22nd Summer School on PARALLEL COMPUTING

Scalable Linear Algebra

Nicola Spallanzani - n.spallanzani@cineca.it SuperComputing Applications and Innovation Department

Basic Linear Algebra Algorithms

Linear algebra constitutes the core of most technical-scientific applications

Scalar products

$$
s=\sum_{i} a_{i} \cdot b_{i}
$$

Linear Systems

$$
A_{i j} x_{j}=b_{i}
$$

Eigenvalue Equations

$$
A_{i j} x_{j}=\alpha x_{i}
$$

Linear Algebra is Hierarchical

Linear systems, Eigenvalue equations
$3 \mathrm{M} \times \mathrm{M}$ products

2 Mx V products
$1 \quad \mathrm{~V}$ x V products

Algorithms and Libraries

Basic Linear Algebra algorithms are well known and largely available. See for instance:

http://www.nr.com

Why should I use libraries?

- They are available on many platforms
- ... and they are usually optimized by vendors
- In the case vendor libraries are not installed:
http://www.netlib.org

Standard Linear Algebra Libraries

- blas
- lapack
- pblas
- scalapak
- arpack
- parpack
- PETSc

Serial Linear Algebra Packages
essl (IBM AIX)
mkl (Intel)
acml (AMD)
magma (ICL - Univ. Tennessee)
Parallel Linear Algebra Packages (dense matrices) plasma (ICL - Univ. Tennessee)

Eigenvalues Problems (sparse matrices)

Sparse Linear Systems

(Parallel) Basic Linear Algebra Subprograms (BLAS and PBLAS)

- Level 1 : Vector - Vector operations
- Level 2 : Vector - Matrix operations
- Level 3 : Matrix - Matrix operations

(Scalable) Linear Algebra PACKage (LAPACK and ScaLAPACK)

- Matrix Decomposition
- Linear Equation Systems
- Eigenvalue Equations
- Linear Least Square Equations
- ... for dense, banded, triangular, real and complex matrices

Levels of Routines

- Driver routines
to solve a complete problem
- Computational routines
to perform a distinct computational task
- Auxiliary routines
to perform subtasks of block-partitioned algorithms or low-level computations

Block Operations

A block representation of a matrix operation constitutes the basic parallelization strategy for dense matrices.

For instance, a matrix-matrix product can be split in a sequence of smaller operations of the same type acting on subblocks of the original matrix

$$
c_{i j}=\sum_{k=1}^{N} a_{i k} \cdot b_{k j}
$$

Example: Partitioning into 2×2 Blocks

a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	a_{17}	a_{18}	a_{19}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}	a_{26}	a_{27}	a_{28}	a_{29}
a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	a_{36}	a_{37}	a_{38}	a_{39}
a_{41}	a_{42}	a_{43}	a_{44}	a_{45}	a_{46}	a_{47}	a_{48}	a_{49}
a_{51}	a_{52}	a_{53}	a_{54}	a_{55}	a_{56}	a_{57}	a_{58}	a_{59}
a_{61}	a_{62}	a_{63}	a_{64}	a_{65}	a_{66}	a_{67}	a_{68}	a_{69}
a_{71}	a_{72}	a_{73}	a_{74}	a_{75}	a_{76}	a_{77}	a_{78}	a_{79}
a_{81}	a_{82}	a_{83}	a_{84}	a_{85}	a_{66}	a_{87}	a_{88}	a_{89}
a_{91}	a_{92}	a_{93}	a_{94}	a_{95}	a_{96}	a_{97}	a_{98}	a_{99}

B_{11}	$\mathrm{~B}_{12}$	$\mathrm{~B}_{13}$	$\mathrm{~B}_{14}$	$\mathrm{~B}_{15}$
$\mathrm{~B}_{21}$	$\mathrm{~B}_{22}$	$\mathrm{~B}_{23}$	$\mathrm{~B}_{24}$	$\mathrm{~B}_{25}$
$\mathrm{~B}_{31}$	$\mathrm{~B}_{32}$	$\mathrm{~B}_{33}$	$\mathrm{~B}_{34}$	$\mathrm{~B}_{35}$
$\ldots \ldots \ldots \ldots \ldots$				
$\mathrm{~B}_{41}$	$\mathrm{~B}_{42}$	$\mathrm{~B}_{43}$	$\mathrm{~B}_{44}$	$\mathrm{~B}_{45}$
$\mathrm{~B}_{51}$	$\mathrm{~B}_{52}$	$\mathrm{~B}_{53}$	$\mathrm{~B}_{54}$	$\mathrm{~B}_{55}$

Block Representation

Next Step: distribute blocks among processors

Process Grid

N processes are organized into a logical 2D mesh with p rows and q columns, such that $\mathrm{p} \times \mathrm{q}=\mathrm{N}$
p

	0	1	2
0	rank = 0	rank =1	rank = 2
q			
1	rank = 3	rank = 4	rank = 5

A process is referenced by its coordinates within the grid rather than a single number

Cyclic Distribution of Blocks

| B_{11} | $\mathrm{~B}_{12}$ | $\mathrm{~B}_{13}$ | $\mathrm{~B}_{14}$ | $\mathrm{~B}_{15}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~B}_{21}$ | $\mathrm{~B}_{22}$ | $\mathrm{~B}_{23}$ | $\mathrm{~B}_{24}$ | $\mathrm{~B}_{25}$ |
| $\mathrm{~B}_{31}$ | $\mathrm{~B}_{32}$ | $\mathrm{~B}_{33}$ | $\mathrm{~B}_{34}$ | $\mathrm{~B}_{35}$ |
| $\mathrm{~B}_{41}$ | $\mathrm{~B}_{42}$ | $\mathrm{~B}_{43}$ | $\mathrm{~B}_{44}$ | $\mathrm{~B}_{45}$ |
| $\mathrm{~B}_{51}$ | $\mathrm{~B}_{52}$ | $\mathrm{~B}_{53}$ | $\ldots \ldots \ldots$ | |

$$
\begin{aligned}
B_{h, k} \rightarrow(p, q) \quad & p=\operatorname{MOD}\left(N_{p}+h-1, N_{p}\right) \\
q & =\operatorname{MOD}\left(N_{q}+k-1, N_{q}\right)
\end{aligned}
$$

Blocks are distributed on processors in a cyclic manner on each index

Distribution of matrix elements

	0		1		2
0	B_{11}	B_{14}	B_{12}	B_{15}	B_{13}
	B_{31}	B_{3+}	B_{32}	B_{35}	B_{3}
	B_{51}	B_{54}	B_{52}	B_{55}	B_{53}
1	B_{21}	B_{24}	B_{22}	B_{25}	B_{23}
	B_{41}	B_{44}	B_{42}	$\mathrm{B}_{4,5}$	$\mathrm{B}_{4}{ }^{3}$

The indexes of a single element can be traced back to the processor

myid $=0$	myid=1	myid $=2$	myid=3	myid $=4$	myid=5
$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=0$	$\mathrm{p}=1$	$\mathrm{p}=1$	$\mathrm{p}=1$
$\mathrm{q}=0$	$\mathrm{q}=1$	$\mathrm{q}=2$	$\mathrm{q}=0$	$\mathrm{q}=1$	$\mathrm{q}=2$

Distribution of matrix elements

a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	a_{17}	a_{18}	a_{19}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}	a_{26}	a_{27}	a_{28}	a_{29}
a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	a_{36}	a_{37}	a_{38}	a_{39}
a_{41}	a_{42}	a_{43}	a_{44}	a_{45}	a_{46}	a_{47}	a_{48}	a_{49}
a_{51}	a_{52}	a_{53}	a_{54}	a_{55}	a_{56}	a_{57}	a_{58}	a_{59}
a_{61}	a_{62}	a_{63}	a_{64}	a_{65}	a_{66}	a_{67}	a_{68}	a_{69}
a_{71}	a_{72}	a_{73}	a_{74}	a_{75}	a_{76}	a_{77}	a_{78}	a_{79}
a_{81}	a_{82}	a_{83}	a_{84}	a_{85}	a_{86}	a_{87}	a_{88}	a_{89}
a_{91}	a_{92}	a_{93}	a_{94}	a_{95}	a_{96}	a_{97}	a_{98}	a_{99}

Logical View (Matrix)

a_{11}	a_{12}	a_{17}	a_{18}	a_{13}	a_{14}	a_{19}	a_{15}	a_{16}
a_{21}	a_{22}	a_{27}	a_{28}	a_{23}	a_{24}	a_{29}	a_{25}	a_{26}
a_{51}	a_{52}	a_{57}	a_{58}	a_{53}	a_{54}	a_{59}	a_{55}	a_{56}
a_{61}	a_{62}	a_{67}	a_{68}	a_{63}	a_{64}	a_{69}	a_{65}	a_{66}
a_{91}	a_{92}	a_{97}	a_{98}	a_{93}	a_{94}	a_{99}	a_{95}	a_{96}
a_{31}	a_{32}	a_{37}	a_{38}	a_{33}	a_{34}	a_{39}	a_{35}	a_{36}
a_{41}	a_{42}	a_{47}	a_{48}	a_{43}	a_{44}	a_{49}	a_{45}	a_{46}
a_{71}	a_{72}	a_{77}	a_{78}	a_{73}	a_{74}	a_{79}	a_{75}	a_{76}
a_{81}	a_{82}	a_{87}	a_{88}	a_{83}	a_{84}	a_{89}	a_{85}	a_{86}

Local View (CPUs)
http://acts.nersc.gov/scalapack/hands-on/datadist.html http://acts.nersc.gov/scalapack/hands-on/addendum.html

BLACS

(Basic Linear Algebra Communication Subprograms)
The BLACS project is an ongoing investigation whose purpose is to create a linear algebra oriented message passing interface that may be implemented efficiently and uniformly across a large range of distributed memory platforms

ScaLAPACK

BLACS

Communication Library
(MPI)

BLACS Process Grid

Processes are distributed on a 2D mesh using row-order or column-order (ORDER='R' or 'C'). Each process is assigned a row/column ID as well as a scalar ID
column ID

BLACS_GRIDINIT (CONTEXT, ORDER, NPROW, NPCOL)

Initialize a 2D grid of NPROW x NPCOL processes with an order specified by ORDER in a given CONTEXT

CONTEXT

Context
\longrightarrow
MPI Communicators

BLACS: Subroutines

BLACS PINFO (MYPNUM, NPROCS)

Query the system for process ID MYPNUM (output) and number of processes NPROCS (output).

BLACS_GET (ICONTEXT, WHAT, VAL)
Query to BLACS environment based on WHAT (input) and ICONTEXT (input) If WHAT $=0$, ICONTEX is ignored and the routine returns in VAL (output) a value indicating the default system context

BLACS_GRIDINIT (CONTEXT, ORDER, NPROW, NPCOL) Initialize a 2D mesh of processes

BLACS_GRIDINFO (CONTEXT, NPROW, NPCOL, MYROW, MYCOL) Query CONTEXT for the dimension of the grid of processes (NPROW, NPCOL) and for row-ID and col-ID (MYROW, MYCOL)

BLACS_GRIDEXIT (CONTEXT)

Release the 2D mesh associated with CONTEXT
BLACS EXIT (CONTINUE) Exit from BLACS environment

BLACS: Subroutines

Point to Point Communication
DGESD2D (ICONTEX,M,N,A,LDA, RDEST, CDEST)
Send matrix $A(M, N)$ to process (RDEST,CDEST)
DGERV2D (ICONTEX,M,N,A,LDA, RSOUR, CSOUR)
Receive matrix $A(M, N)$ from process (RSOUR,CSOUR)
Broadcast
DGEBS2D (ICONTEX,SCOPE,TOP,M,N,A,LDA)
Execute a Broadcast of matrix $A(M, N)$
DGEBR2D (ICONTEX,SCOPE, TOP,M,N,A,LDA,RSRC, CSRC)
Receive matrix $A(M, N)$ sent from process (RSRC,CSRC) with a broadcast operation
Global reduction
DGSUM2D (ICONTXT, SCOPE, TOP,M,N,A,LDA,RDST, CDST)
Execute a parallel element-wise sum of matrix $A(M, N)$ and store the result in process (RDST,CDST) buffer

Dependencies

ScaLAPACK and PBLAS: template

1. Initialize BLACS
2. Initialize BLACS grids
3. Distribubute matrix among grid processes (cyclic block distribution)
4. Calls to ScaLAPACK/PBLAS routines
5. Harvest results
6. Release BLACS grids
7. Close BLACS environment

Example:

```
        ! Initialize the BLACS
        CALL BLACS_PINFO( IAM, NPROCS )
        ! Set the dimension of the 2D processors grid
        CALL GRIDSETUP( NPROCS, NPROW, NPCOL ) ! User defined
        write (*,100) IAM, NPROCS, NPROW, NPCOL
    100 format(' MYPE ',I3,', NPE ',I3,', NPE ROW ',I3,', NPE COL ',I3)
! Initialize a single BLACS context
CALL BLACS_GET( -1, 0, CONTEXT )
CALL BLACS_GRIDINIT( CONTEXT, 'R', NPROW, NPCOL )
CALL BLACS_GRIDINFO( CONTEXT, NPROW, NPCOL, MYROW, MYCOL )
CALL BLACS_GRIDEXIT( CONTEXT )
CALL BLACS_EXIT( O )
```


Descriptor

The Descriptor is an integer array that stores the information required to establish the mapping between each global array entry and its corresponding process and memory location.

Each matrix MUST be associated with a Descriptor. Anyhow it's responsibility of the programmer to distribute the matrix coherently with the Descriptor.

```
DESCA( 1 ) = 1
DESCA( 3 ) = M
DESCA( 5 ) = MB
DESCA( 7 ) = RSRC
DESCA( 9 ) = LDA
```

```
DESCA( 2 ) = ICTXT
DESCA(4 ) = N
DESCA( 6 ) = NB
DESCA( 8 ) = CSRC
```


Descriptor Initialization

DESCINIT (DESCA, M, N, MB, NB, RSRC, CSRC, ICTXT, LDA, INFO)

DESCA(9) (global output) matrix A ScaLAPACK Descriptor
$\mathbf{M , ~ N ~ (g l o b a l ~ i n p u t) ~ g l o b a l ~ d i m e n s i o n s ~ o f ~ m a t r i x ~ A ~}$
MB, NB (global input) blocking factors used to distribute matrix A

RSRC, CSRC (global input) process coordinates over which the first element of A is distributed

ICTXT (global input) BLACS context handle, indicating the global context of the operation on matrix

LDA (local input) leading dimension of the local array (depends on process!)

ScaLAPACK tools

http://www.netlib.org/scalapack/tools

Computation of the local matrix size for a $\mathrm{M} \times \mathrm{N}$ matrix distributed over processes in blocks of dimension MB x NB

```
Mloc = NUMROC( M, MB, ROWID, O, NPROW )
Nloc = NUMROC( N, NB, COLID, O, NPCOL )
allocate( Aloc( Mloc, Nloc ) )
```

Computation of global indexes

```
iloc = INDXG2L( i, MB, ROWID, O, NPROW )
jloc = INDXG2L( j, NB, COLID, 0, NPCOL )
i = INDXL2G( iloc, MB, ROWID, 0, NPROW )
j = INDXL2G( jloc, NB, COLID, 0, NPCOL )
```


ScaLAPACK tools

Compute the process to which a certain global element (i,j) belongs

```
iprow = INDXG2P( i, MB, ROWID, 0, NPROW )
jpcol = INDXG2P( j, NB, COLID, 0, NPCOL )
```

Define/read a local element, knowing global indexes

CALL PDELGET (SCOPE, TOP, aval, A, i, j, DESCA)

PBLAS/ScaLAPACK subroutines

Routines name scheme: PXYYZZZ

```
\
```

X data type

$$
\begin{aligned}
\rightarrow \quad \mathrm{S} & =\text { REAL } \\
\mathrm{D} & =\text { DOUBLE PRECISION } \\
\mathrm{C} & =\text { COMPLEX } \\
\mathrm{Z} & =\text { DOUBLE COMPLEX }
\end{aligned}
$$

YY matrix type $(\mathrm{GE}=$ general, $\mathrm{SY}=$ symmetric, $\mathrm{HE}=$ hermitian $)$

ZZZ algorithm used to perform computation

Some auxiliary functions don't make use of this naming scheme!

Calls to ScaLAPACK routines

- It's responsibility of the programmer to correctly distribute a global matrix before calling ScaLAPACK routines
- ScaLAPACK routines are written using a message passing paradigm, therefore each subroutine access directly ONLY local data
- Each process of a given CONTEXT must call the same ScaLAPACK routine...
- ... providing in input its local portion of the global matrix
- Operations on matrices distributed on processes belonging to different contexts are not allowed

PBLAS subroutines

matrix multiplication: $C=A$ * B (level 3)
PDGEMM ('N', 'N', M, N, L, 1.0d0, A, 1, 1, DESCA, B, 1, 1, DESCB, O.OdO, C, 1, 1, DESCC)
matrix transposition: $C=A^{\prime} \quad$ (level 3)
PDTRAN (M, N, 1.0d0, A, 1, 1, DESCA, O.0d0, C, 1, 1, DESCC)
matrix times vector: $Y=A * X \quad$ (level 2)
PDGEMV ('N', M, N, 1.0d0, A, 1, 1, DESCA, X, 1, JX, DESCX, 1, 0.0d0, Y, 1, JY, DESCY, 1)
$X(1: N, J X: J X)$
Y (1: M, JY: JY)
row / column swap: $X \Leftrightarrow Y$
(level 1)
PDSWAP (N, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY)

$$
\begin{aligned}
& X(I X, J X: J X+N-1) \text { if } I N C X=M _X, X(I X: I X+N-1, J X) \text { if } I N C X=1 \text { and } I N C X<>M_{-} X \text {, } \\
& \mathrm{Y}(\mathrm{IY}, \mathrm{JY}: J Y+\mathrm{N}-1) \text { if } \mathrm{INCY}=\mathrm{M}_{-} \mathrm{Y}, \mathrm{Y}(\mathrm{IY}: I \mathrm{Y}+\mathrm{N}-1, \mathrm{JY}) \text { if } \mathrm{INCY}=1 \text { and } \mathrm{INCY}<>\mathrm{M}_{-} \mathrm{Y} \text {. }
\end{aligned}
$$

scalar product: $\mathrm{p}=\mathrm{X}^{\prime} \cdot \mathrm{Y}$
(level 1)
PDDOT(N, P, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY)

$$
\begin{array}{ll}
X(I X, J X: J X+N-1) & \text { if } I N C X=M _X, X(I X: I X+N-1, J X) \\
Y(I Y, J Y: J Y+N-1) & \text { if } I N C Y=M C X=1 \text { and } I N C X<>M, X(I Y: I Y+N-1, J Y) \text { if } I N C Y=1 \text { and } I N C Y<>M _Y .
\end{array}
$$

ScaLAPACK subroutines

Eigenvalues and, optionally, eigenvectors: $\mathbf{A} \mathbf{Z}=w \mathbf{Z}$

Print matrix

BLAS/LAPACK vs. PBLAS/ScaLAPACK

- "P" prefix for parallel routines!
- The "Leading dimension" turns into a "Descriptor"
- Global indexes are additional parameters of the subroutine

```
BLAS routine:
DGEMM('N', 'N', M, N, L, 1.0, A(1,1), LDA, B(1,1), LDB, 0.0, C(1,1),LDC)
PBLAS routine:
PDGEMM('N', 'N', M, N, L, 1.0, A, 1, 1, DESCA, B, 1, 1, DESCB, 0.0, C,
    1, 1, DESCC)
LAPACK routine:
DGESV(N, NRHS, A(I,J), LDA, IPIV, B(I,1), LDB, INFO)
SCALAPACK routine:
PDGESV(N, NRHS, A, I, J, DESCA, IPIV, B, I, 1, DESCB, INFO)
```


ScaLAPACK Users' Guide

http://www.netlib.org/scalapack/slug/

At the end of the "Contents" you can find the
"Quick Reference Guides" for ScaLAPACK, PBLAS and BLACS routines

BLACS/ScaLAPACK + MPI

It is quite tricky to write a program using BLACS as a communication library, therefore:

MPI and BLACS must be used consistently!

Initialize MPI + BLACS

```
CALL MPI INIT(IERR)
CALL MPI_COMM_SIZE (MPI_COMM_WORLD,NPROC,IERR)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,MPIME,IERR)
!
comm_world = MPI_COMM_WORLD
!
ndims = 2
dims = 0
CALL MPI_DIMS_CREATE( NPROC, ndims, dims, IERR)
NPROW = dims(1) ! cartesian direction 0
NPCOL = dims(2) ! cartesian direction 1
    Get a default BLACS context
!
CALL BLACS_GET( -1, 0, ICONTEXT )
! Initialize a default BLACS context
CALL BLACS_GRIDINIT(ICONTEXT, 'R', NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTEXT, NPROW, NPCOL, ROWID, COLID)
CALL MPI_COMM_SPLIT(comm_world, COLID, ROWID, COMM_COL, IERR)
CALL MPI_COMM_RANK(COMM_COL, coor(1), IERR)
!
CALL MPI_COMM_SPLIT(comm_world, ROWID, COLID, COMM_ROW, IERR)
CALL MPI_COMM_RANK (COMM_ROW, coor (2), IERR)
```


Matrix redistribution

```
! Distribute matrix AO (M x N) from root node to all processes in context ictxt.
!
call SL_INIT(ICTXT, NPROW, NPCOL)
call SL_INIT(rootNodeContext, 1, 1) ! create 1 node context
    ! for loading matrices
call BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL)
!
! LOAD MATRIX ON ROOT NODE AND CREATE DESC FOR IT
!
if (MYROW == 0 .and. MYCOL == 0) then
    NRU = NUMROC( M, M, MYROW, 0, NPROW )
    call DESCINIT( DESCAO, M, N, M, N, 0, 0, rootNodeContext, max(1, NRU), INFO )
else
    DESCAO (1:9) = 0
    DESCAO (2) = -1
end if
!
! CREATE DESC FOR DISTRIBUTED MATRIX
!
NRU = NUMROC( M, MB, MYROW, O, NPROW )
CALL DESCINIT( DESCA, M, N, MB, NB, 0, 0, ICTXT, max(1, NRU), INFO )
!
! DISTRIBUTE DATA
!
if (debug) write(*,*) "node r=", MYROW, "c=", MYCOL, "M=", M, "N=", N
call PDGEMR2D( M, N, A0, 1, 1, DESCA0, A, 1, 1, DESCA, DESCA( 2 ) )
```


How To Compile

```
# load these modules on FERMI
module load bgq-xl
module load scalapack
module load lapack blas essl
LALIB="-L$SCALAPACK_LIB -lscalapack -L$ESSL_LIB -lesslbg
    -L$LAPACK_LIB -llapack -L$ESSL_LIB -lesslbg
    -L$BLAS_LIB -lblas"
mpixlf90_r -o program.x program.f90 ${LALIB}
mpixlc_r -o program.x program.c ${LALIB}
    -L/opt/ibmcmp/xlf/bg/14.1/lib64 -lxlf90_r
```


MAGMA

Matrix Algebra for GPU and Multicore Architecture http://icl.cs.utk.edu/magma/

The MAGMA project aims to develop a dense linear algebra library similar to LAPACK but for heterogeneous/hybrid architectures, starting with current "Multicore+GPU" systems.

Methodology: CPU and GPU overlapping

MAGMA uses HYBRIDIZATION methodology based on
Representing linear algebra algorithms as collections of TASKS and DATA DEPENDENCIES among them
Properly SCHEDULING tasks' execution over multicore and GPU hardware components
Hybridization means...
Panels (Level 2 BLAS) are factored on CPU using LAPACK
Trailing matrix updates (Level 3 BLAS) are done on the GPU using "look-ahead"

MAGMA

CPU versus GPU interfaces

Why two different interfaces?

If data is already on the GPU pointer to GPU memory
(some) additional memory allocation on CPU side
If data is already on the CPU
no changes on the prototype internal overlap communication/computation (it uses pinned) (some) additional memory allocation on GPU side

MAGMA

```
How to compile/link
C/C++:
    \#include "magma.h"
```

FORTRAN:
USE magma
COMPILE:
-I\$(MAGMADIR)/include -I\$(CUDADIR)/include
LINKING:
-L\$(MAGMADIR)/lib -lmagma -lmagmablas
\$(MAGMADIR)/lib/libmagma.a \$(MAGMADIR)/lib/libmagma
put MAGMA before CUDA and multi-threading library (like MKL)

MAGMA

How to use in the code

DGETRF: Computes an LU factorization of a general matrix A, using partial pivoting with row interchanges.

PROTOTYPE: DGETRF ($\mathbf{M}, \mathrm{N}, \mathrm{A}$, LDA, IPIV, INFO)

CPU interface:
call magma_dgetrf($M, N, A, l d a, i p i v, ~ i n f o ~) ~$

GPU interface:
call cublas_set_matrix (M, N, size_of_elt, $A, 1 d a, d _A$, ldda)
call magma_dgetrf_gpu($\left.M, N, d_{1} A, 1 d d a, ~ i p i v, ~ i n f o ~\right) ~$

Thanks for your attention!

