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PETSc main features

 Essentially Object Oriented code written in C
 Usable from Fortran, C++ and Python (via petsc4py)
 Uses MPI for message-passing
 Uses BLAS and LAPACK for low-level data manipulation
 Can be configured for single or double precision, real or complex scalars 
 Interfaces with many other numerical packages
 PETSc has been used for modeling in all of these areas: 

Acoustics, Aerodynamics, Air Pollution, Arterial Flow, Brain Surgery, Cancer Surgery and 
Treatment, Cardiology, Combustion, Corrosion, Earth Quakes, Economics, Fission, Fusion, 
Magnetic Films, Material Science, Medical Imaging, Ocean Dynamics, PageRank, Polymer 
Injection Molding, Seismology, Semiconductors, ...
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PETSc – Portable, Extensible Toolkit for Scientific Computation

Is a suite of data structures and routines for the scalable (parallel) solution
of scientific applications mainly modelled by partial differential equations.



PETSc class hierarchy
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PETSc numerical components
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PETSc model
Goals

• Portability

• Performance

• Scalable parallelism
Approach

• Object Oriented Delegation Pattern 

• Many specific implementations of the same object

• Shared interface

• Command line customization
Benefit

• Most of linear and nonlinear algebra techniques implemented  

• Flexibility: easy switch among different implementations

• Nasty details of implementation hidden

Ongoing (development version only)

• GPU, MIC (via OpenCL) and pthread low-level implementations 
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PETSc object oriented model
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 (Almost) all PETSc objects are essentially delegator objects 
 From Wikipedia: “...an object, instead of performing one of its stated tasks, 

delegates that task to an associated helper object..."
http://en.wikipedia.org/wiki/Delegation_pattern

 Example with a XXX object
#include <petscxxx.h> //Includes the public interface for XXX and other stuff  
PetscXXX xxx;
XXXCreate(....,&xxx); //Initializes the XXX object (no implementation yet)
XXXSetType(xxx,ANY_XXX_TYPE); //DELEGATION: Sets specific implementation
XXXSetOption(xxx,ANY_XXX_OPTION,XXX_OPTION_VALUE); //Sets options in DB
XXXAnyCustom(xxx,...); //Any XXX customization available through the interface
XXXSetFromOptions(xxx); //Allows options and command line customization
XXXSetUp(xxx); //Calls specific setup (not all objects need it) 

 XXXSetType calls the specific creation routine XXXCreate_ANYXXXTYPE(...).
 If XXXSetType is called at a later time, the old delegate is freed and xxx can be 

reused with a different low-level implementation.
 XXXSetUp, if needed, closes the setup procedure: xxx can then be used.
 Users can register their own delegates/classes using

              XXXRegister(...,XXXCreate_MYTYPE)
 

http://en.wikipedia.org/wiki/Delegation_pattern


PETSc from a user perspective
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 Home page

http://www.mcs.anl.gov/petsc/index.html
 User manual

http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
 Public functions for XXX class (Vec, Mat, KSP, …) accessible at

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/XXX/index.html
 Each class has its own set of tutorials which can be compiled and ran

USE THEM TO LEARN HOW TO DEVELOP WITH PETSc!
 Always use a debug version of PETSc when developing.
 No need to download and install supported external packages separately: 

PETSc will do this for you if any if the packages is requested at configure 
time.

 An example:

$ ./configure --download-mpich=1 --download-mumps=1 

http://www.mcs.anl.gov/petsc/index.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/XXX/index.html


PETSc from a user perspective
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Writing PETSc programs: 
initialization and finalization

PetscInitialize(int *argc, char ***args, const char 
options_file[], const char help_string[])

– Setup of static data
– Registers all PETSc specific implementations (of all classes)
– Setup of services (logging, error-handling, profiling)
– Setup of MPI (if it is not already been initialized)

PetscFinalize()
– Calculates logging summary
– Checks for memory leaks (already allocated mem, if req'ed)
– Finalizes MPI (if  PetscInitialize() began MPI)
– Shutdowns all PETSc services
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A simple hello world program

#include "petscsys.h"

int main(int argc,char **args) {
  PetscErrorCode ierr;
  PetscMPIInt    rank;

  ierr = PetscInitialize(&argc, &args,(char *)0, NULL);CHKERRQ(ierr);

  ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_SELF,
                     "Hello by process %d!\n",rank);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return 0;
}
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A simple hello world program
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#include "finclude/petsc.h"

program main

PetscErrorCode :: ierr
PetscMPIInt :: rank
character(len=6)  :: num
character(len=30) :: hello

call PetscInitialize( PETSC_NULL_CHARACTER,ierr );CHKERRQ(ierr)
call MPI_Comm_rank( PETSC_COMM_WORLD, rank, ierr );CHKERRQ(ierr)
write(num,*) rank
hello = 'Hello from process '//num
call PetscPrintf( PETSC_COMM_SELF, hello//achar(10), ierr );CHKERRQ(ierr)
call PetscFinalize(ierr)
 
end program



Vec and Mat
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Vectors

What are PETSc vectors?

– Roughly represent elements of a Banach space

– Usually they store solutions and right-hand sides.

– Vector elements are PetscScalars

– Each process locally owns a subvector of contiguously 
numbered global indices

Features

– Vector types: STANDARD, PTHREAD and CUSP (dev only)

– Supports all vector space operations

• VecDot(), VecNorm(), VecScale(), …

– Also unusual ops, like e.g. VecSqrt(), VecReciprocal()

– Hidden communication of vector values during assembly

– Communications between different parallel vectors 
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Vector basic interface 1/2

VecCreate(MPI_Comm comm, Vec *v)

– Automatically generates the appropriate vector type (sequential 
or parallel) over all processes in comm

VecSetSizes(Vec v, PetscInt m, PetscInt M)

– Sets local and global sizes

VecSetType(Vec v, VecType type)

– Sets vector type (defines the delegated object)

VecSetFromOptions(Vec v)

– Configures the vector from the options database

VecDuplicate(Vec old, Vec *new)

– Duplicates the vector (doesn't copy values)
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Vector basic interface 2/2
VecGetSize(Vec v, PetscInt *size)

– Gets global size of v

VecGetLocalSize(Vec v, PetscInt *size)

– Gets local size of v

VecView(Vec x, PetscViewer v)

– Prints the content of the vector using the viewer object

VecCopy(Vec x, Vec y)

– Copies vector values

VecSet(Vec x, PetscScalar value)

– Sets all values of the vector to a specific value

VecDestroy(Vec *x)

– Destroys the Vec object
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Vector assembly

VecSetValue(Vec x, PetscInt idx, PetscScalar v,   
            InsertMode mode)
VecSetValues(Vec x, PetscInt n, PetscInt *idx,
             PetscScalar *v, InsertMode mode)
VecAssemblyBegin(Vec x)
VecAssemblyEnd(Vec x)

A three step process
– VecSetValues can be called as many times as the user 

wants to tell PETSc what values are to be inserted (or added 
to existing ones) and where

– VecAsseblyBegin starts communications to ensure that 
values end up where needed (allow other operations, such 
as some independent computation, to proceed).

– VecAssemblyEnd completes the communication
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Vector – Example 1 

#include “petscvec.h”
...

Vec x;

PetscInt i,N;

PetscMPIInt rank;

PetscScalar value=1.0;

PetscErrorCode ierr;
...

ierr = VecGetSize(x, &N);CHKERRQ(ierr);  /* Global size */

ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr)

if (rank == 0) { /* Only rank 0 sets all values into the vector */

  for (i=0; i<N; i++) {

    ierr = VecSetValue(x,i,value,INSERT_VALUES);CHKERRQ(ierr);

  }

}

/* data is distributed to the other processes */

ierr = VecAssemblyBegin(x);CHKERRQ(ierr);

ierr = VecAssemblyEnd(x);CHKERRQ(ierr);

/* the vector can then be used */
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Vector – Example 2 

#include “petscvec.h”
...

Vec x;

PetscInt i,low,high;

PetscScalar value=1.0;

PetscErrorCode ierr;
...

ierr = VecGetOwnershipRange(x, &low, &high);CHKERRQ(ierr);

for (i=low; i<high; i++) { /* each process fill its own part */

  ierr = VecSetValue(x, i, value, INSERT_VALUES);CHKERRQ(ierr);

}

ierr = VecAssemblyBegin(x);CHKERRQ(ierr);

ierr = VecAssemblyEnd(x);CHKERRQ(ierr);

/* the vector can then be used */

18



Numerical vector operations
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Working with local vectors

Sometimes is more efficient to directly access local storage of a PETSc 
Vec (e.g. in finite difference computations involving vector elements)

VecGetArray(Vec x, PetscScalar *[])
– Access the local storage

VecRestoreArray(Vec x, PetscScalar *[])
– You must return the array to PETSc when you have done 

computing with local data

PETSc handles data structure conversions (e.g. if data resides on GPU)
– For most common uses, these routines are inexpensive and 

do not involve a copy of local data.
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Vector – Example 3 

#include “petscvec.h”
...

Vec vec;

PetscMPIInt rank;

PetscScalar *avec;
...

ierr = VecCreate(PETSC_COMM_WORLD,&vec);CHKERRQ(ierr);
ierr = VecSetSizes(vec,PETSC_DECIDE,100);CHKERRQ(ierr);
ierr = VecSetType(vec,VECSTANDARD);CHKERRQ(ierr);
...

ierr = VecGetArray(vec, &avec);CHKERRQ(ierr);

ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_SELF,“First element of local array for rank 
%d is %f\n”,rank,avec[0]);CHKERRQ(ierr);
ierr = VecRestoreArray(vec, &avec);CHKERRQ(ierr);
... 
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Matrices

What are PETSc matrices?
– Roughly represent linear operators in Banach spaces
– In most of the PETSc low-level implementations, each process 

logically owns a submatrix of contiguous rows

Features
– Supports many storage formats

● AIJ,  BAIJ, SBAIJ, DENSE, CUSP (GPU, dev-only) ...
– Data structures for many external packages

● MUMPS (parallel), SuperLU_dist (parallel), SuperLU, 
UMFPack

– Hidden communications in parallel matrix assembly  
– Matrix operations are defined from a common interface
– Shell matrices via user defined MatMult and other ops
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Parallel sparse matrices

Each process logically owns a matrix subset of contiguously 
numbered global rows. Each subset consists of two sequential 
matrices corresponding to diagonal and off-diagonal parts.
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Matrix operations 1/2

MatCreate(MPI_Comm comm, Mat *A)

– Automatically generates the appropriate matrix type (sequential 
or parallel) over all processes in comm.

MatSetSizes(Mat A, PetscInt m, PetscInt n,
                   PetscInt M, PetscInt N)

– Sets the local and global sizes 

MatSetType(Mat A, MatType type)

– Sets matrix type (defines the delegated object)

MatSetFromOptions(Mat A)

– Configures the matrix from the options database.

MatDuplicate(Mat B, MatDuplicateOption op, Mat *A)

– Duplicates a matrix (including or not its nonzeros).
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Matrix operations 2/2

MatView(Mat A, PetscViewer v)

– Prints matrix content using the viewer object

MatGetOwnershipRange(Mat A, PetscInt *m, PetscInt* n)

– Gets the first and last (+1) of locally owned rows

MatGetOwnershipRanges(Mat A, const PetscInt **ranges)

– Gets start and end rows of each process sharing the matrix

MatGetSize(Mat A, PetscInt *m, PetscInt* n)

– Gets global number of rows and columns

MatDestroy(Mat *A)

– Destroys the Mat object
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Matrix assembly

Like PETSc vectors, Mat assembling process involves calls to

MatSetValue(Mat A, PetscInt idxm, PetscInt idxn,
            PetscScalar value,InsertMode mode)
MatSetValues(Mat A, PetscInt m, PetscInt idxm[],
                    PetscInt n, PetscInt idxn[],
                    PetscScalar values[],
                    InsertMode mode)
MatAssemblyBegin(Mat A, MatAssemblyType type)
MatAssemblyEnd(Mat A, MatAssemblyType type)
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Matrix – Example 
#include “petscmat.h”
...

Mat A;
PetscInt cols[3], i, istart, iend;
PetscScalar vals[3];
PetscErrorCode ierr;
...

/* suppose A has been already created and have its type set */
ierr = MatGetOwnershipRange(A,&istart,&iend);CHKERRQ(ierr);
... 

vals[0] = -1.0; vals[1] = 2.0; vals[2] = -1.0; /* 1D laplacian stencil */
for (i=istart; i<iend; i++) {
  cols[0] = i-1; cols[1] = i; cols[2] = i+1; /* 1D laplacian stencil */
  ierr = MatSetValues(A,1,&i,3,cols,value,INSERT_VALUES);CHKERRQ(ierr);
}
ierr = MatAssemblyBegin(A,MAT_FLUSH_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(A,MAT_FLUSH_ASSEMBLY);CHKERRQ(ierr);
/* all processes contribute to 0,0 entry */
ierr = MatSetValue(A,0,0,vals[0],ADD_VALUES);CHKERRQ(ierr); 
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
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Numerical matrix operations
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Matrix AIJ format
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The default matrix representation within PETSc is 
the general sparse AIJ format (Yale sparse matrix 
or Compressed Sparse Row, CSR)
 
  The nonzero elements are stored by rows
   Array of corresponding column numbers 
   Array of pointers to the beginning of each row



Matrix memory preallocation
Memory preallocation is critical for achieving good performance 
during matrix assembly, as this reduces the number of allocations and 
copies required during the assembling process.

Private representations of PETSc sparse matrices are dynamic data 
structures: additional nonzeros can be freely added (if no 
preallocation has been explicitly provided).

Dynamically adding many nonzeros 
– requires additional memory allocations
– requires copies

→ kills performances!
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Preallocation 
of a sequential sparse matrix (1/2)
MatSeqAIJSetPreallocation(Mat A, Petscint nz,
                          PetscInt *nnz)

• Dynamic preallocation if  (nz == 0 && nnz == PETSC_NULL)

• Quick and dirty preallocation if nz is set to the maximum number of 
nonzeros in any row . 

– Fine if the number of nonzeros per row is roughly the same 
throughout the matrix

31



Preallocation 
of sequential sparse matrix (2/2)

•  A finer preallocation

        nnz[0] = <nonzeros in row 0>

              ...

      nnz[m] = <nonzeros in row m>

• If one underestimates the actual number of nonzeros in a given 
row, then during the assembly process PETSc will complain unless 
otherwise told.
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Preallocation 
of a parallel sparse matrix (1/2)
MatMPIAIJSetPreallocation(Mat A,
                          Petscint dnz,
                          PetscInt *dnnz,
                          Petscint onz,
                          PetscInt *onnz)

• Same logic as before for dynamic allocation
• dnz and dnnz specify preallocation for the diagonal block
• onz and onnz specify preallocation for the off-diagonal block
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Preallocation 
of parallel sparse matrix (2/2)

Process 0

dnz=2, onz=2

dnnz[0]=2, onnz[0]=2

dnnz[1]=2, onnz[1]=2

dnnz[2]=2, onnz[2]=2

Process 1

dnz=3, onz=2

dnnz[0]=3, onnz[0]=2

dnnz[1]=3, onnz[1]=1

dnnz[2]=2, onnz[2]=1

Process 2

dnz=1, onz=4

dnnz[0]=1, onnz[0]=4

dnnz[1]=1, onnz[1]=4
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PETSc solvers: KSP, SNES and TS
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KSP: linear equations solvers

• KSP (K stands for Krylov) objects are used for solving linear 
systems by means of direct or iterative methods.

• In the iterative case, convergence can be improved by using a 
suitable PC object (preconditoner).

• Almost all iterative methods are implemented.
• Direct solution for parallel square matrices available through 

external solvers (MUMPS, SuperLU_dist)
• Linear operators set in KSP by using

  KSPSetOperators(KSP ksp, Mat amat, Mat pmat,
                  MatStructure matflag)
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PETSc KSP methods
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PETSc PC methods
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SNES: nonlinear solvers

The SNES class includes methods for solving systems of nonlinear 
equations of the form

Newton-like methods provide the core of the package, including both line 
search and trust region techniques.

SNESSetFunction(SNES snes, Vec v,
  PetscErrorCode (*SNESFunction)(SNES, Vec, Vec, void*), 

void *ctx)
SNESSetJacobian(SNES snes, Mat amat, Mat pmat,
  PetscErrorCode (*SNESJacobianFunction)
  (SNES, Vec, Mat*, Mat*, MatStructure*,void *),
  void *ctx)
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PETSc SNES methods
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TS: time steppers

TS class includes methods for solving systems of linear or nonlinear 
Ordinary Differential Equations (ODEs) or Differential Algebraic 
Equations (DAEs), i.e. problems which can be written down as

The class provides explicits, implicits or semi-implicit methods and the 
user has to provide functions on how to compute the fundamental 
pieces of equation (F, G and a Jacobian) 
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Debugging and Profiling
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Debugging

If configured in debug mode (default), PETSc provides large support to 
error handling, backtracing and memory leak detection for C/C++ 
codes by simply adhering to very basic guidelines for code developing 

PETSc programs may be debugged using one of the two options: 

-start_in_debugger - start all processes in debugger

-on_error_attach_debugger - start debugger only on  error

Also, if configured with MPICH for the message passing interface and 
with GNU compilers, PETSc code is completely valgrind-free.
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Profiling and performance tuning

Profiling:
 Integrated profiling of:

– time
– floating-point performance
– memory usage
– communication

 User-defined events 
 Profiling by stages of an application
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PETSc profiling options

The profiling options include the following:

-log_summary - Prints an ASCII version of performance data at program’s 
conclusion. These statistics are comprehensive and concise and require little 
overhead; thus, -log_summary is intended as the primary means of 
monitoring the performance of PETSc codes.

-info [infofile] - Prints verbose information about code to stdout or an 
optional file. This option provides details about algorithms, data structures, etc. 

-log_trace [logfile] - Traces the beginning and ending of all PETSc 
events. If used in conjunction with -info, this option is useful to see where a 
program is hanging without running in the debugger.
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