
www.cineca.it

A short recap of parallel paradigms

Fabio Affinito, SCAI

www.cineca.it

Why parallel?

In principle, if you have more than one computing processing unit
you can exploit that to:

- Decrease the time to solution
-  Increase the size of the problem to be solved

The perfect parallelism is achieved when all the processes can run
independently to obtain the final result.

Parallelism impacts on:
- The source structure
-  the computer architecture

www.cineca.it

Parallel architectures
A first division, on the architectural side can be:

- Distributed memory systems: each computing unit has its own
memory address space

-  Shared memory systems: computing units (cores/processors)
share the same address space. Knowledge of where data is stored
is no concern of the programmer.

On new MPP this division is not particularly defined. Both the
models can live together.

www.cineca.it

Shared memory Distributed memory

www.cineca.it

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If
the red x still appears, you may have to delete the image and then insert it again.

Intra-node : shared memory approach
Inter-node: distributed memory approach

www.cineca.it

Programming models
Distributed memory systems:

- Message-passing approach. A paradigm to send and receive data among
processes and synchronize them

- Message-passing libraries:

- MPI
- PVM (out-of-date...)

Shared memory systems:

- Thread based programming approach
- Compiler directives (i.e. OpenMP)
- Can be used together with message-passing paradigm

www.cineca.it

Parallel approaches
There are several typical cases of problems that are suitable for a parallel
approach:

- Linear algebra (or FT problems)

- Problems where an inversion/multiplication/diagonalization of matrices can be
partitioned on different processing units. Communications can be important
and it be can be an important limit to the scalability.

- Domain (or functional) decomposition

- Large size problems can be partitioned on different processors. Typical
examples are CFD, geophysical problems, molecular dynamics. Communication
is the limit if the domains are correlated by forces, interactions and so on.

- Parametric studies (high-througput)

- Sensitivity approaches,
- Montecarlo calculations,
- Ensemble techniques

- Communication is close to zero, high scalability.
- .........

www.cineca.it

www.cineca.it

Amdahl’s law

www.cineca.it

Message Passing
Interface

-Each process has its own memory
-Processes communicate among themselves with “messages”
-The interface (API) for message passing is implemented in a
library

-Code contains library calls
-The code must be deeply modified to implement message-passing
algorithms
-If well implemented it can lead to high scalability

www.cineca.it

Message Passing
Interface

-MPI is a message passing standard

• the 3.0 standard specification has been published very recently
• it enforces portability of the code to very different architectures
• it has an interface for Fortran/C/C++ languages
• (also a Python and Java interfaces are available)

www.cineca.it

Types of
communications

Communications are the building blocks of MPI J

They can be distinguished in:

 - Initialization, finalization and sync calls

 - Point to point communications
 - deadlocks
 - blocking/non-blocking

 - Collective calls (data movement, reduction operations, sync)
 - one to many
 - many to one
 - many to many

www.cineca.it

A summary of MPI

- Point-to-point communications

- Collective communications

- One-sided communications

- Communicators

- User-defined datatypes

- Virtual topologies

- MPI I/O

communications

“structure”

www.cineca.it

PROGRAM hello
IMPLICIT NONE
INCLUDE ‘mpif.h’
INTEGER:: myPE, totPEs, i, ierr

CALL MPI_INIT(ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myPE, ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, totPEs, ierr)

PRINT *, “myPE is “, myPE, “of total ”, totPEs, “ PEs”

CALL MPI_FINALIZE(ierr)

END PROGRAM hello

Hello world!

www.cineca.it

PROGRAM hello
IMPLICIT NONE
INCLUDE ‘mpif.h’ <- call the MPI library

CALL MPI_INIT <- let the play start

CALL MPI_COMM_RANK() <- who am I?

CALL MPI_COMM_SIZE() <- how many players are there?

 DO SOME STUFF HERE

CALL MPI_FINALIZE(ierr) <- let’s go back home

END PROGRAM hello

www.cineca.it

•  It is the basic communication method provided by MPI library.

Communication between 2 processes
•  It is conceptually simple: source process A sends a message to
destination process B, B receive the message from A.
•  Communication take places within a communicator
•  Source and Destination are identified by their rank in the
communicator

Point-to-point

§ Communicat
or

§ 1

§ 6

§ 4

§ 3

§ 2

§ 7

§ 0
§ 5

§ Source

§ Dest

www.cineca.it

Most of the MPI point-to-point routines can be used in either
blocking or non-blocking mode.
Blocking:

§  A blocking send returns after it is safe to modify the
application buffer (your send data) for reuse. Safe does
not imply that the data was actually received - it may
very well be sitting in a system buffer.

§  A blocking send can be synchronous
§  A blocking send can be asynchronous if a system buffer is

used to hold the data for eventual delivery to the receive.
§  A blocking receive only "returns" after the data has

arrived and is ready for use by the program.

Blocking mode

www.cineca.it

The image cannot be displayed. Your computer may not have enough memory to open the image, or the
image may have been corrupted. Restart your computer, and then open the file again. If the red x still
appears, you may have to delete the image and then insert it again.

§ Application SEND § Application RECV

§ system buffer § system buffer

§ Processor 1 § Processor 2

Point-to-point flowchart

www.cineca.it

Non blocking

Non-blocking:
§  Non-blocking send and receive routines will return almost

immediately. They do not wait for any communication
events to complete

§  Non-blocking operations simply "request" the MPI library
to perform the operation when it is able. The user can not
predict when that will happen.

§  It is unsafe to modify the application buffer until you
know for a fact the requested non-blocking operation was
actually performed by the library. There are "wait"
routines used to do this.

§  Non-blocking communications are primarily used to
overlap computation with communication.

www.cineca.it

Deadlock or a Race condition occurs when 2 (or more) processes
are blocked and each is waiting for the other to make progress.

§ 0

§ terminate

§ Action A

§ Proceed
§ if 1 has taken

§ action B

§ 1 § init § init

§ compute § compute

§ Action B

§ terminate

§ Proceed
§ if 0 has taken

§ action A

Deadlock

www.cineca.it

PROGRAM deadlock
INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc
INTEGER status(MPI_STATUS_SIZE)
REAL A(2), B(2)

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF(myid .EQ. 0) THEN
 a(1) = 2.0
 a(2) = 4.0
 CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr)
 CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)
ELSE IF(myid .EQ. 1) THEN
 a(1) = 3.0
 a(2) = 5.0
 CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)
 CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr)
END IF
WRITE(6,*) myid, ’: b(1)=’, b(1), ’ b(2)=’, b(2)
CALL MPI_FINALIZE(ierr)
END

www.cineca.it

PROGRAM avoid_lock
INCLUDE ‘mpif.h‘
INTEGER ierr, myid, nproc
INTEGER status(MPI_STATUS_SIZE)
REAL A(2), B(2)

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

IF(myid .EQ. 0) THEN
 a(1) = 2.0
 a(2) = 4.0
 CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr)
 CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr)
ELSE IF(myid .EQ. 1) THEN
 a(1) = 3.0
 a(2) = 5.0
 CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr)
 CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr)
END IF
WRITE(6,*) myid, ’: b(1)=’, b(1), ’ b(2)=’, b(2)
CALL MPI_FINALIZE(ierr)
END

www.cineca.it

Collective communications

Communications involving a group of processes. They are called
by all the ranks involved in a communicator (or a group)

•  Barrier synchronization
•  Broadcast
•  Gather/scatter
•  Reduction

•  Collective communications will not interfere with point-to-point
•  All processes (in a communicator) call the collective function
•  All collective communications are blocking (in MPI 2.0)
•  No tags are required
•  Receive buffers must match in size (number of bytes)

www.cineca.it

An example: Broadcast
PROGRAM broad_cast

INCLUDE ’mpif.h’

INTEGER ierr, myid, nproc, root

INTEGER status(MPI_STATUS_SIZE)

REAL A(2)

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

root = 0

IF(myid .EQ. 0) THEN

 a(1) = 2.0

 a(2) = 4.0

END IF

CALL MPI_BCAST(a, 2, MPI_REAL, 0, MPI_COMM_WORLD, ierr)

WRITE(6,*) myid, ’: a(1)=’, a(1), ’a(2)=’, a(2)

CALL MPI_FINALIZE(ierr)

www.cineca.it

Most used...

MPI_SCATTER

MPI_GATHER

www.cineca.it

There are possible combinations of collective functions.
 For example,

MPI Allgather

It is a combination of a gather + a broadcast

www.cineca.it

For many collective functions there are extended functionalities.

For example it’s possible to define the length of arrays to be
scattered or gathered with

MPI_Scatterv

MPI_Gatherv

www.cineca.it

MPI All to all

This function makes a redistribution of the content of each process
in a way that each process know the buffer of all others. It is a way

to implement the matrix data transposition.

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

www.cineca.it

2

4

3

5

MPI_SUM 14

MPI Reduction

MPI_REDUCE

www.cineca.it

In addition to the default MPI_COMM_WORLD, MPI offers the possibility to
create user-defined communicators to deal with the programmer’s needs.

Each communicator is defined on a group of MPI processes and it redefines
the rank of each process within each communicator.

Collective functions take place only inside a defined communicator.

User defined communicators can be useful when one needs to manage
several levels of parallelism inside the same code.

www.cineca.it

if(myid%2==0){

 color=1;

}else{

 color=2;

}

MPI_COMM_SPLIT(MPI_COMM_WORLD,color,myid,&subcomm);

MPI_COMM_RANK(subcomm,mynewid);

printf(“rank in MPICOMM_WORLD %d”,myid,”rank in Subcomm %d”,mynewid);

I am rank 2 in MPI_COMM_WORLD, but 1 in Comm 1.
I am rank 7 in MPI_COMM_WORLD, but 3 in Comm 2.
I am rank 0 in MPI_COMM_WORLD, but 0 in Comm 1.
I am rank 4 in MPI_COMM_WORLD, but 2 in Comm 1.
I am rank 6 in MPI_COMM_WORLD, but 3 in Comm 1.
I am rank 3 in MPI_COMM_WORLD, but 1 in Comm 2.
I am rank 5 in MPI_COMM_WORLD, but 2 in Comm 2.
I am rank 1 in MPI_COMM_WORLD, but 0 in Comm 2.

www.cineca.it

Virtual topologies are particular communicators that reflect a topology in the
distribution of the processes.

A virtual topology can help the programmer to map a physical problem onto
the MPI map of processes.

This semplifies the writing of the code and it permit to optimize
communications.

MPI provides tools to manage virtual topologies with “mapping functions”.

www.cineca.it

Cartesian topology on a 2D torus

www.cineca.it

- It is an API extension to C/C++ and Fortran languages
- Most compilers support version 3.0

- GNU, IBM, Intel, PGI, etc.

- Used for writing programs for shared memory architectures

www.cineca.it

OpenMP is based on a fork-join model

Master-worker threads

OpenMP is implemented through the use of
pragmas directives within the source code

www.cineca.it

There’s no message passing: all the thread access the same memory address
space: communication is implicit.

Programmers must take care to define:

 - local data
 - shared data

between threads.

www.cineca.it

PROGRAM hellomp
INTEGER numthreads, thread_id,omp_get_num_threads,omp_get_thread_num

!$OMP PARALLEL PRIVATE(NUM_THREADS, THREAD_ID)

NUM_THREADS=OMP_GET_NUM_THREADS()
THREAD_ID=OMP_GET_THREAD_NUM()

WRITE(*,*)’Hello world from thread num ”,THREAD_ID

!$OMP END PARALLEL

END #include <iostream.h>

#include <omp.h>

using namespace std;

int main(int argc, char* argv[]){

 int thread, num_threads;
 #pragma omp parallel private(thread_id, num_threads)
 {
 #if defined(_OPENMP)
 num_threads=omp_get_num_threads();
 thread_id=omp_get_thread_num();
 #endif
 printf(“Hello world from thread num %d”,thread_id);
 }

}

www.cineca.it

API description
int omp_get_num_threads() returns the number of

threads in the concurrent
team

int omp_get_thread_num() returns the id of the thread
inside the parallel region

int omp_get_num_procs() returns the number of
processors in the machine

int omp_get_max_threads() returns the max number of
threads that will be used in
the next parallel region

double omp_get_wtime() returns the number of
seconds since a time in the
past

And more and more...

www.cineca.it

For each parallel region, the programmer should take care to define the data
sharing attributes for each variable, through a number of clauses:

Clause Description
default It sets the default sharing attribute

when no specified explicitly (caution!)

shared Variable is common among threads
private Variable inside the parallel construct

is a new variable

firstprivate Variable is new, but initialized to its
original value

lastprivate Variable’s last value is copied outside
the construct

reduction Variable’s value is reduced at the end
among all threads

www.cineca.it

INTEGER X
X=1
!$ OMP PARALLEL SHARED(X) NUM_THREADS(2)
X=X+1
PRINT*, X
!$ OMP END PARALLEL

It will print EITHER
2 or 3

INTEGER X
X=1
!$ OMP PARALLEL PRIVATE(X) NUM_THREADS(2)
X=X+1
PRINT*, X
!$ OMP END PARALLEL

It will print ANYTHING

INTEGER X
X=1
!$ OMP PARALLEL FIRSTPRIVATE(X) NUM_THREADS(2)
X=X+1
PRINT*, X
!$ OMP END PARALLEL

It will print 2 TWICE

www.cineca.it

OpenMP provides several synchronization mechanisms:

- Barrier (synchronizes all threads inside the parallel region)

- Master (only the master thread will execute the block)

- Critical (only one thread at at time will execute)

- Atomic (same as critical but for one memory location)

- ....

www.cineca.it

INTEGER X
X=1
!$OMP PARALLEL SHARED(X) NUM_THREADS(2)
X=X+1
!$OMP BARRIER
PRINT*,X
!$OMP END PARALLEL

3
3

INTEGER X
X=1
!$OMP PARALLEL SHARED(X) NUM_THREADS(2)
!$OMP MASTER
X=X+1
!$OMP END MASTER
PRINT*,X
!$OMP END PARALLEL

2
2

INTEGER X
X=1
!$OMP PARALLEL SHARED(X) NUM_THREADS(2)
!$OMP ATOMIC
X=X+1
PRINT*,X
!$OMP END PARALLEL

2
3

www.cineca.it

Worksharing constructs:

- Threads cooperate in doing some work

- Thread identifiers are not used in an explicit manner

- Most common use is in loop worksharing

- Worksharing constructs may not be nested

- DO/for directives are used in order to determine a parallel region

www.cineca.it

Int i,j;
#pragma omp parallel
#pragma omp for private(j)
for(i=0;i<N;i++)
{
 for(j=0;j<N,j++)
 m[i][j]=f(i,j);
}

-this loop is parallel on the i variable (private by default)

-j must be declared as private explicitly

-synchronization is implicitly obtained at the end of the loop

www.cineca.it

You may need that in some region a statement is executed by only one
thread, no matter which one.

In this case you can use a SINGLE region.

....

!$omp parallel
...
!$omp single
read *,n
!$omp end single
...
!$omp end parallel

www.cineca.it

Using the schedule clause one can determine the distribution of
computational work among threads:

- static, chunk: the loop is equally divided in pieces of size chunk whic are
evenly distributed among threads in a “round-robin” way

- dynamic,chunk: the loop is equally divided among pieces chunk that are
distributed for execution dynamically to threads. If no chunk is specified,
then chunk=1

- guided: similar to dynamic with the variation that chunk size is reduced
as threads grab iterations

This is configurable with environment variable OMP_SCHEDULE:
-i.e. setenv OMP_SCHEDULE “dynamic,4”

www.cineca.it

www.cineca.it

The reduction clause can be used when a variable is accumulated at the
end of a loop.

Using the reduction clause:

-a private copy per thread is created and initialized

-at the end of the region the compiler safely updates the shared variable

!$omp do reduction(+:x)
do i=1,n
 x=x+a(i)
End do
!$omp end do

www.cineca.it

False sharing

-Memory addresses are grouped into cache lines

-If one element of the cache line is changed, the whole line is invalidated

-If more than one thread is working on the same cache line, this cache line is
continously invalidated and there’s a lot of traffic between cache and memory.

-False sharing is one of the reason of poor scalability in pure OpenMP
approaches

float data[N], total=0;
int ii;
#pragma omp parallel num_threads(N)
{
 int n = omp_get_thread_num();
 data[n] = 0;
 while(moretodo(n))
 data[n] += calculate_something(n);
}
for (ii=0; ii<N; ii++)
 total += data[n];

www.cineca.it

www.cineca.it

float data[N], total=0;
int ii;
#pragma omp parallel num_threads(N) private(data)
{
 int n = omp_get_thread_num();
 data[n] = 0;
 while(moretodo(n))
 data[n] += calculate_something(n);
}
for (ii=0; ii<N; ii++)
 total += data[n];

use private attribute

use padding

www.cineca.it

www.cineca.it

Using together MPI and OpenMP

OpenMP MPI

www.cineca.it

Since MPI2, a support is provided for hybrid programming MPI+OpenMP:

MPI_INIT_THREAD(required, provided,ierr)

There are 4 levels supported:

- MPI_THREAD_SINGLE: no threads are allowed
- MPI_THREAD_FUNNELED: threads are allowed; Only the master thread can
call MPI primitives
- MPI_THREAD_SERIAL: threads are allowed. All threads can call MPI
primitives. Communications are scheduled in a serial manner.
- MPI_THREAD_MULTIPLE: threads are allowed. All threads can call MPI
communication primitives in an arbitrary order

www.cineca.it

INCLUDE ‘mpif.h’
INTEGER :: rnk,sz,n,i,ierr,chunk
INTEGER,PARAMETER :: n=100
REAL*8 :: x(n),y(n),buff(n)

CALL MPI_INIT(ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,rnk,ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,sz,ierr)

chunk=n/sz

CALL MPI_SCATTER(buff(rnk*chunk),chunk,MPI_DOUBLE,x,chunk,MPI_DOUBLE,0, &
& MPI_COMM_WORLD,ierr)
CALL MPI_SCATTER(buff(rnk*chunk),chunk,MPI_DOUBLE,y,chunk,MPI_DOUBLE,0, &
& MPI_COMM_WORLD,ierr)

DO i=1,chunk
 x(i)=x(i)+y(i)
END DO

CALL MPI_GATHER(x,chunk,MPI_DOUBLE,buff,chunk,MPI_DOUBLE,0,MPI_COMM_WORLD,ierr)

CALL MPI_FINALIZE(ierr)

END

www.cineca.it

...

INTEGER :: i
INTEGER, PARAMETER :: n=100
REAL*8 :: x(n),y(n),buff(n)

!$OMP PARALLEL DO PRIVATE(i) SHARED(x,y)
DO i=1,n
 x(i)=x(i)+y(i)
END DO

www.cineca.it

INCLUDE ‘mpif.h’
INTEGER :: rnk,sz,n,i,ierr,info,chunk
INTEGER,PARAMETER :: n=100
REAL*8 :: x(n),y(n),buff(n)

CALL MPI_INIT_THREAD(MPI_THREAD_FUNNELED,info,ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,rnk,ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,sz,ierr)

chunk=n/sz

CALL MPI_SCATTER(buff(rnk*chunk),chunk,MPI_DOUBLE,x,chunk,MPI_DOUBLE,0, &
& MPI_COMM_WORLD,ierr)
CALL MPI_SCATTER(buff(rnk*chunk),chunk,MPI_DOUBLE,y,chunk,MPI_DOUBLE,0, &
& MPI_COMM_WORLD,ierr)

!$OMP PARALLEL DO
DO i=1,chunk
 x(i)=x(i)+y(i)
END DO
!$OMP END PARALLEL

CALL MPI_GATHER(x,chunk,MPI_DOUBLE,buff,chunk,MPI_DOUBLE,0,MPI_COMM_WORLD,ierr)

CALL MPI_FINALIZE(ierr)

END

