
Introduction to Hybrid
MPI+OpenMP programming

paradigm

Piero Lanucara – p.lanucara@cineca.it
SuperComputing Applications and Innovation Department

February 11 - 15, 2013

Introduction to Hybrid

Piero Lanucara

Architecture Trend
 Top 500 historical view: clusters (and MPP) dominates

HPC arena

Introduction to Hybrid

Piero Lanucara

Architecture Trend (cont.)
 Top 500 historical view: the multicore age

Introduction to Hybrid

Piero Lanucara

Architecture Trend (cont.)

Multi-socket nodes with rapidly increasing core counts.
Memory per core decreases.
Memory bandwidth per core decreases.
Network bandwidth per core decreases.
Deeper memory hierarchy.

Which programming model is the best choice for this
architecture trend ?

Introduction to Hybrid

Piero Lanucara

Programming model

Which programming model is the best choice for this
architecture?

MPI is the de-facto standard for distributed memory
architectures

 in principle, MPI library is supposed to scale up to 10k cores
and over….

…but the MPI model (flat) is not guaranteed to match with
this architecture for any kind of application!

Introduction to Hybrid

Piero Lanucara

Programming model

Which programming model is the best choice for this
architecture?

OpenMP is the de-facto standard for shared-memory
architectures (SMP and Multi-socket nodes).

OpenMP standard is robust, clear and sufficently easy to
implement but is supposed not to scale up to hundreds of
cores!

What about MPI+OpenMP?

Introduction to Hybrid

Piero Lanucara

The hybrid model

 Logical view: multi-node SMP (Symmetric Multiprocessor).
MPI between the nodes via node interconnect
OpenMP (the standard for shared memory parallel

programming) inside of the SMP nodes

Introduction to Hybrid

Piero Lanucara

MPI vs. OpenMP

 Pure MPI Pro:
High scalability

High portability

No false sharing

Scalability out-of-node

 Pure MPI Con:
Hard to develop and debug.

Explicit communications

Coarse granularity

Hard to ensure load balancing

Pure OpenMP Pro:
Easy to deploy (often)

Low latency

Implicit communications

Coarse and fine granularity

Dynamic Load balancing

Pure OpenMP Con:
Only on shared memory machines

Intranode scalability

Possible data placement problem

Undefined thread ordering

8

Introduction to Hybrid

Piero Lanucara

Why hybrid?

 MPI+OpenMP hybrid paradigm is the trend for clusters with SMP
architecture.

 Elegant in concept: use OpenMP within the node and MPI between
nodes, in order to have a good use of shared resources.

 Avoid additional communication within the MPI node.

 OpenMP introduces fine-granularity.

 Two-level parallelism

 Some problems can be reduced by lowering MPI procs number

 If the problem is suitable, the hybrid approach can have better
performance than pure MPI or OpenMP codes.

9

Introduction to Hybrid

Piero Lanucara
10

In the pure MPI model each process needs to allocate some extra

memory to manage communications and MPI environment

Supposing to use threads within node :

Smaller number of MPI processes

Fewer messages, larger message size

Example: one node having 8 cores and 32 GB. Pure MPI and Hybrid:

Pure MPI: 8 MPI process, 4 GB for each (parallelism is 8)

Pure MPI: 1 MPI process, 32 GB (serial)

Hybrid: 1 MPI process, 8 threads. 32 GB shared per process, 4 GB

per thread. (parallelism is 8)

Avoid additional communication
within the MPI node

Introduction to Hybrid

Piero Lanucara

Why hybrid?
 MPI+OpenMP hybrid paradigm is the trend for clusters with SMP

architecture.

 Elegant in concept: use OpenMP within the node and MPI between
nodes, in order to have a good use of shared resources.

 Avoid additional communication within the MPI node.

 OpenMP introduces fine-granularity.

 Two-level parallelism

 Some problems can be reduced by lowering MPI procs number

 If the problem is suitable, the hybrid approach can have better
performance than pure MPI or OpenMP codes.

11

Introduction to Hybrid

Piero Lanucara

OpenMP introduces fine-
granularity

 Loop-based parallelism (just a set of directives in your code)

 Task construct (OpenMP 3.0): powerful and flexible

 Dynamic and guided scheduling (load balancing)

 Without additional software effort

 Without explicit data movement (MPI’s drawback)

12

Introduction to Hybrid

Piero Lanucara

Why hybrid?

 MPI+OpenMP hybrid paradigm is the trend for clusters with SMP
architecture.

 Elegant in concept: use OpenMP within the node and MPI between
nodes, in order to have a good use of shared resources.

 Avoid additional communication within the MPI node.

 OpenMP introduces fine-granularity.

 Two-level parallelism

 Some problems can be reduced by lowering MPI procs number

 If the problem is suitable, the hybrid approach can have better
performance than pure MPI or OpenMP codes.

13

Introduction to Hybrid

Piero Lanucara

 Parallelism across SMP nodes, single node equipped with m sockets
and n cores per socket.

 To be assigned: the number of MPI process and the (optimal)
number of threads per MPI process.

 Heuristics:

 (often) n threads per MPI process

 (sometimes) n/2 threads per MPI process

 (seldom) 2n threads per MPI process

 No golden rule, application and hardware dependent

14

Two level parallelism

Introduction to Hybrid

Piero Lanucara

Why hybrid?

 MPI+OpenMP hybrid paradigm is the trend for clusters with SMP
architecture.

 Elegant in concept: use OpenMP within the node and MPI between
nodes, in order to have a good use of shared resources.

 Avoid additional communication within the MPI node.

 OpenMP introduces fine-granularity.

 Two-level parallelism

 Some problems can be reduced by lowering MPI procs number

 If the problem is suitable, the hybrid approach can have better
performance than pure MPI or OpenMP codes.

15

Introduction to Hybrid

Piero Lanucara

 Memory consumption can be alleviated by a reduction of
replicated data on MPI level

 Speedup limited due to algorithmic problem can be solved

 MPI scaling problems (expecially to high number of cores) can be
significantly reduced

 MPI scaling problems can be solved by a reduced aggregated
message size (compared to pure MPI)

16

Some problems can be reduced by
lowering MPI procs number

Introduction to Hybrid

Piero Lanucara

Why mixing MPI and OpenMP code
can be slower?

 OpenMP has lower scalability because of locking resources while
MPI has not potential scalability limits.

 All threads are idle except ones during an MPI communication

Need overlap computation and communication to improve
performance

Critical section for shared variables update

 Overhead of thread creation

 Cache coherency and false sharing.

 Pure OpenMP code is generally slower than pure MPI code

 Fewer optimizations by OpenMP compilers compared to MPI

17

Introduction to Hybrid

Piero Lanucara
18

Cache coherency and False sharing

 It is a side effects of the cache-line granularity of cache coherence
implemented in shared memory systems.

 The cache coherency implementation keep track of the status of cache
lines by appending state bits to indicate whether data on cache line is
still valid or outdated.

 Once the cache line is modified, cache coherence notifies other caches
holding a copy of the same line that its line is invalid.

 If data from that line is needed, a new updated copy must to be fetched.

Introduction to Hybrid

Piero Lanucara

Cache coherency and False sharing

19

#pragma omp parallel for

shared(a) schedule(static,1)

for (int i=0; i<n; i++)

 a[i] = i;

Suppose that each cache line consist of 4

elements and you are using 4 threads

Each thread store:

Thread ID Stores

 0 a[0]

 1 a[1]

 2 a[2]

 3 a[3]

 0 a[4]

Assuming that a[0] is the beginning of the

cache line, we have 4 false sharing

The same for a[4]...,a[7]

Introduction to Hybrid

Piero Lanucara
20

Cache coherence and False sharing

 The problem is that state bits do not keep track of which
part of the line is outdated, but indicates the whole line

 As a result, when two threads update different data
elements in the same cache line, they interfer with each
other

 Solving:

 Using private data instead of shared data

 Padding

Introduction to Hybrid

Piero Lanucara
21

Hybrid parallelization Roadmap

 From serial code decompose with MPI first and then add OpenMP
 From OpenMP code treat as serial and decompose with MPI
 From MPI code add OpenMP
 Simplest and least error-prone way is to use MPI outside parallel

regions, and allow only master thread to communicate between MPI
tasks (Hybrid Masteronly)

 Then, try to use MPI inside parallel regions with a tread-safe MPI

Introduction to Hybrid

Piero Lanucara

Pseudo hybrid code (Masteronly)

22

 call MPI_INIT (ierr)
 call MPI_COMM_RANK (…)
 call MPI_COMM_SIZE (…)
 … some computation and MPI communication
 call OMP_SET_NUM_THREADS(4)
 !$OMP PARALLEL
 !$OMP DO

 do i=1,n
 … computation
 enddo
 !$OMP END DO
 !$OMP END PARALLEL
 … some computation and MPI communication
 call MPI_FINALIZE (ierr)

Introduction to Hybrid

Piero Lanucara
23

Hybrid Masteronly

 The various MPI implementations differs in levels of thread-safety

 Advantages of Masteronly:

 No message passing inside of SMP nodes

 Simplest hybrid parallelization (easy to implement, debug, …)

 Major problems:

 All other threads are sleeping while master thread
communicates

 Use of internode bandwidth satisfactory?

 Thread-safe MPI is required

Introduction to Hybrid

Piero Lanucara

 MPI_INIT_THREAD (required, provided, ierr)
IN: required, desired level of thread support (integer).
OUT: provided, provided level (integer).
 provided may be less than required.

 Four levels are supported:
MPI_THREAD_SINGLE: Only one thread will runs. Equals to

MPI_INIT.
MPI_THREAD_FUNNELED: processes may be multithreaded, but

only the main thread can make MPI calls (MPI calls are delegated to
main thread)

MPI_THREAD_SERIALIZED: processes could be multithreaded. More
than one thread can make MPI calls, but only one at a time.

MPI_THREAD_MULTIPLE: multiple threads can make MPI calls, with
no restrictions.

24

MPI_INIT_Thread support
(MPI-2)

Introduction to Hybrid

Piero Lanucara

 The various implementations differs in levels of thread-safety

 If your application allow multiple threads to make MPI calls simultaneously,
whitout MPI_THREAD_MULTIPLE, is not thread-safe

 Using OpenMPI, you have to use –enable-mpi-threads at configure time to
activate all levels.

 Higher level corresponds higher thread-safety. Use the required safety
needs.

25

MPI_INIT_Thread support (MPI-2)

Introduction to Hybrid

Piero Lanucara

MPI_THREAD_SINGLE
 Equivalent to Hybrid Masteronly:

26

!$OMP PARALLEL DO

 do i=1,10000

 a(i)=b(i)+f*d(i)

 enddo

!$OMP END PARALLEL DO

 call MPI_Xxx(...)

!$OMP PARALLEL DO

 do i=1,10000

 x(i)=a(i)+f*b(i)

 enddo

!$OMP END PARALLEL DO

#pragma omp parallel for

 for (i=0; i<10000; i++)

 { a[i]=b[i]+f*d[i];

 }

/* end omp parallel for */

 MPI_Xxx(...);

#pragma omp parallel for

 for (i=0; i<10000; i++)

 { x[i]=a[i]+f*b[i];

 }

/* end omp parallel for */

Introduction to Hybrid

Piero Lanucara

MPI_THREAD_FUNNELED

 Only the master thread can do MPI communications.

27

Introduction to Hybrid

Piero Lanucara

MPI_THREAD_FUNNELED
 MPI calls:

 outside the parallel region.

 inside the parallel region with “omp master”.

28

!$OMP BARRIER

!$OMP MASTER

 call MPI_Xxx(...)

!$OMP END MASTER

!$OMP BARRIER

There are no synchronizations with “omp master”, thus needs a barrier
before and after, to ensure that data and buffers are available before
 and/or after MPI calls

#pragma omp barrier

#pragma omp master

 MPI_Xxx(...);

#pragma omp barrier

Introduction to Hybrid

Piero Lanucara

MPI_THREAD_SERIALIZED

MPI calls are made “concurrently” by two (or more) different threads
(all MPI calls are serialized)

29

Introduction to Hybrid

Piero Lanucara

MPI_THREAD_SERIALIZED
 MPI calls:

 Outside the parallel region

 Inside the parallel region with “omp single”

30

!$OMP BARRIER

!$OMP SINGLE

 call MPI_Xxx(...)

!$OMP END SINGLE

#pragma omp barrier

#pragma omp single

 MPI_Xxx(...);

OMP_BARRIER is needed since OMP_SINGLE only guarantees
synchronization at the end

Introduction to Hybrid

Piero Lanucara

MPI_THREAD_MULTIPLE
 Each thread can make communications at any times. Less restrictive

and very flexible, but the application becomes very hard to manage

31

Introduction to Hybrid

Piero Lanucara

THREAD FUNNELED/SERIALIZED
vs. Pure MPI

 FUNNELED/SERIALIZED:

 All other threads are sleeping while just one thread is communicating.

 Only one thread may not be able to lead up max internode bandwidth

 Pure MPI:

 Each CPU communication can lead up max internode bandwidth

 Hints: Overlap communications and computations.

32

Introduction to Hybrid

Piero Lanucara

Overlap communications
 and computation

 Need at least MPI_THREAD_FUNNELED.

 While the master or the single thread is making MPI calls, other
threads are doing computations.

 It's difficult to separate code that can run before or after the
exchanged data are available

33

 !$OMP PARALLEL
 if (thread_id==0) then
 call MPI_xxx(…)
 else
 do some computation
 endif
 !$OMP END PARALLEL

Introduction to Hybrid

Piero Lanucara

MPI collective hybridization

 MPI collectives are highly optimized

 Several point-to-point
communication in one operations

 They can hide from the programmer
a huge volume of transfer
(MPI_Alltoall generates almost 1
million point-to-point messages
using 1024 cores)

 There is no non-blocking (no longer
the case in MPI 3.0)

34

Introduction to Hybrid

Piero Lanucara

 Hybrid implementation:
 Better scalability by a reduction of both

the number of MPI messages and the
number of process. Tipically:

 for all-to-all communications, the
number of transfers decrease by a
factor #threads^2

 the length of messages increases by a
factor #threads

 Allow to overlap communication and
computation.

35

MPI collective hybridization

Introduction to Hybrid

Piero Lanucara

 Restrictions:
 In MPI_THREAD_MULTIPLE mode is

forbidden at any given time two
threads each do a collective call on the
same communicator
(MPI_COMM_WORLD)

 2 threads calling each a MPI_Allreduce
may produce wrong results

 Use different communicators for each
collective call

 Do collective calls only on 1 thread per
process(MPI_THREAD_SERIALIZED
mode should be fine)

36

MPI collective hybridization

Introduction to Hybrid

Piero Lanucara

Hybrid programming via
multithreaded library

 Introduction of OpenMP into existing MPI codes includes OpenMP
drawbacks (synchronization, overhead, quality of compiler and
runtime…)

 A good choice (whenever possible) is to include into the MPI code a
multithreaded, optimized library suitable for the application.

 BLAS, LAPACK, NAG (vendor), FFTW are well known multithreaded
libraries available in the HPC arena.

 MPI_THREAD_FUNNELED (almost) must be supported.

37

Introduction to Hybrid

Piero Lanucara

Hybrid programming via
multithreaded library

38

Only the master
thread can do MPI
communications
(Pseudo QE code)

Introduction to Hybrid

Piero Lanucara

Hybrid programming via
multithreaded library

39

Funneled: master
thread do MPI
communications
within parallel region
(Pseudo QE code)

Introduction to Hybrid

Piero Lanucara

Hybrid programming via domain
decomposition

 Starting point is a well known MPI parallel code that solve Helmoltz
Partial Differential Equation on a square domain.

 Standard domain decomposition (into slices for simplicity).

 No huge I/O

 The benchmark collect the timing of the main computational routine
(Jacobi), GFLOPS rate, the number of iterations to reach fixed error
and the error with respect to known analytical solution

40

Introduction to Hybrid

Piero Lanucara

Domain decomposition
 In the MPI basic implementation, each process has to exchange ghost-

cells at every iteration (also on the same node)

41

 reqcnt = 0

 if (me .ne. 0) then

! receive stripe mlo from left neighbour blocking

 reqcnt = reqcnt + 1

 call MPI_IRECV(uold(1,mlo), n, MPI_DOUBLE_PRECISION,

me,1, 11, MPI_COMM_WORLD,reqary(reqcnt),ierr)

 end if

 if (me .ne. np-1) then

! receive stripe mhi from right neighbour blocking

 reqcnt = reqcnt + 1

…

 if (me .ne. 0) then

! send stripe mlo+1 to left neighbour async

 reqcnt = reqcnt + 1

 call MPI_ISEND (u(1,mlo+1), n, MPI_DOUBLE_PRECISION,

 me-1, 12, MPI_COMM_WORLD,reqary(reqcnt),ierr)

 end if

Introduction to Hybrid

Piero Lanucara

Domain decomposition
 The pseudo code for the rest of the Jacobi routines:

42

 do j=mlo+1,mhi-1

 do i=1,n

 uold(i,j) = u(i,j)

 enddo

 enddo

 call MPI_WAITALL (reqcnt, reqary, reqstat, ierr)

do j = mlo+1,mhi-1

 do i = 2,n-1

! Evaluate residual

 resid = (ax*(uold(i-1,j) + uold(i+1,j)) +…

 & + b * uold(i,j) - f(i,j))/b

 u(i,j) = uold(i,j) - omega * resid

! Accumulate residual error

 error = error + resid*resid

 end do

 enddo

 error_local = error

 call MPI_ALLREDUCE (error_local,….,error,…)

Introduction to Hybrid

Piero Lanucara

 The hybrid approach allows you to share the
memory area where ghost-cells are stored

 In the Hybrid Masteronly, each thread has not
to do MPI communication within the node,
since it already has available data (via shared
memory).

 Communication decreases as the number of
MPI process, but increases MPI message size
for Jacobi routine.

43

Domain decomposition
hybridization

Introduction to Hybrid

Piero Lanucara
44

Hybrid Masteronly
Domain decomposition

!$omp parallel

!$omp do

 do j=mlo+1,mhi-1

 do i=1,n

 uold(i,j) = u(i,j)

 enddo

 enddo

!$omp end do

!$omp end parallel

 call MPI_WAITALL (reqcnt, reqary, reqstat, ierr)

 Advantages:

 No message passing inside SMP nodes

 Simplest hybrid parallelization (easy to implement)

 Major problems:

 All other threads are sleeping while master thread communicate

Introduction to Hybrid

Piero Lanucara

MPI_THREAD_FUNNELED
domain decomposition

Only the master
thread can do MPI
communications.

45

!$omp parallel default(shared)

!$omp master

 error = 0.0

 …

 if (me .ne. 0) then

! receive stripe mlo from left neighbour blocking

 reqcnt = reqcnt + 1

 call MPI_IRECV(uold(1,mlo), n, MPI_DOUBLE_PRECISION, &

 & me-1, 11, MPI_COMM_WORLD,reqary(reqcnt),ierr)

 end if

 ….

!$omp end master

!$omp do

 do j=mlo+1,mhi-1

 do i=1,n

 uold(i,j) = u(i,j)

 enddo

 enddo

!$omp end do

The other threads
are sleeping as
in the previous
case

Introduction to Hybrid

Piero Lanucara

MPI_THREAD_FUNNELED
domain decomposition

The barrier is
needed after
omp_ master
directive in order
to ensure
correctness of
results.

46

!$omp master

 call MPI_WAITALL (reqcnt, reqary, reqstat, ierr)

!$omp end master

!$omp barrier

! Compute stencil, residual, & update

!$omp do private(resid) reduction(+:error)

 do j = mlo+1,mhi-1

 do i = 2,n-1

 ….

 error = error + resid*resid

 end do

 enddo

!$omp end do

!$omp master

 …

 call MPI_ALLREDUCE (error_local, error,1, &

 & MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,ierr)

!$omp end master

!$omp end parallel

Introduction to Hybrid

Piero Lanucara

MPI_THREAD_SERIALIZED
domain decomposition

omp_single
guarantee
serialized threads
access . Note that
no barrier is
needed because
omp_single
guarantee
synchronization at
the end

47

!$omp parallel default(shared)

!$omp single

 error = 0.0

 reqcnt = 0

 if (me .ne. 0) then

! receive stripe mlo from left neighbour blocking

 reqcnt = reqcnt + 1

 call MPI_IRECV(uold(1,mlo), n, MPI_DOUBLE_PRECISION, &

 & me-1, 11, MPI_COMM_WORLD,reqary(reqcnt),ierr)

 end if

!$omp end single

!$omp single

 if (me .ne. np-1) then

! receive stripe mhi from right neighbour blocking

 reqcnt = reqcnt + 1

 call MPI_IRECV(uold(1,mhi), n, MPI_DOUBLE_PRECISION, &

 & me+1, 12, MPI_COMM_WORLD,reqary(reqcnt),ierr)

 end if

!$omp end single

….

Introduction to Hybrid

Piero Lanucara

MPI_THREAD_SERIALIZED

omp_single
guarantee only
one threads access
to the
MPI_Allreduce
collective.

48

…

!$omp do private(resid) reduction(+:error)

 do j = mlo+1,mhi-1

 do i = 2,n-1

! Evaluate residual

 resid = (ax*(uold(i-1,j) + uold(i+1,j)) &

 & + ay*(uold(i,j-1) + uold(i,j+1)) &

 & + b * uold(i,j) - f(i,j))/b

! Update solution

 u(i,j) = uold(i,j) - omega * resid

! Accumulate residual error

 error = error + resid*resid

 end do

 enddo

!$omp end do

!$omp single

 error_local = error

 call MPI_ALLREDUCE (error_local, error,1, …)

!$omp end single

!$omp end parallel

Introduction to Hybrid

Piero Lanucara

MPI_THREAD_MULTIPLE
domain decomposition

49

Each thread can make communications at any
times (in principle)

 Some little change in the Jacobi routine

Use of omp sections construct (it ensures that
each thread is allowed a different MPI call at
the same time)

Use of omp single for MPI_Waitall and
collectives

Introduction to Hybrid

Piero Lanucara

MPI_THREAD_MULTIPLE

leftr, rightr,lefts
and rights must to
be private to
ensure correct MPI
calls.

50

!$omp parallel default(shared) private(leftr,rightr,lefts,rights)

 error = 0.0

!$omp sections

!$omp section

 if (me .ne. 0) then

! receive stripe mlo from left neighbour blocking

 leftr=me-1

 else

 leftr=MPI_PROC_NULL

 endif

 call MPI_IRECV(uold(1,mlo), n, MPI_DOUBLE_PRECISION, &

 & leftr, 11, MPI_COMM_WORLD,reqary(1),ierr)

!$omp section

….

!$omp end sections

!$omp do

 do j=mlo+1,mhi-1

 do i=1,n

 uold(i,j) = u(i,j)

 enddo

 enddo

!$omp end do

Introduction to Hybrid

Piero Lanucara

MPI_THREAD_MULTIPLE

omp single is used
both for
MPI_Waitall call
that for
MPI_Allreduce
collective.

51

!$omp single

 call MPI_WAITALL (4, reqary, reqstat, ierr)

!$omp end single

! Compute stencil, residual, & update

!$omp do private(resid) reduction(+:error)

 do j = mlo+1,mhi-1

 …

! Evaluate residual

 resid = (ax*(uold(i-1,j) + uold(i+1,j)) …

 ….

! Update solution

 u(i,j) = uold(i,j) - omega * resid

! Accumulate residual error

 error = error + resid*resid

 …

!$omp end do

!$omp single

 …

 call MPI_ALLREDUCE (error_local, error,1,…)

 error = sqrt(error)/dble(n*m)

!$omp end single

!$omp end parallel

Introduction to Hybrid

Piero Lanucara

Some results on
bgq@CINECA

52

Number of threads (process
for MPI only) per node

MPI+OpenMP (64 MPI, 1
process per node)
MPI_THREAD_MULTIPLE
version
Elapsed time (sec.)

MPI (1024 MPI,
16,32,64 processes per
node)
Elapsed time (sec.)

1 78.84 N.A

4 19.89 N.A

8 10.33 N.A

16 5.65 5.98

32 3.39 7.12

64 2.70 12.07

 Huge simulation,
30000x30000
points. Stopped
after 100
iterations only for
timing purposes.

Up to 64
hardware threads
per process are
available on bgq
(SMT)

Introduction to Hybrid

Piero Lanucara

Lesson learned
 Better scalability by a reduction of both the number of MPI messages and

the number of processes involved in collective communications and by a
better load balancing.

 Better adeguacy to the architecture of modern supercomputers while MPI
is only a flat approach.

 Optimization of the total memory consumption (through the OpenMP
shared-memory approach, savings in replicated data in the MPI processes
and in the used memory by the MPI library itself).

 Reduction of the footprint memory when the size of some data structures
depends directly on the number of MPI processes.

 It can remove algorithmic limitations (maximum decomposition in one
direction for example).

53

Introduction to Hybrid

Piero Lanucara

 Applications that can
benefit from it

 Codes having limited MPI scalability (through the use of MPI_Alltoall for
example).

 Codes requiring dynamic load balancing

 Codes limited by memory size and having many replicated data between
MPI processes or having data structures that depends on the number of
processes.

 Inefficient MPI implementation library for intra-node communication.

 Codes working on problems of fine-grained parallelism or on a mixture of
fine and coarse-grain parallelism.

 Codes limited by the scalability of their algorithms.

54

Introduction to Hybrid

Piero Lanucara

Conclusions: there is
no golden rule….

 Hybrid programming is complex and requires high level of expertise.

 Both MPI and OpenMP performances are needed (Amdhal’s law apply
separately to the two approaches).

 Savings in performances are not guaranteed (extra additional costs).

55

