MPI-3.0 Overview

Gian Franco Marras!

LCINECA - SuperComputing Applications and Innovation Department - SCAI, Via
Magnanelli 6/3, 40033 Casalecchio di Reno, Bologna (Bo),
g.marras@cineca.it

February 11-15, 2013

Introduction MPI documents
Implementations of the MPI-3.0 standard

Outline

© Introduction
@ MPI documents
@ Implementations of the MPI-3.0 standard

© Background of MPI-3.0
@ Fortran 2008 binding
@ Nonblocking Collectives
@ Neighborhood Collective Communication

@ Extension to one-side operations
@ Extending MPI with Integrated Shared Memory
@ RMA interface for shared memory

Introduction MPI documents
Implementations of the MPI-3.0 standard

@ MPI documents

o MPI 3.0 document as PDF
o Versions of MPI 3.0 with alternate formatting
¢ Errata for MPI 3.0

http://www.mpi-forum.org

Implementat

Introduction MPI documents
Implementations of the MPI-3.0 standard

openmpi-1.7: http://www.open-mpi.org/software/ompi/v1.7/
@ Added MPI-3 functionality:

9

¢ ¢ ¢ ¢ ¢

MPI_GET_LIBRARY_VERSION

Matched probe
MPI_TYPE_CREATE_HINDEXED_BLOCK
Non-blocking collectives

MPI_INFO_ENV support

Fortran '08 bindings

Open MPI

.

mpich-3.0.2: http://www.mpich.org/downloads/

http://www.open-mpi.org/software/ompi/v1.7/
http://www.mpich.org/downloads/

Fortran 2008 binding

Nonblocking Collectives
Background of MPI-3.0 Neighborhood Collective Communication
Extension to one-side operations

Background

Overview of new features in MPI-3

@ Nonblocking versions of collective operations;

@ Neighborhood collective communication;

@ Extensions to one-sided operations;

@ Added tools interface;

@ New Fortran 2008 binding;

@ Removed deprecated C+-+ bindings;

9@ Removed many of the deprecated routines and MPI objects.

Fortran 2008 binding

Nonblocking Collectives
Background of MPI-3.0 Neighborhood Collective Communication
Extension to one-side operations

Backgrounc

Overview of new features in MPI-3

@ Nonblocking versions of collective operations;

@ Neighborhood collective communication;

@ Extensions to one-sided operations;

@ Added tools interface;

@ New Fortran 2008 binding;

@ Removed deprecated C+-+ bindings;

9@ Removed many of the deprecated routines and MPI objects.

Fortran 2008 binding

Nonblocking Collectives
Background of MPI-3.0 Neighborhood Collective Communication
Extension to one-side operations

Language bi

Three methods of Fortran support:

o INCLUDE 'mpif.h’

strongly discouraged, because this method neither guarantees
compile-time argument checking nor provides sufficient techniques
to solve the optimization problems with non-blocking calls.

@ USE mpi
inconsistent with the Fortran standard, therefore not recommended;

@ USE mpi_f08

It's consistent with the Fortran Standard, Fortran 2008 + TS 29113
and later (NEW!);

Fortran 2008 binding
Nonblocking Collectives
i hood Collective C ication

Background of MPI-3.0 gl
Extension to one-side operations

Fortran 2008

@ An additional set of bindings for the latest Fortran specification;
9 Guarantees compile-time argument checking;

@ Declares each argument with an INTENT of IN, OUT or INOUT ad
defined in this standard;

@ Declares all ierror output arguments as OPTIONAL;

@ Uses the ASYNCHRONQUS attribute to protect the buffers of
non-blocking operations;

@ Non contiguous sub-array can be used as buffers in non-blocking
routines (MPI_SUBARRAY_SUPPORTED= .TRUE.);

9 Fixes many other issues with the old Fortran 90 bindings.

Fortran 2008 binding
Nonblockmg Collectlves

CERIIMU R EV I NI Neighborhood d Collective C ication
Extensnon to one-side operations

MPI-2.2

MPI_ISEND (BUF, COUNT, DATATYPE, DEST, TAG,

& COMM, REQUEST, IERROR)
<type> BUF ()

INTEGER COUNT, DATATYPE, DEST, TAG,
& COMM, REQUEST, IERROR

MPI-3.0

MPI_lsend (buf, count, datatype, dest, tag, &

comm, request, ierror) BIND(C)
TYPE(+) ,DIMENSION (..) ,INTENT(IN) , ASYNCHRONOUS : : buf

INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) datatype
TYPE(MPI_Comm) , INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) request

INTEGER, OPTIONAL, INTENT(OUT) ierror

Fortran 2008 binding

Nonblocking Collectives
Background of MPI-3.0 Neighborhood Collective Communication
Extension to one-side operations

Nonblocking

Collective communication
@ Collection of pre-defined optimized routines.

Nonblocking communication:

@ Deadlock avoidance;

@ Overlapping communication and computation.
ot

Three Types:

@ Synchronization (Barrier);
@ Data Movement (Scatter, Gather, Alltoall, Allgather);
@ Reductions (Reduce, Allreduce, Scan);

Fortran 2008 binding

Nonblocking Collectives
ig| hood Collective C ication

Extension to one-side operations

Background of MPI-3.0

Collective Co

Nonblocking Collective Communication

@ Non blocking variants of all collectives, they return an MPI_Request
object:
o MPI_Ibcast(<bcast args>, MPI_Request *req);

@ Semantic:
o Function returns no matter what;
o No guaranteed progress;
o The user must call MPI_Test/MPI_Wait or their variants to
complete the operation;
o Out-of order completion.

@ Restrictions:
@ No tags, in-order matching;
@ Multiple non-blocking collectives may be outstanding, but they must
be called in the same order on all processes;
o No matching with blocking collectives.

Fortran 2008 binding
Nonblocking Collectives
Neiehborhood Collecti

Background of MPI-3.0

Extension to one-side operations

Neighborhood Collectives Communication

@ New functions MPI_Neighbor_allgather, MPI_Neighbor_alltoall, and
their variants define collective operations among a process and its
neighbors;

@ Neighbors are defined by an MPI Cartesian or graph virtual process
topology that must be previously set;

@ These functions are useful, for example, in stencil computations that
require nearest-neighbor exchanges;

ot

Fortran 2008 binding

Nonblocking Collectives
Neighborhood Collective Ci ication
Extension to one-side operations

Background of MPI-3.0

Neighborhoc

MPI_Neighbor_allgather

int MPI_Neighbor_allgather(
const void xsendbuf, int sendcount,
MPI_Datatype sendtype, void xrecvbuf,
int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

@ The central process sends the same message to all neighbors;
@ The neighbors receive the same message;

@ Similar to MPI_Gather.

@ Vector e non-blocking versions for full flexibility.

Fortran 2008 binding
Nonblocking Collectives
hood Collecti

Background of MPI-3.0

Extension to one-side operations

MPI_Neig

Process 1
4

Sendbuf
Process 3 — ——————> Profess5

Process 4
Recvbuf

[Proc 3 [Proc 5 [Prac 1] Proc 7 |

>

A
Process 7

WELES MPI-3.0 Overview

Fortran 2008 binding
Nonblocking Collectives
Neiehborhood Collecti

Background of MPI-3.0

Extension to one-side operations

MPI_Neig

Process 4

A

Sendbuf

Process 6 Progess 8

Rétvbiif Process 7

[Proc 6 [Proc 8 [Proc 4 | |

Not updated or communicated

Fortran 2008 binding

Nonblocking Collectives
Neighborhood Collective Ci ication
Extension to one-side operations

Background of MPI-3.0

Neighborhoc

MPI_Neighbor_alltoall

int MPI_Neighbor_alltoall(
const void xsendbuf, int sendcount,
MPI_Datatype sendtype, void xrecvbuf,
int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

@ The central process sends outdegree distinct messages;
@ The neighbors receive distinct messages;

@ Similar to MPI_Alltoall.

@ Vector, w and non-blocking versions for full flexibility.

Fortran 2008 binding

Nonblocking Collectives
ig| hood Collective C ication

Extension to one-side operations

Background of MPI-3.0

Improved RM

@ Substantial extensions to the MPI-2 RMA interface;
@ New window creation routines:

o MPI_Win_allocate: MPI allocates the memory associated with the
window;

o MPI_Win_create_dynamic: Creates a window without memory
attached. User can dynamically attach and detach memory to/from
the window by calling MPI_Win_attach and MPI_Win_detach;

o MPI_Win_allocate_shared: Creates a window of shared memory
(within a node) that can be used for direct load/store accesses in
addition to RMA operations.

@ New atomic read-modify-write operations;

o MPI_Get_accumulate;
o MPI_Fetch_and_op (simplified version of Get_accumulate);
o MPI_Compare_and_swap .

Fortran 2008 binding

Nonblocking Collectives
ig| hood Collective C ication

Extension to one-side operations

Background of MPI-3.0

Improved RM

@ Substantial extensions to the MPI-2 RMA interface;
@ New window creation routines:

o MPI_Win_allocate: MPI allocates the memory associated with the
window;

o MPI_Win_create_dynamic: Creates a window without memory
attached. User can dynamically attach and detach memory to/from
the window by calling MPI_Win_attach and MPI_Win_detach;

o MPI_Win_allocate_shared: Creates a window of shared memory
(within a node) that can be used for direct load/store accesses in
addition to RMA operations.

@ New atomic read-modify-write operations;

o MPI_Get_accumulate;
o MPI_Fetch_and_op (simplified version of Get_accumulate);
o MPI_Compare_and_swap .

Fortran 2008 binding
Nonblocking Collectives
i hood Collective C ication

Background of MPI-3.0 gl
Extension to one-side operations

Extending MP

@ MPI's remote memory access (RMA) interface defines one-sided
communication operations, data consistency, and synchronization
models for accessing memory regions that are exposed through MPI
windows.

@ The MPI-3 RMA interface extends MPI-2's separate memory model
with a new unified model, which provides relaxed semantics that can
reduce synchronization overheads and allow greater concurrency in
interacting with data exposed in the window.

@ The unified model was added in MPI-3 RMA to enable more efficient
one-sided data access in systems with coherent memory subsystems.

@ The public and private copies of the window are logically identical,
and updates to either “copy” automatically propagate.

@ Explicit synchronization operations can be used to ensure
completion of individual or groups of operations.

Fortran 2008 binding

Nonblocking Collectives
Background of MPI-3.0 Neighborhood Collective Communication
Extension to one-side operations

Shared Mem

RMA interface for shared mem

@ In the MPI-2 one-sided communication interface, the user first
allocates memory and then exposes it in a window;

@ MPI_Win_allocate_shared collectively allocates and maps shared
memory across all processes in the given communicator;

@ All processes in the given communicator must be in shared memory;
@ Load/store operations do not pass through the MPI library.

@ int MPI_Win_allocate_shared(
MPI_Aint size, int disp_unit,
MPI_Info info, MPIl_.Comm comm,
void xbaseptr, MPI_-Win xwin)

Fortran 2008 binding

Nonblocking Collectives
Background of MPI-3.0 Neighborhood Collective Communication
Extension to one-side operations

@ Default:
o Memory is consecutive across ranks;
@ Allow for inter-rank address calculations,i.e., process i's memory
starts where process i-1's memory ends;
@ Optimizations allowed:
o With info “alloc_shared_noncontig” may create non-contiguous
locations;

@ This can enable better performance and eliminates negative cache
and NUMA effects.
¢ Each windows segment is aligned to optimize memory access.

(a) Contiguous (b) Noncontig Separate (c) Noncontig Padded

Fortran 2008 binding

Nonblocking Collectives
Background of MPI-3.0 Neighborhood Collective Communication
Extension to one-side operations

Shared Mem

How do | know which processes share memory?

int MPI_Comm _split_type(
MPI_Comm comm, int split_type ,
int key, MPIl_Info info,
MPI_Comm * newcomm)

@ Creates a shared-memory communicator and allocates the entire
work array in shared memory;

@ Portable;

o split_.type = MPI.COMM_TYPE_SHARED

@ Splits communicator into maximum shared memory islands;

Fortran 2008 binding
Nonblocking Collectives
i hood Collective C ication

Background of MPI-3.0 gl
Extension to one-side operations

Shared Mem

How do | query the process address for remote memory segments created?

int MPI_Win_shared_query(
MPI_Win win, int rank,
MPI_Aint xsize, int xdisp_unit ,
void xbaseptr)

@ MPI_Win_allocate_shared does not guarantee the same virtual
address across ranks;

@ This function can return different process-local addresses for the
same physical memory on different processes;

@ MPI_Win_shared_query provides a query mechanism for determining
the base address in the current process and size of another process's
region in the shared-memory segment.

	Introduction
	MPI documents
	Implementations of the MPI-3.0 standard

	Background of MPI-3.0
	Fortran 2008 binding
	Nonblocking Collectives
	Neighborhood Collective Communication
	Extension to one-side operations

