
Introduction to PETSc
Portable, Extensible Toolkit for Scientific Computation

Stefano Zampini – s.zampini@cineca.it
SuperComputing Applications and Innovation Department

PETSc main features

 Essentially Object Oriented code written in C
 Usable from Fortran, C++ and Python (via petsc4py)
 Uses MPI for message-passing
 Uses BLAS and LAPACK for low-level data manipulation
 Can be configured for single or double precision, real or complex scalars
 Interfaces with many other numerical packages
 PETSc has been used for modeling in all of these areas:

Acoustics, Aerodynamics, Air Pollution, Arterial Flow, Brain Surgery, Cancer Surgery and
Treatment, Cardiology, Combustion, Corrosion, Earth Quakes, Economics, Fission, Fusion,
Magnetic Films, Material Science, Medical Imaging, Ocean Dynamics, PageRank, Polymer
Injection Molding, Seismology, Semiconductors, ...

2

PETSc – Portable, Extensible Toolkit for Scientific Computation

Is a suite of data structures and routines for the scalable (parallel) solution
of scientific applications mainly modelled by partial differential equations.

PETSc class hierarchy

3

PETSc numerical components

4

PETSc model
Goals

• Portability

• Performance

• Scalable parallelism
Approach

• Object Oriented Delegation Pattern

• Many specific implementations of the same object

• Shared interface

• Command line customization
Benefit

• Most of linear and nonlinear algebra techniques implemented

• Flexibility: easy switch among different implementations

• Nasty details of implementation hidden

Ongoing (development version only)

• GPU, MIC (via OpenCL) and pthread low-level implementations

5

PETSc object oriented model

6

 (Almost) all PETSc objects are essentially delegator objects
 From Wikipedia: “...an object, instead of performing one of its stated tasks,

delegates that task to an associated helper object..."
http://en.wikipedia.org/wiki/Delegation_pattern

 Example with a XXX object
#include <petscxxx.h> //Includes the public interface for XXX and other stuff
PetscXXX xxx;
XXXCreate(....,&xxx); //Initializes the XXX object (no implementation yet)
XXXSetType(xxx,ANY_XXX_TYPE); //DELEGATION: Sets specific implementation
XXXSetOption(xxx,ANY_XXX_OPTION,XXX_OPTION_VALUE); //Sets options in DB
XXXAnyCustom(xxx,...); //Any XXX customization available through the interface
XXXSetFromOptions(xxx); //Allows options and command line customization
XXXSetUp(xxx); //Calls specific setup (not all objects need it)

 XXXSetType calls the specific creation routine XXXCreate_ANYXXXTYPE(...).
 If XXXSetType is called at a later time, the old delegate is freed and xxx can be

reused with a different low-level implementation.
 XXXSetUp, if needed, closes the setup procedure: xxx can then be used.
 Users can register their own delegates/classes using

 XXXRegister(...,XXXCreate_MYTYPE)

http://en.wikipedia.org/wiki/Delegation_pattern

PETSc from a user perspective

7

 Home page

http://www.mcs.anl.gov/petsc/index.html
 User manual

http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
 Public functions for XXX class (Vec, Mat, KSP, …) accessible at

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/XXX/index.html
 Each class has its own set of tutorials which can be compiled and ran

USE THEM TO LEARN HOW TO DEVELOP WITH PETSc!
 Always use a debug version of PETSc when developing.
 No need to download and install supported external packages separately:

PETSc will do this for you if any if the packages is requested at configure
time.

 An example:

$./configure --download-mpich=1 --download-mumps=1

http://www.mcs.anl.gov/petsc/index.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/XXX/index.html

PETSc from a user perspective

8

Writing PETSc programs:
initialization and finalization

PetscInitialize(int *argc, char ***args, const char
options_file[], const char help_string[])

– Setup of static data
– Registers all PETSc specific implementations (of all classes)
– Setup of services (logging, error-handling, profiling)
– Setup of MPI (if it is not already been initialized)

PetscFinalize()
– Calculates logging summary
– Checks for memory leaks (already allocated mem, if req'ed)
– Finalizes MPI (if PetscInitialize() began MPI)
– Shutdowns all PETSc services

9

A simple hello world program

#include "petscsys.h"

int main(int argc,char **args) {
 PetscErrorCode ierr;
 PetscMPIInt rank;

 ierr = PetscInitialize(&argc, &args,(char *)0, NULL);CHKERRQ(ierr);

 ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr);
 ierr = PetscPrintf(PETSC_COMM_SELF,
 "Hello by process %d!\n",rank);CHKERRQ(ierr);
 ierr = PetscFinalize();
 return 0;
}

10

A simple hello world program

11

#include "finclude/petsc.h"

program main

PetscErrorCode :: ierr
PetscMPIInt :: rank
character(len=6) :: num
character(len=30) :: hello

call PetscInitialize(PETSC_NULL_CHARACTER,ierr);CHKERRQ(ierr)
call MPI_Comm_rank(PETSC_COMM_WORLD, rank, ierr);CHKERRQ(ierr)
write(num,*) rank
hello = 'Hello from process '//num
call PetscPrintf(PETSC_COMM_SELF, hello//achar(10), ierr);CHKERRQ(ierr)
call PetscFinalize(ierr)

end program

Vec and Mat

12

Vectors

What are PETSc vectors?

– Roughly represent elements of a Banach space

– Usually they store solutions and right-hand sides.

– Vector elements are PetscScalars

– Each process locally owns a subvector of contiguously
numbered global indices

Features

– Vector types: STANDARD, PTHREAD and CUSP (dev only)

– Supports all vector space operations

• VecDot(), VecNorm(), VecScale(), …

– Also unusual ops, like e.g. VecSqrt(), VecReciprocal()

– Hidden communication of vector values during assembly

– Communications between different parallel vectors

13

Vector basic interface 1/2

VecCreate(MPI_Comm comm, Vec *v)

– Automatically generates the appropriate vector type (sequential
or parallel) over all processes in comm

VecSetSizes(Vec v, PetscInt m, PetscInt M)

– Sets local and global sizes

VecSetType(Vec v, VecType type)

– Sets vector type (defines the delegated object)

VecSetFromOptions(Vec v)

– Configures the vector from the options database

VecDuplicate(Vec old, Vec *new)

– Duplicates the vector (doesn't copy values)

14

Vector basic interface 2/2
VecGetSize(Vec v, PetscInt *size)

– Gets global size of v

VecGetLocalSize(Vec v, PetscInt *size)

– Gets local size of v

VecView(Vec x, PetscViewer v)

– Prints the content of the vector using the viewer object

VecCopy(Vec x, Vec y)

– Copies vector values

VecSet(Vec x, PetscScalar value)

– Sets all values of the vector to a specific value

VecDestroy(Vec *x)

– Destroys the Vec object

15

Vector assembly

VecSetValue(Vec x, PetscInt idx, PetscScalar v,
 InsertMode mode)
VecSetValues(Vec x, PetscInt n, PetscInt *idx,
 PetscScalar *v, InsertMode mode)
VecAssemblyBegin(Vec x)
VecAssemblyEnd(Vec x)

A three step process
– VecSetValues can be called as many times as the user

wants to tell PETSc what values are to be inserted (or added
to existing ones) and where

– VecAsseblyBegin starts communications to ensure that
values end up where needed (allow other operations, such
as some independent computation, to proceed).

– VecAssemblyEnd completes the communication

16

Vector – Example 1

#include “petscvec.h”
...

Vec x;

PetscInt i,N;

PetscMPIInt rank;

PetscScalar value=1.0;

PetscErrorCode ierr;
...

ierr = VecGetSize(x, &N);CHKERRQ(ierr); /* Global size */

ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr)

if (rank == 0) { /* Only rank 0 sets all values into the vector */

 for (i=0; i<N; i++) {

 ierr = VecSetValue(x,i,value,INSERT_VALUES);CHKERRQ(ierr);

 }

}

/* data is distributed to the other processes */

ierr = VecAssemblyBegin(x);CHKERRQ(ierr);

ierr = VecAssemblyEnd(x);CHKERRQ(ierr);

/* the vector can then be used */

17

Vector – Example 2

#include “petscvec.h”
...

Vec x;

PetscInt i,low,high;

PetscScalar value=1.0;

PetscErrorCode ierr;
...

ierr = VecGetOwnershipRange(x, &low, &high);CHKERRQ(ierr);

for (i=low; i<high; i++) { /* each process fill its own part */

 ierr = VecSetValue(x, i, value, INSERT_VALUES);CHKERRQ(ierr);

}

ierr = VecAssemblyBegin(x);CHKERRQ(ierr);

ierr = VecAssemblyEnd(x);CHKERRQ(ierr);

/* the vector can then be used */

18

Numerical vector operations

19

Working with local vectors

Sometimes is more efficient to directly access local storage of a PETSc
Vec (e.g. in finite difference computations involving vector elements)

VecGetArray(Vec x, PetscScalar *[])
– Access the local storage

VecRestoreArray(Vec x, PetscScalar *[])
– You must return the array to PETSc when you have done

computing with local data

PETSc handles data structure conversions (e.g. if data resides on GPU)
– For most common uses, these routines are inexpensive and

do not involve a copy of local data.

20

Vector – Example 3

#include “petscvec.h”
...

Vec vec;

PetscMPIInt rank;

PetscScalar *avec;
...

ierr = VecCreate(PETSC_COMM_WORLD,&vec);CHKERRQ(ierr);
ierr = VecSetSizes(vec,PETSC_DECIDE,100);CHKERRQ(ierr);
ierr = VecSetType(vec,VECSTANDARD);CHKERRQ(ierr);
...

ierr = VecGetArray(vec, &avec);CHKERRQ(ierr);

ierr = MPI_Comm_rank(PETSC_COMM_WORLD, &rank);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_SELF,“First element of local array for rank
%d is %f\n”,rank,avec[0]);CHKERRQ(ierr);
ierr = VecRestoreArray(vec, &avec);CHKERRQ(ierr);
...

21

Matrices

What are PETSc matrices?
– Roughly represent linear operators in Banach spaces
– In most of the PETSc low-level implementations, each process

logically owns a submatrix of contiguous rows

Features
– Supports many storage formats

● AIJ, BAIJ, SBAIJ, DENSE, CUSP (GPU, dev-only) ...
– Data structures for many external packages

● MUMPS (parallel), SuperLU_dist (parallel), SuperLU,
UMFPack

– Hidden communications in parallel matrix assembly
– Matrix operations are defined from a common interface
– Shell matrices via user defined MatMult and other ops

22

Parallel sparse matrices

Each process logically owns a matrix subset of contiguously
numbered global rows. Each subset consists of two sequential
matrices corresponding to diagonal and off-diagonal parts.

23

P0

P1

P2

Matrix operations 1/2

MatCreate(MPI_Comm comm, Mat *A)

– Automatically generates the appropriate matrix type (sequential
or parallel) over all processes in comm.

MatSetSizes(Mat A, PetscInt m, PetscInt n,
 PetscInt M, PetscInt N)

– Sets the local and global sizes

MatSetType(Mat A, MatType type)

– Sets matrix type (defines the delegated object)

MatSetFromOptions(Mat A)

– Configures the matrix from the options database.

MatDuplicate(Mat B, MatDuplicateOption op, Mat *A)

– Duplicates a matrix (including or not its nonzeros).

24

Matrix operations 2/2

MatView(Mat A, PetscViewer v)

– Prints matrix content using the viewer object

MatGetOwnershipRange(Mat A, PetscInt *m, PetscInt* n)

– Gets the first and last (+1) of locally owned rows

MatGetOwnershipRanges(Mat A, const PetscInt **ranges)

– Gets start and end rows of each process sharing the matrix

MatGetSize(Mat A, PetscInt *m, PetscInt* n)

– Gets global number of rows and columns

MatDestroy(Mat *A)

– Destroys the Mat object

25

Matrix assembly

Like PETSc vectors, Mat assembling process involves calls to

MatSetValue(Mat A, PetscInt idxm, PetscInt idxn,
 PetscScalar value,InsertMode mode)
MatSetValues(Mat A, PetscInt m, PetscInt idxm[],
 PetscInt n, PetscInt idxn[],
 PetscScalar values[],
 InsertMode mode)
MatAssemblyBegin(Mat A, MatAssemblyType type)
MatAssemblyEnd(Mat A, MatAssemblyType type)

26

Matrix – Example
#include “petscmat.h”
...

Mat A;
PetscInt cols[3], i, istart, iend;
PetscScalar vals[3];
PetscErrorCode ierr;
...

/* suppose A has been already created and have its type set */
ierr = MatGetOwnershipRange(A,&istart,&iend);CHKERRQ(ierr);
...

vals[0] = -1.0; vals[1] = 2.0; vals[2] = -1.0; /* 1D laplacian stencil */
for (i=istart; i<iend; i++) {
 cols[0] = i-1; cols[1] = i; cols[2] = i+1; /* 1D laplacian stencil */
 ierr = MatSetValues(A,1,&i,3,cols,value,INSERT_VALUES);CHKERRQ(ierr);
}
ierr = MatAssemblyBegin(A,MAT_FLUSH_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(A,MAT_FLUSH_ASSEMBLY);CHKERRQ(ierr);
/* all processes contribute to 0,0 entry */
ierr = MatSetValue(A,0,0,vals[0],ADD_VALUES);CHKERRQ(ierr);
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

27

Numerical matrix operations

28

Matrix AIJ format

29

The default matrix representation within PETSc is
the general sparse AIJ format (Yale sparse matrix
or Compressed Sparse Row, CSR)

 The nonzero elements are stored by rows
 Array of corresponding column numbers
 Array of pointers to the beginning of each row

Matrix memory preallocation
Memory preallocation is critical for achieving good performance
during matrix assembly, as this reduces the number of allocations and
copies required during the assembling process.

Private representations of PETSc sparse matrices are dynamic data
structures: additional nonzeros can be freely added (if no
preallocation has been explicitly provided).

Dynamically adding many nonzeros
– requires additional memory allocations
– requires copies

→ kills performances!

30

Preallocation
of a sequential sparse matrix (1/2)
MatSeqAIJSetPreallocation(Mat A, Petscint nz,
 PetscInt *nnz)

• Dynamic preallocation if (nz == 0 && nnz == PETSC_NULL)

• Quick and dirty preallocation if nz is set to the maximum number of
nonzeros in any row .

– Fine if the number of nonzeros per row is roughly the same
throughout the matrix

31

Preallocation
of sequential sparse matrix (2/2)

• A finer preallocation

 nnz[0] = <nonzeros in row 0>

 ...

 nnz[m] = <nonzeros in row m>

• If one underestimates the actual number of nonzeros in a given
row, then during the assembly process PETSc will complain unless
otherwise told.

32

Preallocation
of a parallel sparse matrix (1/2)
MatMPIAIJSetPreallocation(Mat A,
 Petscint dnz,
 PetscInt *dnnz,
 Petscint onz,
 PetscInt *onnz)

• Same logic as before for dynamic allocation
• dnz and dnnz specify preallocation for the diagonal block
• onz and onnz specify preallocation for the off-diagonal block

33

Preallocation
of parallel sparse matrix (2/2)

Process 0

dnz=2, onz=2

dnnz[0]=2, onnz[0]=2

dnnz[1]=2, onnz[1]=2

dnnz[2]=2, onnz[2]=2

Process 1

dnz=3, onz=2

dnnz[0]=3, onnz[0]=2

dnnz[1]=3, onnz[1]=1

dnnz[2]=2, onnz[2]=1

Process 2

dnz=1, onz=4

dnnz[0]=1, onnz[0]=4

dnnz[1]=1, onnz[1]=4

34

P0

P1

P2

PETSc solvers: KSP, SNES and TS

35

KSP: linear equations solvers

• KSP (K stands for Krylov) objects are used for solving linear
systems by means of direct or iterative methods.

• In the iterative case, convergence can be improved by using a
suitable PC object (preconditoner).

• Almost all iterative methods are implemented.
• Direct solution for parallel square matrices available through

external solvers (MUMPS, SuperLU_dist)
• Linear operators set in KSP by using

 KSPSetOperators(KSP ksp, Mat amat, Mat pmat,
 MatStructure matflag)

36

PETSc KSP methods

37

PETSc PC methods

38

SNES: nonlinear solvers

The SNES class includes methods for solving systems of nonlinear
equations of the form

Newton-like methods provide the core of the package, including both line
search and trust region techniques.

SNESSetFunction(SNES snes, Vec v,
 PetscErrorCode (*SNESFunction)(SNES, Vec, Vec, void*),

void *ctx)
SNESSetJacobian(SNES snes, Mat amat, Mat pmat,
 PetscErrorCode (*SNESJacobianFunction)
 (SNES, Vec, Mat*, Mat*, MatStructure*,void *),
 void *ctx)

39

PETSc SNES methods

40

TS: time steppers

TS class includes methods for solving systems of linear or nonlinear
Ordinary Differential Equations (ODEs) or Differential Algebraic
Equations (DAEs), i.e. problems which can be written down as

The class provides explicits, implicits or semi-implicit methods and the
user has to provide functions on how to compute the fundamental
pieces of equation (F, G and a Jacobian)

41

Debugging and Profiling

42

Debugging

If configured in debug mode (default), PETSc provides large support to
error handling, backtracing and memory leak detection for C/C++
codes by simply adhering to very basic guidelines for code developing

PETSc programs may be debugged using one of the two options:

-start_in_debugger - start all processes in debugger

-on_error_attach_debugger - start debugger only on error

Also, if configured with MPICH for the message passing interface and
with GNU compilers, PETSc code is completely valgrind-free.

43

Profiling and performance tuning

Profiling:
 Integrated profiling of:

– time
– floating-point performance
– memory usage
– communication

 User-defined events
 Profiling by stages of an application

44

PETSc profiling options

The profiling options include the following:

-log_summary - Prints an ASCII version of performance data at program’s
conclusion. These statistics are comprehensive and concise and require little
overhead; thus, -log_summary is intended as the primary means of
monitoring the performance of PETSc codes.

-info [infofile] - Prints verbose information about code to stdout or an
optional file. This option provides details about algorithms, data structures, etc.

-log_trace [logfile] - Traces the beginning and ending of all PETSc
events. If used in conjunction with -info, this option is useful to see where a
program is hanging without running in the debugger.

45

	Start
	PETSc main features
	PETSc class hierarchy
	PETSc numerical components
	PETSc overview
	PETSc programming model
	PETSc from a user perspective
	PETSc from a user perspective
	Writing PETSc programs: initialization and finalization
	Hello world with PETSc. C example
	Hello world with PETSc. Fortran example
	Objects for linear spaces
	Vectors
	Vector operations
	Vector operations
	Vector assembly process
	Vector – Example 1
	Vector – Example 2
	Numerical vector operations
	Working with local data
	Vector – Example 3
	Matrices
	Parallel sparse matrices
	Matrix operations
	Matrix operations
	Matrix assembly process
	Matrix – Example
	Numerical matrix operations
	Matrix AIJ format
	Matrix memory preallocation
	Preallocation of sequential sparse matrices
	Preallocation of sequential sparse matrices
	Preallocation of parallel sparse matrices
	Preallocation of parallel sparse matrices
	Solving PDEs
	KSP: linear equations solvers
	PETSc KSP methods
	PETSc PC methods
	SNES: nonlinear solvers
	PETSc SNES methods
	Time steppers
	Debugging and profiling
	Debugging
	Profiling and performance tuning
	PETSc profiling options

