
Evolution of
OpenMP

Marco Rorro– m.rorro@cineca.it
SuperComputing Applications and Innovation Department

February 11 - 15, 2013

Evolution of
OpenMP

Marco Rorro

Outline

•  Task parallelism in OpenMP
–  task construct
–  data scoping
–  synchronization
–  task switching
–  optimizations

•  The future of OpenMP
–  atomic
–  SIMD
–  affinity
–  user defined reductions
–  support for accelerators

Evolution of
OpenMP

Marco Rorro

History

•  Born to satisfy the need of unification of proprietary solutions
•  The ancient past

•  October 1997 – Fortran version 1.0
•  October 1998 – C/C++ version 1.0
•  November 1999 – Fortran version 1.1 (interpretations)
•  November 2000 – Fortran version 2.0
•  March 2002 – C/C++ version 2.0
•  May 2005 – combined C/C++ and Fortran version 2.5

•  The recent past (currently supported by most of compilers)
•  May 2008 – version 3.0 (task!)
•  July 2011 – version 3.1

•  The present and next future
•  November 2012 – TR1 on Directives for Attached Accelerators
•  November 2012 – version 4.0 public RC1

Evolution of
OpenMP

Marco Rorro

Pointer chasing in OpenMP 2.5

#pragma omp parallel private(p)
 p=head;
 while (p) {
 #pragma omp single nowait
 process(p->item);
 p = p->next;
 }

•  Transformation to a “canonical” loop can be very labour-
intensive/inefficient

•  The main drawback of the single nowait solution is that it is
not composable

•  Recall that worksharing construct can not be nested

Evolution of
OpenMP

Marco Rorro

Tree traversal in OpenMP 2.5

void preorder(node *p) {
 process(p->data);
 #pragma omp parallel sections num_threads(2)
 {
 #pragma omp section
 if (p->left)
 preorder(p->left);
 #pragma omp section
 if (p->right)
 preorder(p->right);
 }
}
•  You need to set OMP_NESTED to true
•  But stressing nested parallelism so much is not

a good idea… extra overheads, extra synchronizations …

Evolution of
OpenMP

Marco Rorro

Task parallelism

•  Better solution for those problems
•  Main addition to OpenMP 3.0 enhanced in 3.1 and 4.0
•  Allow to parallelize irregular problems

•  Unbounded loop
•  Recursive algorithms
•  Producer/consumer schemes
•  Multiblock grids, Adaptive Mesh Refinement
•  …

Evolution of
OpenMP

Marco Rorro

First and foremost tasking
construct

#pragma omp parallel [clauses]
{
 // structured block
}

•  Creates both threads and tasks
•  These tasks are “implicit”
•  Each one is immediately executed by one thread
•  Each of them is tied to the assigned thread

Evolution of
OpenMP

Marco Rorro

New tasking construct

#pragma omp task [clauses]
{
 // structured block
}

where clauses is:

private, firstprivate, shared, default, if, untied
final, mergeable

•  Immediately creates a new task but no a new thread
•  This task is “explicit”
•  It will be executed by a thread in the current team
•  It can be deferred until a thread is available to execute
•  The data environment is built at creation time

Evolution of
OpenMP

Marco Rorro

Pointer chasing using task
#pragma omp parallel private(p)
 #pragma omp single
 {
 p = head;
 while(p) {
 #pragma omp task
 process(p);
 p=p->next;
 }
 }

•  One thread creates task
§  packages code and data environment

•  When it finishes, it reaches the implicit barrier and starts to execute
the task

•  The other threads reach straight the implicit barrier and start to
execute task

Evolution of
OpenMP

Marco Rorro

Data scoping in explicit tasks

•  private and firstprivate: business as usual

•  shared: same business, from a new perspective
–  shared among all tasks (“horizontal”)
–  shared among a task and a descendant (“vertical”)
–  different synchronizations are required in the two cases

•  Most implicitly determined variables: firstprivate!
–  safety by default, programmers have full control
–  spares programmers a lot of keystrokes
–  can be altered with a default clause

Evolution of
OpenMP

Marco Rorro

Task data scoping example
#pragma omp parallel shared(a) private(b)
{
 …
 #pragma omp task
 int c;
 process(a,b,c);
 }
}

•  The default for tasks is usually firstprivate, because the task may
not be executed until later (and variables may have gone out of
scope)

•  Variables that are shared in all constructs starting from the inner
most enclosing parallel construct are shared, because the barrier
guarantees task completion

Evolution of
OpenMP

Marco Rorro

Load balancing on lists with tasks

#pragma omp parallel
{
 #pragma omp for private(p)
 for (i=0; i<num_lists; i++) {
 p = heads[i];
 while(p) {
 #pragma omp task
 process(p);
 p=p->next;
 }
 }
}
•  Assign one list per thread could be unbalanced
•  Multiple threads create tasks
•  All the team cooperates executing them

Evolution of
OpenMP

Marco Rorro

Tree traversal with task

void preorder(node *p) {
 process(p->data);
 if (p->left)
 #pragma omp task
 preorder(p->left);
 if (p->right)
 #pragma omp task
 preorder(p->right);
}

•  Tasks are composable
•  It isn’t a worksharing construct
•  But what about postorder traversal?

Evolution of
OpenMP

Marco Rorro

Postorder tree traversal
void postorder(node *p) {
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
 #pragma omp taskwait

 process(p->data);
}

•  Parent task suspended until children tasks complete

Evolution of
OpenMP

Marco Rorro

“Vertical” sharing

int fibonacci(int n) {
 int i, j;
 if (n<2) return n;

 #pragma omp task shared(i)
 i = fibonacci(n-1);
 #pragma omp task shared(j)
 j = fibonacci(n-2);
 #pragma omp taskwait

 return i+j;
}

•  Allow results to be returned to parent

Evolution of
OpenMP

Marco Rorro

When/where explicit tasks
complete?

•  #pragma omp taskwait
–  applies only to tasks generated in the current task, not to descendants

•  #pragma omp taskgroup
 {

 create_a_group_of_task(could_create_nested_task)
}
–  at the end of the region current task is suspended until all child tasks

generated in the region and their descendants complete execution
(version 4.0RC1)

•  #pragma omp barrier
–  applies to all tasks generated in the current parallel region up to the

barrier
–  matches user expectation
–  obviously applies to implicit barriers too

Evolution of
OpenMP

Marco Rorro

Enter task switching

•  What: the ability of a thread to suspend a task and execute
another one before resuming

•  Where:
–  at task scheduling points: task, taskwait, barrier

directives, and implicit barriers
–  at a taskyield construct

•  When:
–  whenever is needed or useful
–  up to the implementation

•  Why:
–  to lift pressure on runtime data structures
–  because it can’t be dispensed with completely

•  Consequence: locks owned by tasks!

Evolution of
OpenMP

Marco Rorro

Lifting pressure on runtime

 #pragma omp single
 {
 for (i=0; i<ONEZILLION; i++)
 #pragma omp task
 process(item[i]);
 }

•  Too many tasks generated in an eye-blink
•  Generating task will have to suspend for a while
•  With task switching, the executing thread can:

–  execute an already generated task (draining the “task pool”)
–  dive into the encountered task (could be very cache-friendly)

Evolution of
OpenMP

Marco Rorro

Enter thread switching

 #pragma omp single
 {
 #pragma omp task
 for (i=0; i<ONEZILLION; i++)
 #pragma omp task
 process(item[i]);
 }

•  Eventually, too many tasks are generated
•  Generating task is suspended and executing thread switches to a

long and boring task
•  Other threads get rid of all already generated tasks, and start

starving…
•  With thread switching, the generating task can be resumed by a

different thread, and starvation is over
•  Too unsafe to be the default, the programmer is responsible!

untied

Evolution of
OpenMP

Marco Rorro

The if clause

•  When the if clause argument is false
–  the encountered task is executed immediately by the

encountering thread, and the enclosing task is suspended up to its
end

–  the data environment is still local to the new task
–  and it’s still a different task wrt. synchronization

•  It’s a user directed optimization
–  when the cost of the task is comparable to the runtime overhead
–  to control cache and memory affinity

Evolution of
OpenMP

Marco Rorro

The final clause

•  When the final clause argument is true
–  the generated task will be a final task
–  all task encountered during execution of a final task will

generate included task
•  an included task is a task for which execution is sequentially

included in the generating task region; that is, it is
undeferred and executed immediately by the encountering
threads

•  It’s another user directed optimization

•  omp_in_final() returns true if the enclosing task
region is final. Otherwise, it returns false

Evolution of
OpenMP

Marco Rorro

Example: if and final

#pragma omp task if(0) // This is undeferred
{
 #pragma omp task // This is a regular task
 for(i = 0; i < 3; i++) {
 #pragma omp task // This is a regular task
 bar();
 }
}
#pragma omp task final(1) // This is a regular task
{
 #pragma omp task // This is included
 for(i=0;i<3;i++){
 #pragma omp task // This is also included
 bar();
 }
}

Evolution of
OpenMP

Marco Rorro

The mergeable clause

•  When the mergeable clause is present on a task
construct, and the generated task is undeferred or
included, the implementation may generate a
merged task instead
–  a merged task is a task whose data environments, inclusive

of ICVs, is the same as that of its generating task region

•  It is still another optimization …

–  pragma omp task final(d > LIMIT) mergeable

Evolution of
OpenMP

Marco Rorro

Conclusions on task

•  Tasks allow to express a lot of irregular parallelism
•  The tasking concept opens up opportunities to

parallelize a wider range of applications
•  Some issues can be improved in the language

–  reductions, data capturing, dependencies, …

•  Some extension are already planned for RC2
–  point to point dependencies
–  …

Evolution of
OpenMP

Marco Rorro

atomic enhancements

•  The atomic construct was extended (in 3.1) to include read,
write, and capture forms, and an update clause was added to
apply the already existing form of the atomic construct.

•  The allowed instruction differ between Fortran and C/C++
–  refer to the standard for their list

•  Added seq_cst clause for atomics in 4.0; removes need for
flush ...
–  seq_cst stand for sequentially consistent

•  Any atomic construct with a seq_cst clause forces the
atomically performed operation to include an implicit flush
operation without a list.

Evolution of
OpenMP

Marco Rorro

atomic examples

#pragma omp atomic update
 x += n*mass; // x is updated atomically
#pragma omp atomic read
 v = x; // x is read atomically
#pragma omp atomic write
 x = n*mass; // x is written atomically
#pragma omp atomic capture
 v = x++; //atomically update x,
 //but capture original value in v
#pragma omp atomic capture
 v = ++x; //atomically update x,
 //then capture that value

Evolution of
OpenMP

Marco Rorro

Transactional Memory in 4.0?

•  Transactional memory attempts to simplify parallel programming
by grouping read and write operations and running them like a
single operation.

•  Hardware techniques track temporary results and then commit
them if no conflict has occurred

•  The existing hardware cache coherency mechanism is used to track
read and write sets, usually tagged with a special transactional bit.

•  This mechanism also effectively limits the size of transactions to a
cache size

•  The BG/Q compute chip includes a versioning L2 cache that can
associate version numbers with cache tags. Thus, the cache can
contain multiple instances of the same address. This mechanism
allows the BG/Q compiler and runtime to implement TM support.

Evolution of
OpenMP

Marco Rorro

Transactional Memory on BG/Q
•  Transactional memory is enabled with the "-qtm" compiler option,

and requires thread safe compilation mode (mpixlc_r)
•  Transactions are implemented through regions of code that you

can designate to be single operations for the system. The regions
of code that implement the transactions are called transactional
atomic regions:
#pragma tm_atomic [safe_mode] { structured block }

•  The safe_mode clause asserts to the compiler that the TM region
does not contain irrevocable actions such as I/O or writing to
device memory space. Using the safe_mode clause reduces
overhead and increases performance.

•  However, if safe_mode is specified, irrevocable actions are not
checked at runtime. The run result is undefined if an irrevocable
action occurs during the execution.

Evolution of
OpenMP

Marco Rorro

TM on BG/Q: execution mode
•  Speculation mode (default)

–  Under speculation mode, Kernel address space, devices I/Os,
and most memory-mapped I/Os are protected from the
irrevocable actions except when the safe_mode clause is
specified. The transaction goes into irrevocable mode if such
an action occurs to guarantee the correct result.

•  Irrevocable mode
–  System calls, irrevocable operations such as I/O operations,

and OpenMP constructs trigger transactions to go into
irrevocable mode, which serializes transactions. Transactions
are also running in irrevocable mode when the maximum
number of transaction rollbacks has been reached.

–  Under irrevocable mode, each memory update of a thread is
committed instantaneously instead of at the end of the
transaction. Therefore, memory updates are immediately
visible to other threads. If the transaction becomes
irrevocable, the threads run nonspeculatively.

Evolution of
OpenMP

Marco Rorro

TM on BG/Q: example
#pragma omp parallel for private(block,fbeg,fend,face,ii,jj)
schedule(static)
 for (block = 0; block < numblocks; block++) {
 if (block < leftover) {
 fbeg = block*(blocksize + 1);
 fend = fbeg + blocksize + 1;
 }
 else {
 fbeg = leftover + block*blocksize;
 fend = fbeg + blocksize;
 }
 #pragma tm_atomic
 {
 for (face=fbeg; face<fend; face++) {
 ii = ii_list[face];
 jj = jj_list[face];
 y[ii] += A[face] * x[jj];
 y[jj] += A[face] * x[ii];
 }
 }
 }

Evolution of
OpenMP

Marco Rorro

SIMD constructs in OpenMP 4.0

#pragma omp simd [clauses]
 for loops

where clauses is:

safelen, linear, aligned, private, lastprivate,
reduction, collapse

•  Executes iterations of the associated loops in SIMD chunks
–  SIMD chunk is set of iterations executed concurrently by a SIMD lanes

•  Clauses control data environment, how loop is partitioned
–  safelen(length) limits the number of iterations in a SIMD chunk
–  linear lists variables with a linear relationship to the iteration space
–  aligned specifies byte alignments of a list of variables
–  private, lastprivate, reduction and collapse have usual meanings

Evolution of
OpenMP

Marco Rorro

SIMD functions in OpenMP 4.0

#pragma omp declare simd [clauses]
 function definition or declaration

where clauses is:

safelen, linear, aligned, uniform, private,
reduction, inbranch, notinbranch

•  Enable the creation of a function that can process multiple
arguments using SIMD instructions from a single invocation from a
SIMD loop.

•  Clauses control data environment, how function is used
–  simdlen(length) specifies the number of concurrent arguments
–  uniform lists invariant arguments across concurrent SIMD invocations
–  inbranch and notinbranch imply always/never invoked in a conditional

statement
–  linear, aligned, reduction are similar to simd clauses

Evolution of
OpenMP

Marco Rorro

loop and parallel loop SIMD

#pragma omp for simd [clauses]
 for loops

•  Loop is first divided into SIMD chunks

•  SIMD chunks are divided across implicit tasks

•  clause can be any of the clauses accepted by the for or simd
directives with identical meanings

•  parallel and for simd construct can be combined:

#pragma omp parallel for simd [clauses]
 for loops

Evolution of
OpenMP

Marco Rorro

Affinity support

•  Request binding of threads to places (in OpenMP 3.1)
 export OMP_PROC_BIND=true

•  New extensions (4.0) specify thread locations

–  Increased choices for OMP_PROC_BIND
–  Can still specify true or false
–  Can now provide a list (possible item values: master, close or spread) to

specify how to bind implicit tasks of parallel regions
–  Assign threads to same place as master
–  Assign threads close in place list to parent thread
–  Assign threads to maximize spread across places

•  Added OMP_PLACES environment variable
–  Can specify abstract names including threads, cores and sockets
–  Can specify an explicit ordered list of places

•  Added a new clause to the parallel construct
 proc_bind(master | close | spread)

Evolution of
OpenMP

Marco Rorro

User Defined Reductions (UDRs)

#pragma omp declare reduction (reduction-identifier :
typename-list : combiner) [identity(identy-expr)]

•  reduction-identifier gives a name to the operator
•  typename-list is a list of types to which it applies
•  combiner expression specifies how to combine values
•  identity can specify the identity value operator

Evolution of
OpenMP

Marco Rorro

UDR example
using namespace std;

#pragma omp declare reduction (merge : vector<int> :
omp_out.insert(omp_out.end(), omp_in.begin(),
omp_in.end()))

void schedule (vector<int> &v, vector<int> &w)
{
 #pragma omp parallel for reduction (merge : w)
 for (vector<int>::iterator it = v.begin();
 it < v.end(); it++)
 if (filter(*it)) w.push_back(*it);
}
•  omp_out refers to private copy that holds combined value
•  omp_in refers to the value to be combined

Evolution of
OpenMP

Marco Rorro

OpenMP in a heterogeneous world
•  Hardware

–  GPUs (NVIDIA and AMD)
–  Intel Xeon PHI
–  FPGA
–  DSP

•  Application Programming Interfaces

–  CUDA, CUDA Fortran (PGI)
–  OpenCL
–  OpenACC
–  HMPP

•  The OpenACC API is based on directives and its
experience will be the base approach for integration in
OpenMP

Evolution of
OpenMP

Marco Rorro

OpenMP on accelerators

•  New directives
– target
– target data
– target update – target mirror – target linkable

•  New runtime functions
– omp_get_device_num
– omp_set_device_num

• New environment variable
– OMP_DEVICE_NUM

•  It’s only a Technical Report

Evolution of
OpenMP

Marco Rorro

targed

#pragma omp target [clauses]
 parallel-loop-construct|parallel-sections-construct

where clauses is:

device, map, mapto, mapfrom, scratch, num_threads,
if
•  Create a device data environment and execute the construct on

the same device.
•  Example:

sum = 0;
#pragma omp target device(acc0) map(B,C)
#pragma omp parallel for reduction(+:sum)
for (i=0; i<N; i++)

sum += B[i] + C[i];

Evolution of
OpenMP

Marco Rorro

targed update

#pragma omp target update [clauses]

where clauses is:

device, mapto, mapfrom, if
•  Update(to) a variable from the data environment of the current

task to the enclosing device data environment, or update(from) a
variable from the enclosing device data environment to the data
environment of the current task.

•  Example:
#pragma omp target update mapfrom(A,B)
#pragma omp target update mapto(C,D)

Evolution of
OpenMP

Marco Rorro

declare targed

#pragma omp declare target
function-definition or declaration

•  The declare target construct can be applied to a function to
enable the creation of a device specific version that can be called
from a target region.

#pragma omp declare target mirror (list)

•  Map a global variable to a device for the duration of the program

#pragma omp declare target linkable(list)

•  Assert that the user has mapped a global variable to a device

Evolution of
OpenMP

Marco Rorro

Conclusions and credits

•  OpenMP is evolving fast
–  support for accelerators
–  error handling
–  thread affinity
–  tasking extension
–  support for Fortran 2003

•  Stay tuned: www.openmp.org
•  Credits

–  Federico Massaioli
–  Ruud van der Pas
–  Alejandro Duran
–  Bronis R. de Supinski
–  Tim Mattson and Larry Meadows
–  James Beyer and Eric Stotzer

