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Why parallel? 

In principle, if you have more than one computing processing unit 
you can exploit that to: 
 
- Decrease the time to solution 
-  Increase the size of the problem to be solved 
 
The perfect parallelism is achieved when all the processes can run 
independently to obtain the final result. 
 
Parallelism impacts on: 
- The source structure 
-  the computer architecture 
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Parallel architectures 
A first division, on the architectural side can be: 
 
- Distributed memory systems: each computing unit has its own 
memory address space 
 
-  Shared memory systems: computing units (cores/processors) 
share the same address space. Knowledge of where data is stored 
is no concern of the programmer. 
 
 
On new MPP this division is not particularly defined. Both the 
models can live together.  
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Shared memory  Distributed memory 
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The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If 
the red x still appears, you may have to delete the image and then insert it again.

Intra-node : shared memory approach 
Inter-node: distributed memory approach 
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Programming models 
Distributed memory systems: 
 
- Message-passing approach. A paradigm to send and receive data among 
processes and synchronize them 
 
- Message-passing libraries: 

- MPI 
- PVM (out-of-date...) 

Shared memory systems: 
 
- Thread based programming approach 
- Compiler directives (i.e. OpenMP) 
- Can be used together with message-passing paradigm 
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Parallel approaches 
There are several typical cases of problems that are suitable for a parallel 
approach: 
 
- Linear algebra (or FT problems) 

- Problems where an inversion/multiplication/diagonalization of matrices can be 
partitioned on different processing units. Communications can be important 
and it be can be an important limit to the scalability. 

 
- Domain (or functional) decomposition 

- Large size problems can be partitioned on different processors. Typical 
examples are CFD, geophysical problems, molecular dynamics. Communication 
is the limit if the domains are correlated by forces, interactions and so on. 

 
- Parametric studies (high-througput) 

- Sensitivity approaches, 
- Montecarlo calculations, 
- Ensemble techniques 

- Communication is close to zero, high scalability. 
- ......... 
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Amdahl’s law 
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Message Passing 
Interface 

-Each process has its own memory 
-Processes communicate among themselves with “messages”  
-The interface (API) for message passing is implemented in a 
library 
 
-Code contains library calls  
-The code must be deeply modified to implement message-passing 
algorithms 
-If well implemented it can lead to high scalability  
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Message Passing 
Interface 

-MPI is a message passing standard   
  

• the 3.0 standard specification has been published very recently  
• it enforces portability of the code to very different architectures 
• it has an interface for Fortran/C/C++ languages  
• (also a Python and Java interfaces are available) 
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Types of 
communications 

Communications are the building blocks of MPI J 
 
They can be distinguished in: 
 

 - Initialization, finalization and sync calls 
 

 - Point to point communications 
  - deadlocks 
  - blocking/non-blocking 

 
 - Collective calls (data movement, reduction operations, sync) 
  - one to many 
  - many to one 
  - many to many 
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A summary of MPI 

- Point-to-point communications 
 
- Collective communications 
 
- One-sided communications 
 
- Communicators 
 
- User-defined datatypes 
 
- Virtual topologies 
 
- MPI I/O 

communications 

“structure” 
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PROGRAM hello 
IMPLICIT NONE 
INCLUDE ‘mpif.h’ 
INTEGER:: myPE, totPEs, i, ierr 
  
CALL MPI_INIT(ierr) 
 
CALL MPI_COMM_RANK( MPI_COMM_WORLD, myPE, ierr ) 
 
CALL MPI_COMM_SIZE( MPI_COMM_WORLD, totPEs, ierr ) 
 
PRINT *, “myPE is “, myPE, “of total ”, totPEs, “ PEs” 
 
CALL MPI_FINALIZE(ierr) 
 
END PROGRAM hello 

Hello world! 
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PROGRAM hello 
IMPLICIT NONE 
INCLUDE ‘mpif.h’              <- call the MPI library 
 
CALL MPI_INIT                 <- let the play start 
 
CALL MPI_COMM_RANK( )         <- who am I? 
         
CALL MPI_COMM_SIZE( )         <- how many players are there? 
 

   DO SOME STUFF HERE  
 
 
CALL MPI_FINALIZE(ierr)       <- let’s go back home 
 
END PROGRAM hello 
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•  It is the basic communication method provided by MPI library.  
 
Communication between 2 processes 
•  It is conceptually simple: source process A sends a message to 
destination process B, B receive the message from A.  
•  Communication take places within a communicator 
•   Source and Destination are identified by their rank in the 
communicator 

Point-to-point 

§ Communicat
or 

§ 1 

§ 6 

§ 4 

§ 3 

§ 2 

§ 7 

§ 0 
§ 5 

§ Source 

§ Dest 
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Most of the MPI point-to-point routines can be used in either 
blocking or non-blocking mode.  
Blocking:  

§  A blocking send returns after it is safe to modify the 
application buffer (your send data) for reuse. Safe does 
not imply that the data was actually received - it may 
very well be sitting in a system buffer.  

§  A blocking send can be synchronous  
§  A blocking send can be asynchronous if a system buffer is 

used to hold the data for eventual delivery to the receive.  
§  A blocking receive only "returns" after the data has 

arrived and is ready for use by the program.  

Blocking mode 
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The image cannot be displayed. Your computer may not have enough memory to open the image, or the 
image may have been corrupted. Restart your computer, and then open the file again. If the red x still 
appears, you may have to delete the image and then insert it again.

§ Application SEND § Application RECV 

§ system buffer § system buffer 

§ Processor 1 § Processor 2 

Point-to-point flowchart 
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Non blocking 

Non-blocking:  
§  Non-blocking send and receive routines will return almost 

immediately. They do not wait for any communication 
events to complete 

§  Non-blocking operations simply "request" the MPI library 
to perform the operation when it is able. The user can not 
predict when that will happen.  

§  It is unsafe to modify the application buffer until you 
know for a fact the requested non-blocking operation was 
actually performed by the library. There are "wait" 
routines used to do this.  

§  Non-blocking communications are primarily used to 
overlap computation with communication.  
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Deadlock or a Race condition occurs when 2 (or more) processes 
are blocked and each is waiting for the other to make progress. 

§ 0 

§ terminate 

§ Action A 

§ Proceed  
§ if 1 has taken  

§ action B 

§ 1 § init § init 

§ compute § compute 

§ Action B 

§ terminate 

§ Proceed  
§ if 0 has taken  

§ action A 

Deadlock 
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PROGRAM deadlock 
INCLUDE ‘mpif.h‘ 
INTEGER ierr, myid, nproc 
INTEGER status(MPI_STATUS_SIZE) 
REAL A(2), B(2) 
 
CALL MPI_INIT(ierr) 
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr) 
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr) 
 
IF( myid .EQ. 0 ) THEN 
  a(1) = 2.0 
  a(2) = 4.0 
  CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr) 
  CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr) 
ELSE IF( myid .EQ. 1 ) THEN 
  a(1) = 3.0 
  a(2) = 5.0 
  CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr) 
  CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr) 
END IF 
WRITE(6,*) myid, ’: b(1)=’, b(1), ’ b(2)=’, b(2) 
CALL MPI_FINALIZE(ierr) 
END 
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PROGRAM avoid_lock 
INCLUDE ‘mpif.h‘ 
INTEGER ierr, myid, nproc 
INTEGER status(MPI_STATUS_SIZE) 
REAL A(2), B(2) 
 
CALL MPI_INIT(ierr) 
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr) 
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr) 
 
IF( myid .EQ. 0 ) THEN 
  a(1) = 2.0 
  a(2) = 4.0 
  CALL MPI_RECV(b, 2, MPI_REAL, 1, 11, MPI_COMM_WORLD, status, ierr) 
  CALL MPI_SEND(a, 2, MPI_REAL, 1, 10, MPI_COMM_WORLD, ierr) 
ELSE IF( myid .EQ. 1 ) THEN 
  a(1) = 3.0 
  a(2) = 5.0 
  CALL MPI_SEND(a, 2, MPI_REAL, 0, 11, MPI_COMM_WORLD, ierr) 
  CALL MPI_RECV(b, 2, MPI_REAL, 0, 10, MPI_COMM_WORLD, status, ierr) 
END IF 
WRITE(6,*) myid, ’: b(1)=’, b(1), ’ b(2)=’, b(2) 
CALL MPI_FINALIZE(ierr) 
END 
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Collective communications 

Communications involving a group of processes. They are called 
by all the ranks involved in a communicator (or a group) 

 
•  Barrier synchronization 
•  Broadcast 
•  Gather/scatter 
•  Reduction 
 
•  Collective communications will not interfere with point-to-point 
•  All processes (in a communicator) call the collective function 
•  All collective communications are blocking (in MPI 2.0) 
•  No tags are required 
•  Receive buffers must match in size (number of bytes)   
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An example: Broadcast 
PROGRAM broad_cast 

INCLUDE ’mpif.h’ 

INTEGER ierr, myid, nproc, root 

INTEGER status(MPI_STATUS_SIZE) 

REAL A(2) 

CALL MPI_INIT(ierr) 

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr) 

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr) 

root = 0 

IF( myid .EQ. 0 ) THEN 

  a(1) = 2.0 

  a(2) = 4.0 

END IF 

CALL MPI_BCAST(a, 2, MPI_REAL, 0, MPI_COMM_WORLD, ierr) 

WRITE(6,*) myid, ’: a(1)=’, a(1), ’a(2)=’, a(2) 

CALL MPI_FINALIZE(ierr) 
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Most used... 

MPI_SCATTER 

MPI_GATHER 
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There are possible combinations of collective functions. 
 For example, 

 
MPI Allgather 

 
It is a combination of a gather + a broadcast 
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For many collective functions there are extended functionalities. 
 

For example it’s possible to define the length of arrays to be 
scattered or gathered with  

 
MPI_Scatterv 

 
MPI_Gatherv 



www.cineca.it 

MPI All to all  
 

This function makes a redistribution of the content of each process 
in a way that each process know the buffer of all others. It is a way 

to implement the matrix data transposition. 

a1 a2 a3 a4 

b1 b2 b3 b4 

c1 c2 c3 c4 

d1 d2 d3 d4 

a1 b1 c1 d1 

a2 b2 c2 d2 

a3 b3 c3 d3 

a4 b4 c4 d4 
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2

4

3

5

MPI_SUM 14 

MPI Reduction 
 

MPI_REDUCE 
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In addition to the default MPI_COMM_WORLD, MPI offers the possibility to 
create user-defined communicators to deal with the programmer’s needs. 
 
Each communicator is defined on a group of MPI processes and it redefines 
the rank of each process within each communicator. 
 
Collective functions take place only inside a defined communicator. 
 
User defined communicators can be useful when one needs to manage 
several levels of parallelism inside the same code. 
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if(myid%2==0){ 

 color=1; 

}else{ 

 color=2; 

} 

MPI_COMM_SPLIT(MPI_COMM_WORLD,color,myid,&subcomm); 

MPI_COMM_RANK(subcomm,mynewid); 

printf(“rank in MPICOMM_WORLD %d”,myid,”rank in Subcomm %d”,mynewid); 

I am rank 2 in MPI_COMM_WORLD, but 1 in Comm 1. 
I am rank 7 in MPI_COMM_WORLD, but 3 in Comm 2. 
I am rank 0 in MPI_COMM_WORLD, but 0 in Comm 1. 
I am rank 4 in MPI_COMM_WORLD, but 2 in Comm 1. 
I am rank 6 in MPI_COMM_WORLD, but 3 in Comm 1. 
I am rank 3 in MPI_COMM_WORLD, but 1 in Comm 2. 
I am rank 5 in MPI_COMM_WORLD, but 2 in Comm 2. 
I am rank 1 in MPI_COMM_WORLD, but 0 in Comm 2. 
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Virtual topologies are particular communicators that reflect a topology in the 
distribution of the processes. 
 
A virtual topology can help the programmer to map a physical problem onto 
the MPI map of processes.  
 
This semplifies the writing of the code and it permit to optimize 
communications.  
 
MPI provides tools to manage virtual topologies with “mapping functions”. 
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Cartesian topology on a 2D torus 
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- It is an API extension to C/C++ and Fortran languages 
- Most compilers support version 3.0 

- GNU, IBM, Intel, PGI, etc.  
 
 

- Used for writing programs for shared memory architectures 
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OpenMP is based on a fork-join model 
 
Master-worker threads  

OpenMP is implemented through the use of 
pragmas directives within the source code 
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There’s no message passing: all the thread access the same memory address 
space: communication is implicit. 
 
Programmers must take care to define: 
 

 - local data 
 - shared data  

 
between threads. 
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PROGRAM hellomp 
INTEGER numthreads, thread_id,omp_get_num_threads,omp_get_thread_num 
 
!$OMP PARALLEL PRIVATE(NUM_THREADS, THREAD_ID) 
 
NUM_THREADS=OMP_GET_NUM_THREADS() 
THREAD_ID=OMP_GET_THREAD_NUM() 
 
WRITE(*,*)’Hello world from thread num ”,THREAD_ID 
 
!$OMP END PARALLEL 
 
END #include <iostream.h> 

#include <omp.h> 
 
using namespace std; 
 
int main(int argc, char* argv[]){ 

 int thread, num_threads; 
 #pragma omp parallel private(thread_id, num_threads) 
 { 
  #if defined(_OPENMP) 
   num_threads=omp_get_num_threads(); 
   thread_id=omp_get_thread_num(); 
  #endif 
 printf(“Hello world from thread num %d”,thread_id); 
 } 

} 
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API description 
int omp_get_num_threads() returns the number of 

threads in the concurrent 
team 

int omp_get_thread_num() returns the id of the thread 
inside the parallel region 

int omp_get_num_procs() returns the number of 
processors in the machine 

int omp_get_max_threads() returns the max number of 
threads that will be used in 
the next parallel region 

double omp_get_wtime() returns the number of 
seconds since a time in the 
past 

And more and more... 
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For each parallel region, the programmer should take care to define the data 
sharing attributes for each variable, through a number of clauses: 
 

Clause Description 
default It sets the default sharing attribute 

when no specified explicitly (caution!) 

shared Variable is common among threads 
private Variable inside the parallel construct 

is a new variable 

firstprivate Variable is new, but initialized to its 
original value 

lastprivate Variable’s last value is copied outside 
the construct 

reduction Variable’s value is reduced at the end 
among all threads 
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INTEGER X 
X=1 
!$ OMP PARALLEL SHARED(X) NUM_THREADS(2) 
X=X+1 
PRINT*, X 
!$ OMP END PARALLEL 

It will print EITHER 
2 or 3 

INTEGER X 
X=1 
!$ OMP PARALLEL PRIVATE(X) NUM_THREADS(2) 
X=X+1 
PRINT*, X 
!$ OMP END PARALLEL 

It will print ANYTHING 

INTEGER X 
X=1 
!$ OMP PARALLEL FIRSTPRIVATE(X) NUM_THREADS(2) 
X=X+1 
PRINT*, X 
!$ OMP END PARALLEL 
 

It will print 2 TWICE 
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OpenMP provides several synchronization mechanisms: 
 
 
 
- Barrier (synchronizes all threads inside the parallel region) 
 
- Master (only the master thread will execute the block) 
 
- Critical (only one thread at at time will execute) 
 
- Atomic (same as critical but for one memory location) 
 
- .... 
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INTEGER X 
X=1 
!$OMP PARALLEL SHARED(X) NUM_THREADS(2) 
X=X+1 
!$OMP BARRIER 
PRINT*,X  
!$OMP END PARALLEL 

3 
3 

INTEGER X 
X=1 
!$OMP PARALLEL SHARED(X) NUM_THREADS(2) 
!$OMP MASTER 
X=X+1 
!$OMP END MASTER 
PRINT*,X  
!$OMP END PARALLEL 

2 
2 

INTEGER X 
X=1 
!$OMP PARALLEL SHARED(X) NUM_THREADS(2) 
!$OMP ATOMIC 
X=X+1 
PRINT*,X  
!$OMP END PARALLEL 

2 
3 
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Worksharing constructs: 
 
- Threads cooperate in doing some work 
 
- Thread identifiers are not used in an explicit manner 
 
- Most common use is in loop worksharing 
 
- Worksharing constructs may not be nested 
 
 
 
- DO/for directives are used in order to determine a parallel region 
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Int i,j; 
#pragma omp parallel 
#pragma omp for private(j) 
for(i=0;i<N;i++) 
{ 
  for(j=0;j<N,j++) 
    m[i][j]=f(i,j); 
} 

-this loop is parallel on the i variable (private by default) 
 
-j must be declared as private explicitly 
 
-synchronization is implicitly obtained at the end of the loop 
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You may need that in some region a statement is executed by only one 
thread, no matter which one. 
 
In this case you can use a SINGLE region. 
 
 

.... 
 
!$omp parallel 
... 
!$omp single 
read *,n 
!$omp end single 
... 
!$omp end parallel 
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Using the schedule clause one can determine the distribution of 
computational work among threads: 
 
- static, chunk: the loop is equally divided in pieces of size chunk whic are 
evenly distributed among threads in a “round-robin” way 
 
- dynamic,chunk: the loop is equally divided among pieces chunk that are 
distributed for execution dynamically to threads. If no chunk is specified, 
then chunk=1 
 
- guided: similar to dynamic with the variation that chunk size is reduced 
as threads grab iterations 
 
This is configurable with environment variable OMP_SCHEDULE: 
-i.e. setenv OMP_SCHEDULE “dynamic,4” 
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The reduction clause can be used when a variable is accumulated at the 
end of a loop. 
 
Using the reduction clause: 
 
-a private copy per thread is created and initialized 
 
-at the end of the region the compiler safely updates the shared variable 
 
 

!$omp do reduction(+:x) 
do i=1,n 
  x=x+a(i) 
End do 
!$omp end do 
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False sharing 

-Memory addresses are grouped into cache lines 
 
-If one element of the cache line is changed, the whole line is invalidated 
 
-If more than one thread is working on the same cache line, this cache line is 
continously invalidated and there’s a lot of traffic between cache and memory. 
 
-False sharing is one of the reason of poor scalability in pure OpenMP 
approaches 

float data[N], total=0; 
int ii; 
#pragma omp parallel num_threads(N) 
{ 
  int n = omp_get_thread_num(); 
  data[n] = 0; 
  while(moretodo(n)) 
    data[n] += calculate_something(n); 
} 
for (ii=0; ii<N; ii++) 
  total += data[n]; 
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float data[N], total=0; 
int ii; 
#pragma omp parallel num_threads(N) private(data) 
{ 
  int n = omp_get_thread_num(); 
  data[n] = 0; 
  while(moretodo(n)) 
    data[n] += calculate_something(n); 
} 
for (ii=0; ii<N; ii++) 
  total += data[n]; 

use private attribute 

use padding 
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Using together MPI and OpenMP 

OpenMP MPI 
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Since MPI2, a support is provided for hybrid programming MPI+OpenMP: 
 
MPI_INIT_THREAD(required, provided,ierr) 
 
There are 4 levels supported: 
 
- MPI_THREAD_SINGLE: no threads are allowed 
- MPI_THREAD_FUNNELED: threads are allowed; Only the master thread can 
call MPI primitives 
- MPI_THREAD_SERIAL: threads are allowed. All threads can call MPI 
primitives. Communications are scheduled in a serial manner. 
- MPI_THREAD_MULTIPLE: threads are allowed. All threads can call MPI 
communication primitives in an arbitrary order 
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INCLUDE ‘mpif.h’ 
INTEGER :: rnk,sz,n,i,ierr,chunk 
INTEGER,PARAMETER :: n=100 
REAL*8  :: x(n),y(n),buff(n) 
 
CALL MPI_INIT(ierr) 
CALL MPI_COMM_RANK(MPI_COMM_WORLD,rnk,ierr) 
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,sz,ierr) 
 
chunk=n/sz 
 
CALL MPI_SCATTER(buff(rnk*chunk),chunk,MPI_DOUBLE,x,chunk,MPI_DOUBLE,0,   & 
&               MPI_COMM_WORLD,ierr) 
CALL MPI_SCATTER(buff(rnk*chunk),chunk,MPI_DOUBLE,y,chunk,MPI_DOUBLE,0,   & 
&               MPI_COMM_WORLD,ierr) 
 
DO i=1,chunk 
  x(i)=x(i)+y(i) 
END DO 
 
CALL MPI_GATHER(x,chunk,MPI_DOUBLE,buff,chunk,MPI_DOUBLE,0,MPI_COMM_WORLD,ierr) 
 
CALL MPI_FINALIZE(ierr) 
 
END 
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... 
 
INTEGER :: i 
INTEGER, PARAMETER :: n=100 
REAL*8  :: x(n),y(n),buff(n) 
 
 
!$OMP PARALLEL DO PRIVATE(i) SHARED(x,y) 
DO i=1,n 
  x(i)=x(i)+y(i) 
END DO  
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INCLUDE ‘mpif.h’ 
INTEGER :: rnk,sz,n,i,ierr,info,chunk 
INTEGER,PARAMETER :: n=100 
REAL*8  :: x(n),y(n),buff(n) 
 
CALL MPI_INIT_THREAD(MPI_THREAD_FUNNELED,info,ierr) 
CALL MPI_COMM_RANK(MPI_COMM_WORLD,rnk,ierr) 
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,sz,ierr) 
 
chunk=n/sz 
 
CALL MPI_SCATTER(buff(rnk*chunk),chunk,MPI_DOUBLE,x,chunk,MPI_DOUBLE,0,   & 
&               MPI_COMM_WORLD,ierr) 
CALL MPI_SCATTER(buff(rnk*chunk),chunk,MPI_DOUBLE,y,chunk,MPI_DOUBLE,0,   & 
&               MPI_COMM_WORLD,ierr) 
 
!$OMP PARALLEL DO 
DO i=1,chunk 
  x(i)=x(i)+y(i) 
END DO 
!$OMP END PARALLEL 
 
CALL MPI_GATHER(x,chunk,MPI_DOUBLE,buff,chunk,MPI_DOUBLE,0,MPI_COMM_WORLD,ierr) 
 
CALL MPI_FINALIZE(ierr) 
 
END 
 


