
Linear algebra algorithms

Fabio Affinito – f.affinito@cineca.it

SCAI dept - CINECA

Introduction

We will study the serial and parallel approach to
the solution of simple operations such as:

● Vector axpy: z = a x + y

● Vector dot product a = x . y = xT y
● Matrix-vector product y = A x
● Linear system solution: solve A x = y for x

Serial axpy
To compute the linear combination

z = a x + y

for i = 1:n
z(i)= a*x(i)+y(i)

end

- order n operations

- easy optimize to vector or hierarchical memory architectures

- all operations affect independent components of the vector
output

Serial dot product

To compute the dot-product a=xTy

- order n operations

- easily optimizable to vector or hierarchical memory
architectures

- all operations affect the single scalar output a

a=0.0
for i=1:n

a=a+x(i)*y(i)
end

Serial matrix-vector product

To compute the matrix vector product y = A x

for i = 1:n
y(i) = 0.0
for j = 1:n

y(i)=y(i)+A(i,j)*x(j)
end

end

- order n2 operations
- Easily optimizable for vector or hierarchical memory architectures
- All components of x affect all components of y via non-zero structure of A
- For sparse matrices, many of these operations can be eliminated resulting in O(n)
operations

Solving linear systems
To solve the linear system Ax=y for given x, we have a large number of
choices. These depend on a variety of factors:

- the system size, n

- the sparsity of the matrix A

- the nonzero structure of a sparse matrix

- the type of problem giving rise to the linear system

We will deal with these very broadly investigating two methods in
detail: a direct solver (Gaussian elimination) and an iterative solver
(Jacobi), to help illustrate how one might choose between various
methods for different problems in serial and parallel.

For both we will assume that the solution x to the system exists and
that the problem is not ill-conditioned

Serial gaussian elimination

Idea: solve Ax=y using diagonal values and elementary row
operations to eliminate the lower triangular portion of A. Then
use back-substitution to obtain x.

for k=1:n-1
for i=k+1:n

for j=k+1:n
A(i,j)=A(i,j)-A(k,j)*A(i,k)/A(k,k)

end
y(i)=y(i)-y(k)*A(i,k)/A(k,k)

end
for i=n:-1:1

x(i)=y(i)/A(i,i)
for j=i+1:n

x(i)=x(i)-A(i,j)*x(j)/A(i,i)
end

end

- order n3 operations

- guaranteed to work for nonsingular A (with minor algorithmic
changes)

Serial Jacobi iteration

Idea: solve the system Ax=y by decomposing A = D + LU

xk+1 = D-1(y - LU xk)

Given x0 and d>0, set x=x0, w=Ax

while |w-y|>d
for j=1:n

x(j)=x(j)+(y(j)-w(j))/A(j,j)
end
w=Ax

end

- each iteration requires O(n) operations plus one matrix-vector product
- only converges for diagonally dominant matrices A

Let’s go parallel

Now consider the vectors x as
decomposed among p processors.

One must therefore determine
how the vectors are decomposed
among processors.

Choices include:
- a decomposition based on the problem that gives rise to the

linear system, such as a PDE or other domain decomposed
simulation, with a previously assumed parallel decomposition

- a decomposition that is customized to solve the given linear
system in an optimal manner for a given solver algorithm

Subdomain based
decomposition
Domain decomposition parallelism sub-divides a problem among
processors into contiguous sections, in an effort to minimize the
ratio of surface area to volume of data on the processor. The
linear algebra is then performed on the resulting decomposition.

In a 1D decomposition, the data
on each processor is neighbored
by data on at most 2 other
processors.
In a 2D decomposition, the
domain is similarly split into a 2-
dim processor grid

Solver based decomposition

Dense linear algebra packages typically require a block cyclic
data distribution, in an attempt to optimize the load balance and
communication characteristics of the algorithms.

Notation

For the following algorithms, we will assume a 1D
decomposition. The global domain is mapped onto p processors.

We assume that each processor contains m = n/p values.

We will use q as the processor index. q=1,..,p

Parallel axpy

Since all operations in the linear combination z=ax+y affect only
processor local components, the parallelization is trivial.

On each processor q containing local vector components x
q
,y

q
,z

q

we independently perform:

for i=1:m
zq(i)=a*xq(i)+yq(i)

end

- No communication between processors is required
- Ideal strong scaling and weak scaling, as problem size and processor counts increase

Parallel dot-product

Nearly all operations in computing

the dot-product a=xTy are
processor local. Only the final
scalar product requires
communication between all the
processors:

aq=0.0
for i=1:m

aq=aq+xq(i)*yq(i)
end
MPI_Allreduce(&aq, &aMPI_SUM...)

Parallel matrix-vector product
method 1

Local output y
q
 requires knowledge of global x:

MPI_Allgather(&xq,m,MPI_DOUBLE,&x,n..)
for i=1:m

yq(i)=0.0
for j=1:n

yq(i)=yq(i)+A(i,j)*x(j)
end

end

- if the matrix is sparse or it has special structure than we
may use such properties appropriately

Parallel matrix-vector product
method 2

Each processor computes a local contribution to the local output
followed by reduction onto the appropriate processor:

for i=1:n
y(i)=0.0
for j=1:m

y(i)=y(i)+A(i,j)*xq(j)
end

end

for q=1:p
MPI_Reduce(&y,&yq,m...)

END

Solving linear systems
in parallel

Difficulties encountered when dealing with matrix-vector
multiplication are similar to ones related to linear systems:

● Any solver algorithm must allow the solution to depend on
the global rhs through the nonzero structure of the matrix

● There cannot exist simple solver algorithms that do not
involve significant parallel communication

● We will consider only one example: the parallel Jacobi
iteration

Parallel Jacobi iteration
Idea: build out of parallel vector operations and matrix-vector
product.

Given x
q

0 and d>0

xq=xq
0

w = matvec(A,x)
r = sqrt(dot_product(w-y))
while (r>d)

for j=1:m
xq(j)=xq(j)+(yq(j)-wq(j))/dq(j)

end
w = matvec(A,x)
r = sqrt(dot_product(w-y))

end
- All the parallel communications are contained in the dot_product and
matvec operations
- All other operations may run independently on each processor

Parallel linear algebra
software

There are two kinds of parallel linear algebra algorithms used in
available software: direct and iterative.

Direct solvers may be difficult in parallel at large scale. However
optimized solver libraries do exist but their scalability is limited
to some hundred processors.

● Dense approaches are modeled in LAPACK and BLAS and, for
parallel machines in ScaLAPACK and PLAPACK

● Sparse matrices are treated in SuperLU, Amesos

● want convergence in few iterations, with a formula for
constructing the sequence that is both scalable with problem
size and processor number

● may be independent of matrix structure and sparsity, or may
require system arising from certain kinds of problems

● some methods can scale up to 100k processors
● depending on the method the iterations may or may not

converge for all A
● a number of packages provide iterative solvers along with

interfaces to approximate direct methods to help accelerate
convergence

● examples are: PetSC, HYPRE, ML

Parallel linear algebra
software (iterative)

References

● This lecture is inspired by the course given by D.R.
Reynolds @UCSD

● Two complete textbooks are:
● B.N. Datta, Numerical linear algebra and applications
● Golub, Van Loan, Matrix Computations

