

Energy Benchmarks

Andrew Emerson, a.emerson@cineca.it

What are application benchmarks (in HPC) and why do them ?

- Benchmarks compare the performance of an application code according to different parameters such as no. of cores, type of architecture, program version and input, ...
- Hardware vendors, computer centres and other organisations (e.g. PRACE) often provide "benchmark suites" which may be used to provide:
 - 1. a resource of application codes and datasets for hardware procurement.
 - 2. data to help users decide during project preparation which system to choose and how much time to ask for.
 - 3. data for "currency conversion" of CPU hours between different systems (e.g. PRACE Tier-1).
- For a user starting an HPC project, should be standard practice to benchmark application code with the required input on the target system before starting production runs.

PRACE Unified European Application Benchmark Suite (UEABS)

Scientific Area	Application code
Particle Physics	QCD
Classical MD	NAMD, GROMACS
Quantum MD	Quantum Espresso, CP2K, GPAW
CFD	Code_Saturne, ALYA
Earth Science	NEMO, SPECFEM3D
Plasma Physics	GENE
Astrophysics	GADGET

 [1] Selection of a Unified European Application Benchmark Suite, J. Mark Bull and Andrew Emerson, http://www.prace-ri.eu/IMG/pdf/Selection_of_a_Unified_European_Application_Benchmark_Suite.pdf
[2] Unified European Applications Benchmark Suite, J. Mark Bull et al, http://www.prace-ri.eu/ueabs

PRACE UEABS

PPbbb CINECA

- Each code was benchmarked for 3 different datasets ("small", "medium" and "large") on PRACE Tier-0 and Tier-1 systems;
- First version of PRACE UEABS concentrated only on "standard" CPU cores (i.e. no GPUs or accelerators).

Advanced School on PARALLEL

PRACE UEABS – how to measure "performance"

- *"Performance" can be domain-specific so for the UEABS two domain-independent metrics were used;*
 - 1. execution time (i.e. time in seconds or 1/time to complete the run).
 - 2. performance (1/time) per Peak-TFlop/s as function of the partition size in Peak-Tflops.
- This second metric allows codes to be compared between different platforms.

PRACE UEABS – QCD

Figure 32 Performance per Peak-TFlop/s of QCD for Kernel B

horizontal line indicates ideal scaling

And accelerators ?

- GPU-enabled versions of some codes can bring enormous speedups when compared to "traditional" cores.
- Thus, even if in cases where the overall maximum performance is not exceeded, by using few cores GPU-enabled codes can be more "cost effective".
- Same argument used for other accelerators such as Intel's Xeon PHI (MIC) technology.

Examples: Amber and NAMD (Molecular Dynamics)

Advanced School on PARALLEL COMPUTING

What about "cost"?

gromacs BLG

Most high performing option not always the most cost efficient

Advanced School on PARALLEL COMPUTING

So what about...

- An "energy metric" for energy cost ?
- Since we are told that energy efficiency and power consumption are important it makes sense to measure this as well.

Crowned the greenest supercomputer, the Tsubame-KFC system at the Tokyo Institute of Technology, hit a record 4.5 gigaflops per watt. That's about 25 percent more efficient than the list's number-two, Cambridge University's Wilkes, at 3.6 gigaflops per watt. In third place was the system at Japan's Center for Computational Sciences, at the University of Tsukuba, at 3.5 gigaflops per watt. . **Green TOP500**

Green Top 500

The Green500 List

Listed below are the November 2013 The Green500's energy-efficient supercomputers ranked from 1 to 10.

Green500 Rank	MFLOPS/W	Site*	Computer*			
1	4,503.17	GSIC Center, Tokyo Institute of Technology	TSUBAME-KFC - LX 1U-4GPU/104Re-1G Cluster, Intel Xeon E5- 2620v2 6C 2.100GHz, Infiniband FDR, NVIDIA K20x			
2	3,631.86	Cambridge University	Wilkes - Dell T620 Cluster, Intel Xeon E5-2630v2 6C 2.600GHz, Infiniband FDR, NVIDIA K20	52.62		
3	3,517.84	Center for Computational Sciences, University of Tsukuba	HA-PACS TCA - Cray 3623G4-SM Cluster, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband QDR, NVIDIA K20x	78.77		
4	3,185.91	Swiss National Supercomputing Centre (CSCS)	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x Level 3 measurement data available			
5	3,130.95	ROMEO HPC Center - Champagne-Ardenne	romeo - Bull R421-E3 Cluster, Intel Xeon E5-2650v2 8C 2.600GHz, Infiniband FDR, NVIDIA K20x	81.41		
6	3,068.71	GSIC Center, Tokyo Institute of Technology	TSUBAME 2.5 - Cluster Platform SL390s G7, Xeon X5670 6C 2.930GHz, Infiniband QDR, NVIDIA K20x	922.54		
7	2,702.16	University of Arizona	iDataPlex DX360M4, Intel Xeon E5-2650v2 8C 2.600GHz, Infiniband FDR14, NVIDIA K20x	53.62		
8	2,629.10	Max-Planck-Gesellschaft MPI/IPP	iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband, NVIDIA K20x	269.94		
9	2,629.10	Financial Institution	iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband, NVIDIA K20x	55.62		
10	2,358.69	CSIRO	CSIRO GPU Cluster - Nitro G16 3GPU, Xeon E5-2650 8C 2.000GHz, Infiniband FDR, Nvidia K20m	71.01		

Advanced

School on PARALLEL

COMPUTING

5

* Performance data obtained from publicly available sources including TOP500

Estimating Energy consumption

- If your application can output Gflops can use that estimate energy needed to run your program
- Case study Gromacs (Molecular Dynamics). Run identical runs as a function of #nodes

Parallel run - timing based on wallclock.

NODE (s)Real (s)(%)Time:45.31845.318100.0(Mnbf/s)(GFlops)(ns/day)(hour/ns)Performance:2751.193**212.351**38.1350.629Finished mdrunon node 0Wed Feb 1222:11:362014

Computational chemists use ns/day as performance – directly indicates how much "scientific work" can be done.

Estimating Energy consumption

• Hopefully trend in Gflops should mirror trend of the usual performance metric for your application.

Estimating energy consumption

- Sustained peak of Eurora ~3.15 Gflops/watt, PLX ~ 0.91 Gflops/watt
- Knowing wall time of job + Gflops can calculate total energy of job.

Estimating energy consumption

- Very crude method of estimating energy assumes consuming flops at published power rate (peak, sustained, etc.). Most applications much less efficient than peak (e.g. 20%).
- No indications of energy due to network, cooling, disks etc.
- Not all applications provide Gflops output.
- Need to actually measure the energy consumption by hardware during job run.

Power Data Aggregation Monitor (PowerDAM)

- Developed by Leibniz Supercomputing Centre.
- PowerDAM monitors both physical sensors as well as "virtual sensors" and provide visualization for factors such as power draw, utilization rate, and average CPU temperatures.
- Can be used to measure energy consumed during a single batch job.

powerDAM commands

Measures directly the energy in kWh (=3600 kJ). Current implementation still very experimental.

ets --system=Eurora --job=429942.node129

Advanced School on PARALLEL

EtS is: 0.173056 kWh Computation: 99 % Networking: 0 % Cooling: 0 % Infrastructure: 0 %

Gromacs 4.6 energy consumption via ets

PBS Job id	nodes	Clock freq (GHz)	#gpus	Walltime (s)	Energy (kWh)	Perf (ns/day)	Perf- Energy (ns/kJ)
429942	1	2	0	1113	0.17306	10.9	69.54724
430337	2	2	0	648	0.29583	18.6	62.87395
430370	1	3	0	711	0.50593	17.00	33.60182
431090	1	3	2	389	0.42944	31.10	72.42023

Observations (based on v. limited data):

- 1. Previous (Gflop) estimates clearly inaccurate.
- 2. High-clock frequency relatively inefficient.
- 3. In this example use of GPUs really is most efficient, but for 1 node not by that much cf. 2 GHz proc.

Summary

• Benchmarks are essential during project preparation and production for estimating resource requirements.

Advanced School on

COMPUTI

- Until recently 1/walltime or field-related metric (e.g. ns/day) used exclusively for assessing "performance". Now focus switching to "energy performance". Need compromise between application performance and cost.
- Rough guide can be obtained knowing app performance in Gflops and machine performance, but likely to be very inaccurate.
- Need instead hardware monitoring. With accurate energy data/job, users can tune application parameters to balance their energy requirements or write low-energy applications. Future schedulers could prioritise low-energy jobs.