
Debugging tools on the CINECA BG/Q
(FERMI)

Andrew Emerson and Alessandro Marani

a.emerson@cineca.it, a.marani@cineca.it

Dept. SCAI

CINECA

Contents

• Introduction

• FERMI Architecture

• Compilation flags

• Core files and addr2line

• GDB

• Totalview

• Other tools

• Hands-on

Debugging on multi-core architectures

• Many programmers start off debugging by adding
printf (C) or write(*,*) (FORTRAN);

• For multi-task, parallel MPI programs this becomes

complex;

• Further complicated by multi-threaded codes –
printf or write doesn’t scale to multi-thousand

core, threaded systems. (printf has been known

to bring down filesystems in extreme cases.)

Debugging on FERMI – before you start

Finding program bugs on a BG/Q no exception:

• FERMI jobs may have many tens of thousands of cores;

• it is not possible to log directly on the compute nodes;

• error messages are often vague, and core files may be
rather incomprehensible.

.. …

There are some tools that can help but you need to

understand the system architecture first..

Simplified BG/Q architecture

LAN

I/O

nodes

compute nodes front end nodes

users

File servers

Each job must at have at
least one I/O node.
On BG/Q gdb debugging
is done via the I/O nodes.

Compiling for a debug session

3 flags (IBM compiler) are required for compiling a

program that can be analyzed by debugging tools:

-g : integrates debugging symbols on your code, making them

“human readable” when analyzed from debuggers

-O0 :* avoids any optimization on your code, making it

execute the instructions in the exact order they’re

implemented

-qfullpath : Causes the full name of all source files to be added

to the debug information

Other useful flags

-qcheck Helps detecting some array-bound violations, aborting

 with SIGTRAP at runtime

-qflttrap Helps detecting some floating-point exceptions, aborting

 with SIGTRAP at runtime

-qhalt=<sev> Stops compilation if encountering an error of the

 specified lever of severity

-qformat Warns of possible problems with I/O format specification

(C/C++) (printf,scanf…)

-qkeepparm ensures that function parameters are stored on

 the stack even if the application is optimized.

FERMI debugging tools

GDB

addr2line

Totalview

Core files

Blue Gene core files are lightweight text files

Hexadecimal addresses in section STACK describe function call chain until
program exception. It’s the section delimited by tags: +++STACK / —STACK

In particular, “Saved Link Reg” column is the one we need!

addr2line

If nothing is specified, an unsuccesful job

generates a text core file for the processes

that caused the crash…

…however, those core files are all but easily readable!

addr2line is an utility that permits to get from this file

information about where the job crashed

using addr2line

From the core file output, save only the addresses in the
Saved Link Reg column:

Replace the first eight 0s with 0x:

If you load the module “superc”, a simple script called “a2l-
translate” is capable of doing the replacement for you:
a2l-translate corefile

Launch addr2line:
addr2line –e ./myexe 0x018b2678

addr2line –e ./myexe < addresses.txt

GDB

On FERMI, GDB is available both for

front-end and back-end applications

Front-end: gdb <exe>
Back-end: /bgsys/drivers/ppcfloor/gnu-
linux/bin/powerpc64-bgq-linux-gdb <exe>

GDB

It is possible to make a post-mortem analysis of the binary
core files generated by the job:

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-
bgq-linux-gdb <exe> <corefile>

To generate binary core files, add the following envs to
runjob:

--envs BG_COREDUMPONEXIT=1
--envs BG_COREDUMPBINARY=*

‘*’ means “all the processes”. It is possible to indicate

which ranks generate its core by specifying its number.

Note that core files are not always generated by errors related to
insufficient memory (more memory allocated than available).

GDB – remote access

The Blue Gene/Q system includes support for using GDB
real-time with applications running on compute nodes.

IBM provides a simple debug server called gdbserver. Each
running instance of GDB is associated with one process or
rank (also called GDB client).

Each instance of a GDB client can connect to and debug one
process. To debug multiple processes at the same time, run
multiple GDB tools at the same time. A maximum of four
GDB tools can be run on one job.

…so, how to do that?

Using GDB on running applications

1) First of all, submit your job as usual;
llsubmit <jobscript>

2) Then, get your job ID;
llq -u $USER

3) Use it for getting the BG Job ID;
llq -l <jobID> | grep “Job Id”

4) Start the gdb-server tool;
start_tool --tool

/bgsys/drivers/ppcfloor/ramdisk/distrofs/cios/sbin/gdbtool --

args “--rank=<rank #> --listen_port=10000” --id <BG Job ID>

5) Get the IP address for your process;
dump_proctable --id <BG Job ID> --rank <rank #> --host sn01-io

Using GDB on running applications

6) Launch GDB! (back-end version);
 /bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gdb
./myexe

7) Connect remotely to your job process;
(gdb) target remote <IP address>:10000

8) Start debugging!!!

(Although you aren’t completely free…for example, command
‘run’ does not work)

Totalview

TotalView is a GUI-based source code

defect analysis tool that gives you control

over processes and thread execution and

visibility into program state and variables.

It allows you to debug one or many processes and/or threads

with complete control over program execution.

Running a Totalview execution in back-end can be a bit tricky, as

it requires connection from FERMI to your local machine via ssh

tunneling to VNC server.

Using Totalview: preliminaries

In order to use Totalview, first you need to have
downloaded and installed VNCviewer on your local
machine.
(http://www.realvnc.com/download/viewer/)

Windows users will also find useful Cygwin, a

Linux-like environment for Windows. During

installation, be sure to select “openSSH” from

the list of available packages.

(http://cygwin.com/setup.exe)

Once all the required softwares are installed, we are ready to

start preparing our Totalview session!

Using Totalview: preparation

1) On FERMI, load tightvnc module;
module load tightvnc

2) Execute the script vncserver_wrapper;
vncserver_wrapper

3) Instructions will appear. Copy/paste to your local machine
(Cygwin shell if Windows) this line from those instructions:

ssh -L 59xx:localhost:59xx -L 58xx:localhost:58xx –N

<username>@login<no>.fermi.cineca.it

where xx is your VNC display number, and <no> is the number of
the front-end node you’re logged into (01,02,07 or 08)

4) Open VNCViewer. On Linux, use another local shell
and type:

vncviewer localhost:xx

On Windows, double click on VNCviewer icon and write
localhost:xx when asked for the server. Type your VNC
password (or choose it, if it’s your first visit)

Using Totalview: job script setting

5) Inside your job script, you have to load the proper module
and export the DISPLAY environment variable:

 module load profile/advanced totalview
 export DISPLAY=fen<no>:xx

 where xx and <no> are as the above slide (you’ll find the
correct DISPLAY name to export in vncserver_wrapper
instructions)

6) Totalview execution line (inside your LoadLeveler script) will
be

 as follows:
 totalview runjob –a <runjob arguments: --np, --exe, --args…>

7) Launch the job. When it will start running, you will find a
 Totalview window opened on your VNCviewer display!
 Closing Totalview will also kill the job.

Using Totalview: start debugging

Select “BlueGene” as a

parallel system, and a number

of tasks and nodes according to

the arguments you gave to

runjob during submission

phase.

Click “Go” (the green arrow)

on the next screen and your

application will start running.

WARNING: due to license issues, you are NOT allowed to run

Totalview sessions with more than 1024 tasks

simultaneously!!!

Out from Totalview

When you’ve finished using Totalview, please follow this

procedure in order to close the session safely:

Close VNCviewer on your local machine;

2) Kill the VNCserver on FERMI:

vncserver kill :x

x is the usual VNC display number, without the initial 0 (if present);

3) On your first local shell, close the ssh tunneling connection
with CTRL+C.

Totalview Remote Display Client

An easier (and maybe safer)
way to use Totalview is
Totalview RDC (Remote Display
Client), a simple tool that
helps with submitting a job
already set with the proper
characteristics (and with no
VNC involved)

RDC procedure isn’t fully operative yet, since we encountered

some firewall issues that lead to different behaviours

depending on the single workstation settings

Our System Administrators are looking into it.

Connecting with RDC will be soon a possibility!!

Totalview and Openmp programs

• Debugging OpenMP code is similar to multi-threaded

(MPI) code.

• But since OpenMP compilers alters your code in

particular ways (by creating outlined routines from

parallel regions) there are things you should know:

– Since a compiler can generate multiple outlined routines from

a single parallel region a single line of source code can

generate multiple machine blocks in different functions.

– You can’t step into /out of a parallel region. Set a breakpoint

inside and let the process run into it. You can then single step

in it.

– For loops, best to use static scheduling rather than dynamic.

Knowing which threads execute each iteration aids debugging.

Totalvew and OpenMP

Worker thread Master thread

Outlined

routine name

OpenMP Private and Shared variables

• Private variables are held by the compiler in the
outlined routine and treated like local variables.

• Shared variables are kept in the stack frame of the
master thread’s routine.

• In Totalview you can view shared variables either by
looking at the master thread or via an OpenMP worker
thread. In the latter case Totalview will use the master
thread context to find the shared variable.

Totalview licensing

Totalview costs money and we only have limited
licenses:

– 1024 Totalview_Team tokens bluegene-power
(FERMI);

– 128 Totalview_TeamPlus tokens for linux-x86
(PLX, ARPA);

– 128 CUDA tokens for linux-x86 for debugging with
GPU (PLX);

– 128 Replay tokens for linux-x86 for Reverse
Debugging with ReplayEngine.

1 core = 1 token so on FERMI it is easy to use the
entire license!

Totalview licensing

Some considerations:

–Use the minimum number of cores and time

necessary for the debugging;

–You can check the token usage of all users directly

on Fermi:

– module load totalview

– lmstat –c $LM_LICENSE_FILE –a

According to experience, we may introduce limits to

prevent excessive usage.

Other tools

Valgrind (PLX only)

– Useful for debugging the memory, e.g. memory

leaks.

Allinea DDT (recently installed on Fermi)

– Graphical debugger

– Strong feature set ideal for hybrid applications.

• Memory debugging

• Data analysis

Debugging Hands-on

• Now it’s your turn....

