
LEVERAGING MPI’S ONE-SIDED
COMMUNICATION INTERFACE FOR
SHARED-MEMORY PROGRAMMING
 Torsten Hoefler, James Dinan, Darius Buntinas,
Pavan Balaji, Brian Barrett, Ron Brightwell,
William Gropp, Vivek Kale, Rajeev Thakur

 Multi- and manycore is ubiquitous

 They offer shared memory that allows:

1. Sharing of data structures

 Reduce copies/effective memory consumption

x NUMA accesses

2. Fast in-memory communication

 May be faster than MPI

x Performance model is very complex

THE SHARED MEMORY REALITY

Slide 2 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

 MPI offers shared memory optimizations
 But real zero copy is impossible

 MPI+X to utilize shared memory
 X={OpenMP, pthreads, UPC …}

 Complex interactions between models
 Deadlocks possible

 Race conditions made eas

 Slowdown due to higher MPI thread level

 Requirements are often simple
 Switching programming models not necessary?

STATE OF THE ART PROGRAMMING

Slide 3 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

 One may use POSIX shm calls to create shared
memory segments?

 Several issues:

1. Allocation is not collective and users
would have to deal with NUMA intricacies

2. Cleanup of shm regions is problematic in the
presence of abnormal termination

3. MPI’s interface allows easy support for
debuggers and performance tools

WHY NOT JUST USE OS TOOLS?

Slide 4 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

 MPI offers two memory models:

 Unified: public and private window are identical

 Separate: public and private window are separate

 Type is attached as attribute to window

 MPI_WIN_MODEL

MPI-3.0 ONE SIDED MEMORY MODELS

MPI_UNIFIED MPI_SEPARATE

Slide 5 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

 MPI_WIN_ALLOCATE_SHARED(

 size - in Bytes (of calling process)

 disp_unit - addressing offset in Bytes

 info - specify optimization hints

 comm - input communicator

 baseptr - returned pointer

 win – returned window

)

The creation call is collective

CREATING A SHARED MEMORY WINDOW

Slide 6 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

 All processes in comm must be in shared
memory

 Fulfilling the unified window requirements

 Each process gets a pointer to its segment

 Does not know other processes’ pointer

 Query function:

 MPI_WIN_SHARED_QUERY(win, rank, size,
disp_unit, baseptr)

Query rank’s size, disp_unit, and baseptr

HOW DO I USE IT?

Slide 7 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

 Or: “How do I know which processes share
memory”?

 MPI_COMM_SPLIT_TYPE(comm, split_type,
key, info, newcomm)

 split_type = MPI_COMM_TYPE_SHARED

 Splits communicator into maximum shared
memory islands

 Portable

CREATING SHARED MEMORY COMMUNICATORS

Slide 8 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

SCHEMATIC OVERVIEW

Slide 9 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

 “Principle of least surprise” (default)

Memory is consecutive across ranks

Allows for inter-rank address calculations

i.e., rank i’s first Byte starts right after rank i-1’s
last Byte

• “Optimizations allowed”

• Specify info “alloc_shared_noncontig”

• May create non-contiguous regions

• Must use win_shared_query

MEMORY LAYOUT

Slide 10 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

 Contiguous (default)

 Reduce total size to rank 0

 Rank 0 creates shared memory segment

 Broadcast address and key

 Exscan to get local offset

 O(log P) time and O(P) total storage

IMPLEMENTATION OPTIONS I

Slide 11 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

 Noncontiguous (specify alloc_shared_noncontig)

 Option 1:

 Each rank creates his own segment

 Option 2:

 Rank 0 creates one segment but
pads to page boundaries

IMPLEMENTATION OPTIONS II

Slide 12 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

1. Share data structures

 Use hybrid programming where it is efficient

 E.g., OpenMP at the loop level

 Have MPI processes share common memory

 Retain all MPI features, e.g., collective etc.

2. Improve communication performance

 Enables direct access to “remote” data

 No need for halo zones (but they often help!)

 True zero copy in this sense

USE CASES

Slide 13 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

 Two fundamental benefits:

1. Avoid tag matching and MPI stack

2. Avoid expensive fine-grained synchronization

 Full interface implemented in Open MPI and
MPICH2

 Similar implementation and performance

 Evaluated on 2.2 GHz AMD Opteron

 Six cores

FAST SHARED MEMORY COMMUNICATION

Slide 14 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

 NxN grid decomposed in 2D

 Dims_create, cart_create, isend/irecv, waitall

FIVE-POINT STENCIL EXAMPLE

Slide 15 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

 30-60% lower communication overhead!

COMMUNICATION TIMES

Slide 16 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

 The whole array is allocated in shared memory

 Significant impact of alloc_shared_noncontig

NUMA EFFECTS?

Slide 17 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

 MPI-3.0 offers support for shared memory

 Ratified last week, standard available online

 MPICH2 as well as Open MPI implement the
complete interface

 Should be in official releases soon

 We demonstrated two use-cases

 Showed application speedup for a simple code

 Performance may vary (depends on architecture)

SUMMARY

Slide 18 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

 MPI is (more) ready for multicore!

 Supports coherent shared memory

 Offers easy-to-use and portable interface

 Mix&match with other MPI functions

 We plan to evaluate

 Different use-cases and applications

 The Forum continues discussion

 Non-coherent shared memory?

CONCLUSIONS & FUTURE WORK

Slide 19 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

ACKNOWLEDGMENTS
 The MPI Forum

 Especially the RMA working group!

Slide 20 of 20 T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. Thakur

