## Energy Efficiency and Roadmap to Exascale

Carlo Cavazzoni - c.cavazzoni@cineca.it
SuperComputing Applications and Innovation Department

## outline

- Roadmap to Exascale
- HPC architecture challanges
- Energy efficiency
- Co processor architecture


## Roadmap to Exascale (architectural trends)

| Systems | 2009 | 2011 | 2015 | 2018 |
| :---: | :---: | :---: | :---: | :---: |
| System Peak Flops/s | 2 Peta | 20 Peta | 100-200 Peta | 1 Fxa |
| System Memory | 0.3 PB | 1 PB | 5 PB | 10 PB |
| Node Performance | 125 GF | 200 GF | 400 GF | 1.10 TF |
| Node Memory BW | $25 \mathrm{~GB} / \mathrm{s}$ | $40 \mathrm{~GB} / \mathrm{s}$ | $100 \mathrm{~GB} / \mathrm{s}$ | 200-400 GB/s |
| Node Concurrency | 12 | 32 | O(100) | $\mathrm{O}(1000)$ |
| Interconnect BW | $1.5 \mathrm{~GB} / \mathrm{s}$ | $10 \mathrm{~GB} / \mathrm{s}$ | $25 \mathrm{~GB} / \mathrm{s}$ | $50 \mathrm{~GB} / \mathrm{s}$ |
| System Size (Nodes) | 18,700 | 100,000 | 500,000 | O(Militin) |
| Total Concurrency | 225,000 | 3 Million | 50 Million | O(Billion) |
| Storage | 15 PB | 30 PB | 150 PB | 3tic m |
| 1/0 | $0.2 \mathrm{~TB} / \mathrm{s}$ | $2 \mathrm{~TB} / \mathrm{s}$ | $10 \mathrm{~TB} / \mathrm{s}$ | $20 \mathrm{~TB} / \mathrm{s}$ |
| MTII | Days | Days | Days | $0(1 \text { Day })$ |
| Power | 6 MW | $\sim 10 \mathrm{MW}$ | $\sim 10 \mathrm{MW}$ | -20 MW |

# Dennard scaling law (downscaling) 

new VLSI gen.
old VLSI gen.

$D^{\prime}=1 / L^{2}=4 D$
$P^{\prime}=P$

Now, power and/or heat generation are the limiting factors of the down-scaling

- Supply voltage reduction is becoming difficult, because Vth cannot be decreased any more, as described later.

$$
\mathrm{V}^{\prime}=\sim \mathrm{V}
$$

$$
F^{\prime}=\sim F * 2
$$

$$
D^{\prime}=1 / L^{2}=4 * D
$$



The power crisis!

The core freque ${ }^{[10}{ }^{12} c^{2} y$ and performance do not grow following the Moore's law anyềinger



Increase the number of cores to maintain the architectures evolution on the Moore's law

## Economic and market law

Stacy Smith, Intel's chief financial officer, later gave some more detail on the economic benefits of staying on the Moore's Law race.

The cost per chip "is going down more than the capital intensity is going up," Smith said, suggesting Intel's profit margins should not suffer because of heavy capital spending. "This is the economic beauty of Moore's Law."
And Intel has a good handle on the next production shift, shrinking circuitry to 10 nanometers. Holt said the company has test chips running on that technology. "We are projecting similar kinds of improvements in cost out to 10 nanometers," he said.
So, despite the challenges, Holt could not be induced to say there's any looming end to Moore's Law, the invention race that has been a key driver of electronics innovation since first defined by Intel's co-founder in the mid-19060s.

## But!

Advanced School on PARALLEL COMPUTING


Si lattice
300 atomi!

There will be still 4~6 cycles (or technology generations) left until
we reach 11 ~ 5.5 nm technologies, at which we will reach downscaling limit, in some year between 2020-30 (H. Iwai, IWJT2008).

## Amdahl's law

In a massively parallel context, an upper limit for the scalability of parallel applications is determined by the fraction of the overall execution time spent in non-scalable operations (Amdahl's law).

maximum speedup tends to
$1 /(1-P)$
$P=$ parallel fraction

1000000 core
$P=0.999999$
serial fraction= 0.000001

# Architectural trends (constrained by the three law) 

Peak Performance

FPU Performance

Number of FPUs

App. Parallelism

Moore law

Dennard law

Moore + Dennard

Amdahl's law

## Architectural trends (estimates)

Number of cores

Memory x core

Memory BW/core

Memory hierachy

2020 estimates
$10^{\wedge} 9$

100Mbyte or less

500GByte/sec
(socket)

Reg, L1, L2, L3, ...

## Chip Architecture

Advanced School on PARALLEL COMPUTING

Strongly market driven


Mobile, Tv set, Screens Video/Image processing

Intel $\longrightarrow$| New arch to compete with ARM |
| :--- |
| Less Xeon, but PHI |

ARM

Main focus on low power mobile chip
Qualcomm, Texas inst. , Nvidia, ST, ecc new HPC market, server maket

Power

AMD


Embedded market
Power+GPU, only chance for HPC

## (sub) Exascale architecture

## still two model

Hybrid, but...

Homogeneus, but...

## What 100PFlops system we will see ... my guess

IBM (hybrid) Power8+Nvidia GPU
Cray (homo/hybrid) with Intel only!
Intel (hybrid) Xeon + MIC
Arm (homo) only arm chip, but...
Nvidia/Arm (hybrid) arm+Nvidia
Fujitsu (homo) sparc high density low power
China (homo/hybrid) with Intel only
Room for AMD console chips

| System attributes | 2001 | 2010 | "2015" |  | "2018" |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| System peak | 10 Tera | 2 Peta | 200 Petaflop/sec |  | 1 Exaflop/sec |  |
| Power | $\sim 0.8 \mathrm{MW}$ | 6 MW | 15 MW |  | 20 MW |  |
| System memory | 0.006 PB | 0.3 PB | 5 PB |  | 32-64 PB |  |
| Node performance | 0.024 TF | 0.125 TF | 0.5 TF | 7 TF | 1 TF | 10 TF |
| Node memory BW |  | $25 \mathrm{~GB} / \mathrm{s}$ | 0.1 TB/sec | $1 \mathrm{~TB} / \mathrm{sec}$ | $0.4 \mathrm{~TB} / \mathrm{sec}$ | $4 \mathrm{~TB} / \mathrm{sec}$ |
| Node concurrency | 16 | 12 | $\mathrm{O}(100)$ | $\mathrm{O}(1,000)$ | $\mathrm{O}(1,000)$ | $\mathrm{O}(10,000)$ |
| System size (nodes) | 416 | 18,700 | 50,000 | 5,000 | 1,000,000 | 100,000 |
| Total Node Interconnect BW |  | $1.5 \mathrm{~GB} / \mathrm{s}$ | $150 \mathrm{~GB} / \mathrm{sec}$ | $1 \mathrm{~TB} / \mathrm{sec}$ | $250 \mathrm{~GB} / \mathrm{sec}$ | $2 \mathrm{~TB} / \mathrm{sec}$ |
| MTTI |  | day | $\mathrm{O}(1$ day) |  | O(1 day) |  |

## Energy Efficiency

Where power is used:

1) CPU/GPU silicon
2) Memory


Short term impact on programming models
3) Network
4) Data transfer
5) $\mathrm{I} / \mathrm{O}$ subsystem
6) Cooling

- The efficiency of CMOS transistor against the supply voltage peaks close to the insulator/conductor transition
- Possibility to design a new Near Threshold Voltage (NTV) chip architecture that is able to work at different regime.
- Accommodate the needs of different workloads and meet the requirements in term of efficiency.


## Memory

## Advanced

 School on PARALLEL COMPUTINGToday (at 40nm) moving 3 64bit operands to compute a 64bit floating-point FMA takes 4.7 x the energy with respect to the FMA operation itself


$50 \mathrm{pJ} / \mathrm{b}$ today $8 \mathrm{pJ} / \mathrm{b}$ demonstrated Need < 2pJ/b

Extrapolating down to 10 nm integration, the energy required to move date Becomes 100x!


## EURORA Benchmarks

Advanced School on PARALLEL COMPUTING

## HPL Benchmark Results





## Energy measurments

(howto)

## Advanced School on PARALLEL COMPUTING




## Impact on programming and

- 1. Event driven tasks (EDT)
- a. Dataflow inspired, tiny codelets (self contained)
- b. Non blocking, no preemption
- 2. Programming model:
- a. Express data locality with hierarchical tiling
- b. Global, shared, non-coherent address space
- c.Optimization and auto generation of EDTs
- 3. Execution model:
- a.

Dynamic, event-driven scheduling, nonblocking

- b.

Dynamic decision to move computation to data

- c.Observation based adaption (self-awareness)
- d. Implemented in the runtime environment


## Accelerators architecture

## What is an Accelerator.

## Advanced School on PARALLEL COMPUTING

A set (one or more) of very simple execution units that can perform few operations (with respect to standard CPU) with very high efficiency. When combined with full featured CPU (CISC or RISC) can accelerate the "nominal" speed of a system. (Carlo Cavazzoni)


Single thread perf.
throughput


## K20 nVIDIA GPU



PINESAX Streaming Multiprocessors


192 single precision cuda cores
64 double precision units
32 special function units
32 load and store units
4 warp scheduler
(each warp contains 32 parallel Threads)

2 indipendent instruction per warp

## Accelerator/GPGPU



Advanced School on PARALLEL COMPUTING

Sum of 1D array

## CUDA sample

```
void CPUCode( int* input1, int* input2, int* output, int length) {
    for ( int i = 0; i < length; ++i ) {
        output[ i ] = input1[ i ] + input2[ i ];
    }
}
```

```
_global__void GPUCode( int* input1, int*input2, int* output, int length) {
```

_global__void GPUCode( int* input1, int*input2, int* output, int length) {
int idx = blockDim.x * blockIdx.x + threadIdx.x;
int idx = blockDim.x * blockIdx.x + threadIdx.x;
if ( idx < length ) {
if ( idx < length ) {
output[ idx ] = input1[ idx ] + input2[ idx ];
output[ idx ] = input1[ idx ] + input2[ idx ];
}
}

```

\section*{Each thread execute one loop iteration}

\section*{Intel MIC}


\section*{Intel \({ }^{\circledR}\) MIC Architecture: An Intel Co-Processor Architecture}


Many cores and many, many more threads
Standard IA programming and memory model

Up to 61 Intel \(®\) Architecture cores
1.1 GHz

244 threads
Up to 8 GB memory
up to 352 GB/s bandwidth
512-bit SIMD instructions
Linux* operating system, IP addressable
Standard programming languages and tools
Over 1 TeraFlop/s double precision peak performance

\section*{MIC Architecture}


\section*{Core Architecture}

- 60+ in-order, low-power Intel \({ }^{\circledR}\) Architecture cores in a ring interconnect
- Two pipelines
- Scalar Unit based on Pentium® processors
- Dual issue with scalar instructions
- Pipelined one-per-clock scalar throughput
- SIMD Vector Processing Engine
- 4 hardware threads per core
- 4 clock latency, hidden by round-robin scheduling of threads
- Cannot issue back-to-back inst in same thread
- Coherent 512 KB L2 Cache per core

\section*{Intel Vector Units}

Advanced School on PARALLEL COMPUTING
```

