
Mirko Cestari – m.cestari@cineca.it

Alessandro Marani – a.marani@cineca.it
SuperComputing Applications and Innovation Department

Introduction to EURORA
Parallel & production environment

February 10, 2014

GOALS

You will learn:

• basic concepts of the system architecture that directly affects
your work during the school

• how to explore and interact with the software installed on the
system

• how to compile a parallel code and/or a code that involves the
usage of accelerators (MICs & GPUs)

• how to launch a simulation exploiting the computing resources
provided by the EURORA system

OUTLINE
• A first step:

– System overview

– Login

– Work environment

• Production environment

– Our first job!!

– Creating a job script

– Accounting and queue system

– PBS commands

• Programming environment

– Module system

– Serial and parallel compilation

– Interactive session

• Dealing with accelerators

– Compiling for GPUs and MICs

– Accelerator job submission

• For further info…

– Useful links and documentation

EURORA CHARACTERISTICS

Model: Eurora prototype

Architecture: Linux Infiniband Cluster

Processors Type:

- Intel Xeon (Eight-Core SandyBridge)
E5-2658 2.10 GHz (Compute)

- Intel Xeon (Eight-Core SandyBridge)
E5-2687W 3.10 GHz (Compute)

- Intel Xeon (Esa-Core Westmere) E5645
2.4 GHz (Login)

Number of nodes: 64 Compute + 1 Login

Number of cores: 1024 (compute) + 12
(login)

accelerators: 64 nVIDIA Tesla K20 (Kepler)
+ 64 Intel Xeon Phi (MIC)

RAM: 1.1 TB (16 GB/Compute node +
32GB/Fat node)

OS: RedHat CentOS release 6.3, 64 bit

EURORA CHARACTERISTICS
• Compute Nodes: 64 16-core compute cards (nodes).

• 32 nodes contain 2 Intel(R) Xeon(R) SandyBridge 8-core E5-2658
processors, with a clock rate of about 2 GHz,

• 32 nodes contain 2 Intel(R) Xeon(R) SandyBridge 8-core E5-2687W
processors, with a clock rate of about 3 GHz.

– 58 compute nodes have 16GB of memory, but the allocatable memory on the
node is 14 GB. The remaining 6 nodes (with processors at 3 GHz clock rate)
have 32 GB RAM.

– The Eurora cores are capable of 8 floating point operations per cycle. Half of
the compute cards (the ones with a 3GHz clock rate) have two nVIDIAK20
(Kepler) GPU cards installed. The other half (the 2GHz ones) have two Intel
Xeon Phi accelerators installed.

• Login node: 2 Intel(R) Xeon(R) 6-core Westmere E5645 processors at 2.4 GHz.

• Network: all the nodes are interconnected through a custom Infiniband network,
allowing for a low latency/high bandwidth interconnection.

EURORA IN GREEN500

The Green500 is a ranking that classifies the
Top500 supercomputers in terms of

“energy efficiency”
(best ratio performance/power consumption)

In June 2013 ranking, EURORA has been proclaimed the greenest supercomputer in the world!!

In the last ranking (Nov 2013), unfortunately EURORA didn’t make the Top500.

It would have been ranked #4 in the Green500

How to log in

• Establish a ssh connection

ssh <username>@login.eurora.cineca.it

• Remarks:

– ssh available on all linux distros

– Putty (free) or Tectia ssh on Windows

– secure shell plugin for Google Chrome!

– login nodes are swapped to keep the load balanced

– important messages can be found in the message of the day

• Check the user guide!

http://www.hpc.cineca.it/content/eurora-user-guide

• Establish a ssh connection

ssh <username>@login.eurora.cineca.it

• Remarks:

– ssh available on all linux distros

– Putty (free) or Tectia ssh on Windows

– secure shell plugin for Google Chrome!

– login nodes are swapped to keep the load balanced

– important messages can be found in the message of the day

• Check the user guide!

http://www.hpc.cineca.it/content/eurora-user-guide

WORK ENVIRONMENT

$HOME:
Permanent, backed-up, and local to EURORA.
5 Gb of quota. For source code or important input files.

$CINECA_SCRATCH:
Large, parallel filesystem (GPFS).
No quota. Run your simulations and calculations here.

use the command cindata to get info on your disk occupation

http://www.hpc.cineca.it/content/data-storage-and-filesystems-0

OUTLINE
• A first step:

– System overview

– Login

– Work environment

• Production environment

– Our first job!!

– Creating a job script

– Accounting and queue system

– PBS commands

• Programming environment

– Module system

– Serial and parallel compilation

• Dealing with accelerators

– Compiling for GPUs and MICs

– Interactive session

– Accelerator job submission

• For further info…

– Useful links and documentation

LAUNCHING JOBS

As in every HPC cluster, EURORA allows you to run your
simulations by submitting “jobs” to the compute nodes

Your job is then taken in consideration by a scheduler, that adds
it to a queuing line and allows its execution when the resources

required are available

The operative scheduler in EURORA is PBS

PBS JOB SCRIPT SCHEME

The scheme of a PBS job script is as follows:

#!/bin/bash

#PBS keywords

variables environment

execution line

PBS JOB SCRIPT EXAMPLE

#!/bin/bash

#PBS -N myname

#PBS -o job.out

#PBS -e job.err

#PBS -m abe

#PBS -M user@email.com

#PBS -l walltime=00:30:00

#PBS -l select=1:ncpus=16:mpiprocs=8:mem=10GB

#PBS -q debug

#PBS -A <my_account>

echo “I’m working on EURORA!”

PBS KEYWORD ANALYSIS - 1

#PBS -N myname
Defines the name of your job

#PBS -o job.out
Specifies the file where the standard output is directed
(default=jobname.o<jobID>)

#PBS -o job.err
Specifies the file where the standard error is directed
(default=jobname.e<jobID>)

#PBS -m abe (optional)
Specifies e-mail notification. An e-mail will be sent to you when
something happens to your job, according to the keywords you
specified (a=aborted, b=begin, e=end, n=no email)

#PBS -M user@email.com (optional)
Specifies the e-mail address for the keyword above

PBS KEYWORD ANALYSIS - 2

#PBS -l walltime=00:30:00
Specifies the maximum duration of the job. The maximum time allowed
depends on the queue used (more about this later)

#PBS -l select=1:ncpus=16:mpiprocs=8:mem=10GB
Specifies the resources needed for the simulation.

select – number of compute nodes (“chunks”)
ncpus – number of cpus per node (max. 16)
mpiprocs – number of MPI tasks per node (max=ncpus)
mem – memory allocated for each node (default=850MB, max.=14 GB)
You can require up to 32GB but have to wait more because you will be
directed on the special high memory nodes

NEVER ask for 15GB, or the job won’t run properly!

QUEUING SYSTEM

#PBS -q debug
Specifies the queue requested for the job. The job will be put by PBS on the
waiting list depending on the queue specified. For each queue, there is a
set limit of walltime and resources that can be asked.

The queue parameter is actually optional and doesn’t need to be specified, as it
depends from the resources asked. The only exception is p_devel.

The regular EURORA queues are four:

Job type Max nodes Time slot Max wall time

debug 2 Always 0:30:00

parallel 32 Always 4:00:00

np_longpar 9 Non primetime* 8:00:00

p_devel 2 Primetime* 1:00:00

* Primetime = 10am – 6pm weekdays. Non primetime = (6 pm - 10 am weekdays, Friday 6 pm - Monday 10 am)

ACCOUNTING SYSTEM

#PBS -A <my_account>
Specifies the account to use the CPU hours from.

As an user, you have access to a limited number of CPU hours to spend. They are not
assigned to users, but to projects and are shared between the users who are

working on the same project (i.e. your research partners). Such projects are called
accounts and are a different concept from your username.

You can check the status of your account with the command “saldo –b”, which tells you
how many CPU hours you have already consumed for each account you’re assigned

at (a more detailed report is provided by “saldo –r”).

ACCOUNT FOR THE SCHOOL

The account provided for this school is
“train_scA2014”

(you have to specify it on your job scripts).

It will expire two weeks after the end of the school
and is shared between all the students; there
are plenty of hours for everybody, but don’t

waste them!

#PBS -A train_scA2014

PBS COMMANDS

After the job script is ready, all there is left to do is to submit it:

qsub
qsub <job_script>

Your job will be submitted to the PBS scheduler and executed
when there will be nodes available (according to your priority and
the queue you requested)

qstat
qstat

Shows the list of all your scheduled jobs, along with their status
(idle, running, closing, …) Also, shows you the job id required for
other PBS commands

PBS COMMANDS

qstat
qstat -f <job_id>

Provides a long list of informations for the job requested.
In particular, if your job isn’t running yet, you'll be notified about its
estimated start time or, if you made an error on the job script, you

will
learn that the job won’t ever start

qdel

qdel <job_id>

Removes the job from the scheduled jobs by killing it

EXERCISE 01

1) Write a job script with "walltime" of 3 minutes that asks for 1 node and 1

core. Copy-paste the following in the execution section

hostname

echo 'Hello World'

sleep 4

Now add the automatic sending of the email in case of ending and abort of the job.

2) Launch the job with qsub

3) Check its state with qstat

4) Check its state again with "qstat -f jobid" after having increased the sleep

to 60, namely:

hostname

echo 'Hello World'

sleep 60

5) Add a memory request to the "select" line in the job script (rember that each

processor has a quota of 850 MB of memory). Please check the new requirements with

"qstat -f jobid"

OUTLINE
• A first step:

– System overview

– Login

– Work environment

• Production environment

– Our first job!!

– Creating a job script

– Accounting and queue system

– PBS commands

• Programming environment

– Module system

– Serial and parallel compilation

– Interactive session

• Dealing with accelerators

– Compiling for GPUs and MICs

– Accelerator job submission

• For further info…

– Useful links and documentation

AN EXAMPLE OF A PARALLEL JOB

#!/bin/bash

#PBS -l walltime=1:00:00

#PBS -l select=2:ncpus=16:mpiprocs=4

#PBS -o job.out

#PBS -e job.err

#PBS -q parallel

#PBS -A <my_account>

cd $PBS_O_WORKDIR # points to the folder you are actually working into

module load autoload openmpi

mpirun –np 8 ./myprogram

MODULE SYSTEM
• All the optional software on the system is made available through

the "module" system

• provides a way to rationalize software and its environment
variables

• Modules are divided in 2 profiles

• profile/base (default - stable and tested modules)

• profile/advanced (software not yet tested or not well
optimized)

• Each profile is divided in 4 categories

• compilers (GNU, intel, openmpi)

• libraries (e.g. LAPACK, BLAS, FFTW, ...)

• tools (e.g. Scalasca, GNU make, VNC, ...)

• applications (software for chemistry, physics, ...)

MODULE SYSTEM

• CINECA’s work environment is organized in modules, a set of
installed libraries, tools and applications available for all users.

• “loading” a module means that a series of (useful) shell
environment variables will be set

• E.g. after a module is loaded, an environment variable of the
form “<MODULENAME>_HOME” is set

MODULE COMMANDS

COMMAND DESCRIPTION

module av list all the available modules

module load <module_name(s)> load module <module_name>

module list list currently loaded modules

module purge unload all the loaded modules

module unload <module_name> unload module <module_name>

module help <module_name> print out the help (hints)

module show <module_name> print the env. variables set when
loading the module

MODULE PREREQS AND CONFLICTS

Some modules need to be loaded after other modules they
depend from (e.g.: parallel compiler depends from basic
compiler). You can load both compilers at the same time

with “autoload”

You may also get a “conflict error” if you load a module not
suited for working together with other modules you already

loaded (e.g. different compilers). Unload the previous module
with “module unload”

COMPILING ON EURORA

• On EURORA you can choose between three different
compiler families: gnu, intel and pgi

• You can take a look at the versions available with “module

av” and then load the module you want.

module load intel # loads default intel compilers suite

module load intel/co-2011.6.233--binary # loads specific

compilers suite

GNU INTEL PGI

Fortran gfortran ifort pgf77

C gcc icc pgcc

C++ g++ icpc pgcc

Get a list of the
compilers flags with
the command man

PARALLEL COMPILING ON EURORA
• MPI libraries available: OpenMPI/IntelMPI

– The library and special wrappers to compile and link the personal programs are
contained in several "openmpi" modules, one for each supported suite of
compilers

• Load a version of OpenMPI:

module av openmpi

openmpi/1.6.4--pgi--12.10

openmpi/1.6.5--gnu--4.6.3

openmpi/1.6.5--intel--cs-xe-2013--binary

openmpi/1.6.5--pgi--12.10

openmpi/1.6.5--pgi--14.1

module load autoload openmpi/1.6.4--gnu--4.6.3

• Load a version of IntelMPI:

module av intelmpi

intelmpi/4.1.0--binary

intelmpi/4.1.1--binary

module load autoload intelmpi/4.1.1--binary

PARALLEL COMPILING ON EURORA

OPENMPI/INTELMPI

Fortran90 mpif90

C mpicc

C++ mpiCC

Compiler flags are the same of the basic compiler (since
they are basically MPI wrappers of those compilers)

OpenMP is provided with following compiler flags:

gnu: -fopenmp

intel : -openmp

pgi: -mp

JOB SCRIPT FOR PARALLEL EXECUTION

Let’s take a step back…

#PBS -l select=2:ncpus=16:mpiprocs=4
This example line means “allocate 2 nodes with 16 CPUs each, and 4 of
them should be considered as MPI tasks”
So a total of 32 CPUs will be available. 8 of them will be MPI tasks, the
others will be OpenMP threads (4 threads for each task).

In order to run a pure MPI job, ncpus must be equal to mpiprocs.

EXECUTION LINE IN JOB SCRIPT

mpirun –np 8 ./myprogram

Your parallel executable is launched on the compute nodes via the
command “mpirun”.

With the “–np” flag you can set the number of MPI tasks used for the
execution. The default is the maximum number allowed by the
resources requested.

WARNING:

In order to use mpirun, openmpi-intelmpi has to be loaded.
module load autoload openmpi

DEVELOPING IN COMPUTE NODES:

INTERACTIVE SESSION

It may be easier to compile and develop directly in the compute nodes, without
recurring to a batch job.

For this purpose, you can launch an interactive job to enter inside a compute node
by using PBS.

The node will be reserved to you as it was requested by a regular batch job

Basic interactive submission line:
qsub –I –l select=1 –A <account_name>

Other PBS keyword can be added to the line as well (walltime, resources,…)

EXERCISE 02

1) Compile "test.c" with the compiler (mpicc) in the module

intelmpi/4.1.1--binary

2) Check with:

$ ldd <executable>

the list of required dynamic libraries.

3) Write "job.sh" (you can copy it from exercise 1), modifying the

"select" line

with the following requests:

#PBS -l select=2:ncpus=16:mpiprocs=16:mem=12gb

#PBS -l select=2:ncpus=16:mpiprocs=1:mem=12gb

Run first 32 processes and then 2 processes for each select.

EXERCISE 03

1) Launch an interactive job. You just need to write the same PBS

directives,

without "#PBS" and on the same line, as arguments of "qsub -I"

$ qsub -I ... <arguments>

2) Check whether you are on a different node

3) Check that there's an interactive job running

OUTLINE
• A first step:

– System overview

– Login

– Work environment

• Production environment

– Our first job!!

– Creating a job script

– Accounting and queue system

– PBS commands

• Programming environment

– Module system

– Serial and parallel compilation

– Interactive session

• Dealing with accelerators

– Compiling for GPUs and MICs

– Accelerator job submission

• For further info…

– Useful links and documentation

COMPILING FOR GPUS: CUDA

CUDA is the programming language used for developing HPC applications that
involve the usage of GPUs.
For compiling a GPU application, the module “cuda” is available on EURORA:

module load cuda/5.0.35

The module provides the compilator “nvcc” and optimized GPU-enabled scientific
libraries for linear algebra, FFT, random number generators, and basic algorithms:

CUBLAS: GPU-accelerated BLAS library
CUFFT: GPU-accelerated FFT library
CUSPARSE: GPU-accelerated Sparse Matrix library
CURAND: GPU-accelerated RNG library
CUDA NPP: nVidia Performance Primitives
THRUST: a CUDA library of parallel algorithms with an interface resembling the C++ Standard
Template Library (STL).

COMPILING WITH CUDA

In order to compile an application with the CUDA module, you need to move your
compilation to a compute node. Thus, you need to submit a batch job:

#!/bin/bash
#PBS -l walltime=0:30:00
#PBS -l select=1:ncpus=1
#PBS -o job.out
#PBS -A <myaccount>

cd $PBS_O_WORKDIR
module load gnu #the modules relative to the non-GPU compilation have to be loaded

#before cuda

module load cuda

nvcc –arch=sm_30 –I$CUDA_INC –L$CUDA_LIB –lcublas –o myprog myprog.c

CUDA libraries have to be linked in compilation phase
-arch=sm30 is for exploiting at best the characteristics of EURORA’s architecture

COMPILING WITH CUDA IN

INTERACTIVE

qsub –I -l walltime=0:10:00 -l select=1:ncpus=1 –A <myaccount>

After a short waiting time, you will be prompted inside a computing node. Now you
can compile with CUDA as you would normally do:

module load gnu

module load openmpi/1.6.4--gnu--4.6.3

module load cuda

make

You can exit the interactive session with “exit” or ^D

After a short waiting time, you will be prompted inside a computing node. Now you
can compile with CUDA as you would normally do:

module load gnu

module load openmpi/1.6.4--gnu--4.6.3

module load cuda

make

COMPILING FOR MICS

The MPSS environment (Intel® Manycore Platform Software Stack) for MIC
compiling is available also on the Eurora Front-end nodes. Therefore, you do not
need to be logged inside a compute node to compile a code suited for the MICs.

However, you still have to set the proper environment for MIC compilation:

module load intel (i.e. compiler suite)

module load mkl (if necessary – i.e. math libraries)

source $INTEL_HOME/bin/compilervars.sh intel64 (to set up

the environment variables)

The compilation now differs depending on which you want to compile in
offload or native mode

OFFLOAD AND NATIVE MODE

Offload mode means that the code is run mainly on CPUs but parallel
segments are moved to MICs

Offload mode is resolved mainly with pragmas on the source code and thus
can be compiled as usual:

icpc -openmp hello_offload.cpp -o exe-offload.x

Native mode means that the code is run interely inside the MIC cards

For a native compilation, you have to remember to cross-compile by using
the –mmic flag:

icpc -openmp hello_native.cpp –mmic -o exe-native.x

MIC AND MPI COMPILATION

In order to compile parallel programs for MIC cards, some additional setup
is required:

module load intel (i.e. compiler suite)

module load intelmpi (i.e. mpi library)

module load mkl (if necessary – i.e. math libraries)

source $INTEL_HOME/bin/compilervars.sh intel64 (to set up the

environment variables)

export I_MPI_MIC=enable (to enable mpi on MIC)

Now you can compile as usual. Remember to cross-compile if native!
For Fortran applications, a special “mpifc” compiler has to be used:

mpifc -O3 -mmic mpi_code.f

SUBMITTING JOBS WITH GPUS

Submitting jobs involving GPUs is the same as submitting regular CPUs
jobs. The only difference is that the GPU usage has to be specified:

#!/bin/bash

#PBS -l walltime=30:00

#PBS -l select=1:ncpus=1:ngpus=1

#PBS -o job.out

#PBS -e job.err

#PBS -A <my_account>

cd $PBS_O_WORKDIR

./myCUDAprogram

GPUs have to be required in the PBS resources keyword. The
parameter ngpus specifies the number of GPUs per node

requested (max. 2)

SUBMITTING JOBS WITH MICS

OFFLOAD MODE

Submitting jobs involving MICs (in offload mode) is similar as submitting
regular CPUs or GPUs jobs:

#!/bin/bash

#PBS -o job.out

#PBS -l walltime=0:10:00

#PBS -l select=1:ncpus=1:nmics=1

#PBS -A <my_account>

module load intel

cd $CINECA_SCRATCH

source $INTEL_HOME/bin/compilervars.sh intel64

./exe-offload.x

Like with ngpus, the parameter nmics specifies the number of MIC cards allocated
for each node and can go up to 2. Notice also the necessity to load the

compilervars.sh script.

RUNNING MIC EXECUTABLES

NATIVE MODE

MIC-native codes need to be executed inside the MIC card itself. In order to log
into a MIC card you have to:
- login to a MIC node with a PBS interactive session requesting at least 1 mic
(nmics=1);
- use the "qstat -f <job_id>" command in order to get the name of the specific MIC
card assigned to you;
- connect through ssh into the MIC card (in the example node018-mic1)

qsub -A <account_name> -I -l select=1:ncpus=1:nmics=1

qsub: waiting for job 31085.node129 to start

qsub: job 31085.node129 ready

...

qstat -f 31085.node129

...

exec_vnode = (node018:mem=1048576kb:ncpus=1+node018-mic1:nmics=1)

...

ssh node018-mic1

$

RUNNING MIC EXECUTABLES

NATIVE MODE

At this point you will be prompted in the home space of the MIC card you’ve logged into.
Here, the usual environment variables are not set, therefore the module command won’t
work and your scratch space (which is mounted on the MIC card) has to be indicated with the
full path instead of $CINECA_SCRATCH.

For executing your native-MIC program, you need to set the LD_LIBRARY_PATH
environment variable manually, by adding the path of the intel libraries specific for MIC
execution. You may also need to add also path for mkl and/or tbb (Intel® Thread Building
Blocks) MIC libraries.

When everything is ready, you can launch your code as usual:

cd /gpfs/scratch/userexternal/<myuser>

export LD_LIBRARY_PATH=/cineca/prod/compilers/intel/cs-xe-2013/binary/lib/mic:${LD_LIBRARY_PATH}

export LD_LIBRARY_PATH=/cineca/prod/compilers/intel/cs-xe-2013/binary/mkl/lib/mic:${LD_LIBRARY_PATH}

export LD_LIBRARY_PATH=/cineca/prod/compilers/intel/cs-xe-2013/binary/tbb/lib/mic:${LD_LIBRARY_PATH}

./exe.native.x

MIC NATIVE + MPI

To run MIC native applications that involve MPI, you can stay in the MIC node. Export the
I_MPI_MIC environment variable and use the specific command mpirun.mic. In the execution
line you have to specify the MIC card involved with the flag -host :

export I_MPI_MIC=enable

mpirun.mic -host node018-mic1 -np 30 ./a.out

If you want to use two MIC cards you can set the number of tasks per card via the -perhost
flag:

mpirun.mic -host node018-mic0,node018-mic1 -perhost 15 -np 30 ./a.out

For MPI+OpenMP applications, specify the number of threads involved with the flag –genv :

mpirun.mic -host node018-mic0,node018-mic1 -perhost 1 -np 2 -genv

OMP_NUM_THREADS 120 ./a.out

EXERCISE 04

1) Compile the provided cuda program, after having loaded the

required modules

2) Write a job script for a serial execution (1 chunk, 1 cpu)

that asks also for a gpu device

3) Run the job script

EXERCISE 05a

1) log into a MIC node with a PBS interactive job requesting at least 1

mic (nmics=1);

2) use the "qstat -f <job_id>" command in order to get the name of the

specific MIC card assigned to you;

3) connect through ssh into the MIC card (i.e "ssh node018-mic1")

4) now set LD_LIBRARY_PATH as following:

export LD_LIBRARY_PATH=/cineca/prod/compilers/intel/cs-xe-

2013/binary/lib/mic:${LD_LIBRARY_PATH}

and "cd" to the directory containing the executable

5) launch the execution

./exe-native.x

Exercise 05b

1) compile the provided cpp code for offload mic usage

2) Write a job script that asks for a mic (nmics=1)

3) launch the job with 10 threads (export the

OMP_NUM_THREADS variable)

OUTLINE
• A first step:

– System overview

– Login

– Work environment

• Production environment

– Our first job!!

– Creating a job script

– Accounting and queue system

– PBS commands

• Programming environment

– Module system

– Serial and parallel compilation

– Interactive session

• Dealing with accelerators

– Compiling for GPUs and MICs

– Accelerator job submission

• For further info…

– Useful links and documentation

Useful links and documentation

• Reference guide:

http://www.hpc.cineca.it/content/eurora-user-guide

http://www.hpc.cineca.it/content/eurora-batch-scheduler-pbs

http://www.hpc.cineca.it/content/gpgpu-general-purpose-graphics-processing-unit

http://www.hpc.cineca.it/content/quick-guide-intel-mic-usage

• GPU computing http://www.nvidia.com/object/GPU_Computing.html

• MIC programming http://software.intel.com/en-us/mic-developer

• Stay tuned with the HPC news: http://www.hpc.cineca.it/content/stay-tuned

• HPC CINECA User Support: mail to superc@cineca.it

• HPC Courses: corsi@cineca.it

