
ABOUT US RESOURCES SERVICES FOR USERS TRAINING

PROJECTS

Home › Training MPI

Exercise 3

Write a code that using point to point communications performs a circular send/receive as represented in the

following figure

Each task will declare two float arrays, A and B, of a fixed dimension (10000). Every element of A will be initialized

with the rank of the process. Then, A and B will be used as the buffers for SEND and RECEIVE, respectively. Each

process sends only to the process on its right and receives only from the process on its left. As you can see from

the picture the last process will send its array A to the first task.

Avoid deadlocks and make sure that the code will work with a general number of tasks. Therefore, you need two

variables to be used as destination and source for the send and receive calls, inizialized as:

 right

=

| my_rank + 1

|

| 0

every task except the last

Home Contacts CINECA

Search

Exercise 3

Exercise 3 | SCAI http://www.hpc.cineca.it/content/exercise-3

1 of 3 03/09/2013 15:43

 last task

left =

| my_rank - 1

|

| last rank

every task except the first

first task

The program terminates with each process printing out one element of the array B.

 I am task 0 and I have received b(0) = 3.00

 I am task 1 and I have received b(0) = 0.00

 I am task 2 and I have received b(0) = 1.00

 I am task 3 and I have received b(0) = 2.00

HINTS:

C

MPI_ISEND
int MPI_Isend(void* buf, int count, MPI_Datatype datatype, int dest, int tag,

MPI_Comm comm, MPI_Request *request)

MPI_RECV
int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source, int tag,

MPI_Comm comm, MPI_Status *status)

MPI_INIT int MPI_Init(int *argc, char ***argv)

MPI_COMM_SIZE int MPI_Comm_size(MPI_Comm comm, int *size)

MPI_COMM_RANK int MPI_Comm_rank(MPI_Comm comm, int *rank)

MPI_FINALIZE int MPI_Finalize(void)

FORTRAN

Exercise 3 | SCAI http://www.hpc.cineca.it/content/exercise-3

2 of 3 03/09/2013 15:43

‹ Q/A Exercise 2 up Solution 3 ›

MPI_ISEND MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_RECV MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_INIT MPI_INIT(IERROR)

INTEGER IERROR

MPI_COMM_SIZE MPI_COMM_SIZE(COMM, SIZE, IERROR)

INTEGER COMM, SIZE, IERRO

MPI_COMM_RANK MPI_COMM_SIZE(COMM, SIZE, IERROR)

INTEGER COMM, SIZE, IERROR

MPI_FINALIZE MPI_FINALIZE(IERROR)

INTEGER IERROR

CODE

right / left Use the module function "mod" in FORTRAN, or the "%" operator in C

© Copyright 2012 SCAI - SuperComputing Applications and Innovation - CINECA

Exercise 3 | SCAI http://www.hpc.cineca.it/content/exercise-3

3 of 3 03/09/2013 15:43

