOUBLE,0,   &
&               MPI_COMM_WORLD,ierr)
CALL MPI_SCATTER(buff(rnk*chunk),chunk,MPI_DOUBLE,y,chunk,MPI_DOUBLE,0,   &
&               MPI_COMM_WORLD,ierr)

DO i=1,chunk
  x(i)=x(i)+y(i)
END DO

CALL MPI_GATHER(x,chunk,MPI_DOUBLE,buff,chunk,MPI_DOUBLE,0,MPI_COMM_WORLD,ierr)

CALL MPI_FINALIZE(ierr)

END



...

INTEGER :: i
INTEGER, PARAMETER :: n=100
REAL*8  :: x(n),y(n),buff(n)

!$OMP PARALLEL DO PRIVATE(i) SHARED(x,y)
DO i=1,n
  x(i)=x(i)+y(i)
END DO 



INCLUDE ‘mpif.h’
INTEGER :: rnk,sz,n,i,ierr,info,chunk
INTEGER,PARAMETER :: n=100
REAL*8  :: x(n),y(n),buff(n)

CALL MPI_INIT_THREAD(MPI_THREAD_FUNNELED,info,ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,rnk,ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,sz,ierr)

chunk=n/sz

CALL MPI_SCATTER(buff(rnk*chunk),chunk,MPI_DOUBLE,x,chunk,MPI_DOUBLE,0,   &
&               MPI_COMM_WORLD,ierr)
CALL MPI_SCATTER(buff(rnk*chunk),chunk,MPI_DOUBLE,y,chunk,MPI_DOUBLE,0,   &
&               MPI_COMM_WORLD,ierr)

!$OMP PARALLEL DO
DO i=1,chunk
  x(i)=x(i)+y(i)
END DO
!$OMP END PARALLEL

CALL MPI_GATHER(x,chunk,MPI_DOUBLE,buff,chunk,MPI_DOUBLE,0,MPI_COMM_WORLD,ierr)

CALL MPI_FINALIZE(ierr)

END



Task parallelism
Definition:
A task parallel computation is one in which parallelism is applied 
by performing distinct computations (i.e. tasks) at the same 
time. Since the number of tasks is fixed, this parallelism is not 
scalable

OpenMP 3.0 supports tasks parallelism

Tasks parallelism introduces a functional dependence between 
tasks. 
Is similar to a sort of “pipelining” of functional units



OpenMP task construct
#pragma omp task [clauses]
{

do something
}

Where clauses is: private, shared, default, if, untied, final, mergeable

-Immediately creates a new task but not a new thread
-This task is explicit (also threads can be thought as implicit tasks…)
-It will be executed by a thread in the current team
-It can be deferred until a thread is available to execute
-The data environment is built at creation time
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